Supplementary material

A Dataset descriptions

NIPS: co-author graph of authors at the first twelve editions of NIPS, obtained from [17]. For this
dataset, as well as the Enzyme dataset below, we have A = B. The co-author graph comprises
na = npg = 2,037 authors represented by bag-of-words vectors of dimension d4 = dp = 13,649
(words used by authors in their publications). The number of positive samples is n = 4, 140.

Enzyme: metabolic network obtained from [21]. The network comprises n4 = np = 668 en-
zymes represented by three sets of features: a 157-dimensional vector of phylogenetic information,
a 145-dimensional vector of gene expression information and a 23-dimensional vector of gene
location information. We concatenate the three sets of information to form feature vectors of
dimension d4 = dp = 325. Original enzyme similarity scores are between 0 and 1. We binarize
the scores using 0.95 as threshold. The resulting number of positive samples is n4 = 2,994.

GD: human gene-disease association data obtained from [10]. The bipartite graph is comprised
of ng = 3,209 diseases and np = 12,331 genes. We represent each disease using a vector of
da = 3,209 dimensions, whose elements are similarity scores obtained from MimMiner. The
study [10] also used bag-of-words vectors describing each disease but we found these to not help
improve performance both for baselines and proposed methods. We represent each gene using a
vector of dp = 25,275 features, which are the concatenation of 12, 331 similarity scores obtained
from HumanNet and 12,944 gene-phenotype associations from 8 other species. See [10] for a
detailed description of the features. The number of positive samples is n, = 3, 954.

Movielens 100K: recommender system data obtained from [6]. The bipartite graph is comprised
of ng = 943 users and np = 1,682 movies. For users, we convert age, gender, occupation and
living area (first digit of zipcode) to a binary vector using a one-hot encoding. For movies, we
use the release year and genres. The resulting vectors are of dimension d4 = 49 and dp = 29,
respectively. Original ratings are between 1 and 5. We binarize the ratings using 5 as threshold,
resulting in n4 = 21, 201 positive samples.

B Additional experiments

B.1 Solver comparison

We also compared AdaGrad, L-BFGS and coordinate descent (CD) on the Enzyme, Gene-Disease
(GD) and Movielens 100K datasets. Results are indicated in Figure 2, 3 and 4, respectively.

B.2 Recommender system experiments

As we explained in Section 5.2, the all-subsets kernel can be a good choice if the number of non-zero
elements per sample is small. To verify this assumption, we ran experiments on two recommender
system tasks: Movielens 1M and Last.fm. We used the exact same setting as in [4, Section 9.3]. For
each rating y;, the corresponding a; was set to the concatenation of the one-hot encodings of the user
and item indices. We compared the following models:

o FM: g = (w, @) + 20 APy, 2:)
e FM-augmented: §; = Z]::1 A%(p,, ;) where & = [1,z]]
e All-subsets: j; = Y°_, S(p,, ;)

e Polynomial networks: ¢; = aEiUVT:EZ- (c.f. [4] for more details)

Results are indicated in Figure 5. We see that All-subsets performs relatively well on these tasks.
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Figure 2: Solver comparison for minimizing (10) on the Enzyme dataset. We set 3 to the values with
best test-set performance, which were 5 = 0.1, 8 = 0.1 and S = 0.01, respectively. We set k = 30.
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Figure 3: Solver comparison for minimizing (10) on the GD dataset. We set /3 to the values with best
test-set performance, which were 5 = 0.01, 5 = 0.01 and $ = 0.0001, respectively. We set k = 30.
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Figure 4: Solver comparison for minimizing (10) on the Movielens 100K dataset. We set (5 to the
values with best test-set performance, which were 3 = 1073, 3 = 10~% and 8 = 107, respectively.

We set k = 30.
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Figure 5: Model comparison on two recommender system datasets.
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C Reverse-mode differentiation on the alternative recursion

We now describe how to apply reverse-mode differentiation to the alternative recursion (11) in order
to compute the entire gradient efficiently. Let us introduce the shorthands a; := A’(p, ) and
d; = D*(p, ). We can then write the recursion as
1 m
Ay = — Z(—l)t"'lam,tdt.

m
t=1

For concreteness, let us illustrate the recursion for m = 3. We have

1 1
a; = (Lodl, a2 = §(a1d1 — aodg) and as = g(agdl — a1d2 —+ aodg).

We see that as influences a3, and a; influences ay and as. Likewise, d3 influences a3, d2 influences
as and as, and d; influences a1, as and a3. Let us denote the adjoints a; = %‘IT’:L and d; == 9am Ror

ad;
general m, summing over quantities that influences a; and d;, we obtain

m (71)57t+1

ar=

_ ; 1
CLsds_t and dt = (—1)t+1 Z; ;asas_t.

s=t+1
Let us denote the adjoint of p; by p; = %“—p"{h We know that p; directly influences only dy, ..., dn,
and therefore
N " Day, Odyy, UL 1t
D = — = detp’ "x’.
! ; 6dm 8pj 1 N /
Assuming that dy, ..., d,, and ay, . . ., a,,, have been previously computed, which takes O(dm+m2),

the procedure for computing the gradient can be summarized as follows:
1. Initialize a,, = 1,
2. Compute a,—1, . - -, a1 (in that order),
3. Compute d~m, .. .,cil,
4. Compute VA™(p,x) = [p1,...,Dd)" -

Steps 2 and 4 both take O(m?) and step 4 takes O(dm) so the total cost is O(dm + m?). We can
improve the complexity of step 4 as follows. We can rewrite V.A™ (p, ) in matrix notation:

1 piz (plxl)z e (Plxl)mfi J}

1 paxg  (paz2)® ... (pow2)™” 2d;
VA™(p,x) = : : . . ox.

1 paxa (para)®> .. (Paza)™ ') |mdn

The left matrix is called a Vandermonde matrix. The product between a d x m Vandermonde matrix
and a m-dimensional vector can be computed using the Moenck-Borodin algorithm (an algorithm
similar to the FFT), in O(rlog® 1), where r = max(d, m) and | = min(d, m) [11]. Since m < d,
the cost of step 4 can therefore be reduced to O(d log2 m).
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