
Supplementary material
A Dataset descriptions

• NIPS: co-author graph of authors at the first twelve editions of NIPS, obtained from [17]. For this
dataset, as well as the Enzyme dataset below, we have A = B. The co-author graph comprises
nA = nB = 2, 037 authors represented by bag-of-words vectors of dimension dA = dB = 13, 649
(words used by authors in their publications). The number of positive samples is n+ = 4, 140.

• Enzyme: metabolic network obtained from [21]. The network comprises nA = nB = 668 en-
zymes represented by three sets of features: a 157-dimensional vector of phylogenetic information,
a 145-dimensional vector of gene expression information and a 23-dimensional vector of gene
location information. We concatenate the three sets of information to form feature vectors of
dimension dA = dB = 325. Original enzyme similarity scores are between 0 and 1. We binarize
the scores using 0.95 as threshold. The resulting number of positive samples is n+ = 2, 994.

• GD: human gene-disease association data obtained from [10]. The bipartite graph is comprised
of nA = 3, 209 diseases and nB = 12, 331 genes. We represent each disease using a vector of
dA = 3, 209 dimensions, whose elements are similarity scores obtained from MimMiner. The
study [10] also used bag-of-words vectors describing each disease but we found these to not help
improve performance both for baselines and proposed methods. We represent each gene using a
vector of dB = 25, 275 features, which are the concatenation of 12, 331 similarity scores obtained
from HumanNet and 12, 944 gene-phenotype associations from 8 other species. See [10] for a
detailed description of the features. The number of positive samples is n+ = 3, 954.

• Movielens 100K: recommender system data obtained from [6]. The bipartite graph is comprised
of nA = 943 users and nB = 1, 682 movies. For users, we convert age, gender, occupation and
living area (first digit of zipcode) to a binary vector using a one-hot encoding. For movies, we
use the release year and genres. The resulting vectors are of dimension dA = 49 and dB = 29,
respectively. Original ratings are between 1 and 5. We binarize the ratings using 5 as threshold,
resulting in n+ = 21, 201 positive samples.

B Additional experiments

B.1 Solver comparison

We also compared AdaGrad, L-BFGS and coordinate descent (CD) on the Enzyme, Gene-Disease
(GD) and Movielens 100K datasets. Results are indicated in Figure 2, 3 and 4, respectively.

B.2 Recommender system experiments

As we explained in Section 5.2, the all-subsets kernel can be a good choice if the number of non-zero
elements per sample is small. To verify this assumption, we ran experiments on two recommender
system tasks: Movielens 1M and Last.fm. We used the exact same setting as in [4, Section 9.3]. For
each rating yi, the corresponding xi was set to the concatenation of the one-hot encodings of the user
and item indices. We compared the following models:

• FM: ŷi = 〈w,xi〉+
∑k
s=1A2(ps,xi)

• FM-augmented: ŷi =
∑k
s=1A2(ps, x̃i) where x̃T

i = [1,xT
i ]

• All-subsets: ŷi =
∑k
s=1 S(ps,xi)

• Polynomial networks: ŷi = x̃iUV
Tx̃i (c.f. [4] for more details)

Results are indicated in Figure 5. We see that All-subsets performs relatively well on these tasks.
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(a) m = 2 (b) m = 3 (c) m = 4

Figure 2: Solver comparison for minimizing (10) on the Enzyme dataset. We set β to the values with
best test-set performance, which were β = 0.1, β = 0.1 and β = 0.01, respectively. We set k = 30.

(a) m = 2 (b) m = 3 (c) m = 4

Figure 3: Solver comparison for minimizing (10) on the GD dataset. We set β to the values with best
test-set performance, which were β = 0.01, β = 0.01 and β = 0.0001, respectively. We set k = 30.

(a) m = 2 (b) m = 3 (c) m = 4

Figure 4: Solver comparison for minimizing (10) on the Movielens 100K dataset. We set β to the
values with best test-set performance, which were β = 10−3, β = 10−4 and β = 10−6, respectively.
We set k = 30.

(a) Movielens 1M (b) Last.FM

Figure 5: Model comparison on two recommender system datasets.
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C Reverse-mode differentiation on the alternative recursion

We now describe how to apply reverse-mode differentiation to the alternative recursion (11) in order
to compute the entire gradient efficiently. Let us introduce the shorthands at := At(p,x) and
dt := Dt(p,x). We can then write the recursion as

am =
1

m

m∑

t=1

(−1)t+1am−tdt.

For concreteness, let us illustrate the recursion for m = 3. We have

a1 = a0d1, a2 =
1

2
(a1d1 − a0d2) and a3 =

1

3
(a2d1 − a1d2 + a0d3).

We see that a2 influences a3, and a1 influences a2 and a3. Likewise, d3 influences a3, d2 influences
a2 and a3, and d1 influences a1, a2 and a3. Let us denote the adjoints ãt := ∂am

∂at
and d̃t := ∂am

∂dt
. For

general m, summing over quantities that influences at and dt, we obtain

ãt =
m∑

s=t+1

(−1)s−t+1

s
ãsds−t and d̃t = (−1)t+1

m∑

s=t

1

s
ãsas−t.

Let us denote the adjoint of pj by p̃j := ∂am
∂pj

. We know that pj directly influences only d1, . . . , dm
and therefore

p̃j =

m∑

t=1

∂am
∂dm

∂dm
∂pj

=

m∑

t=1

d̃ttp
t−1
j xtj .

Assuming that d1, . . . , dm and a1, . . . , am have been previously computed, which takesO(dm+m2),
the procedure for computing the gradient can be summarized as follows:

1. Initialize ãm = 1,
2. Compute ãm−1, . . . , ã1 (in that order),

3. Compute d̃m, . . . , d̃1,
4. Compute ∇Am(p,x) = [p̃1, . . . , p̃d]

T.

Steps 2 and 4 both take O(m2) and step 4 takes O(dm) so the total cost is O(dm + m2). We can
improve the complexity of step 4 as follows. We can rewrite∇Am(p,x) in matrix notation:

∇Am(p,x) =







1 p1x1 (p1x1)2 . . . (p1x1)m−1

1 p2x2 (p2x2)2 . . . (p2x2)m−1

...
...

...
. . .

...
1 pdxd (pdxd)

2 . . . (pdxd)
m−1







d̃1

2d̃2

...
md̃m





 ◦ x.

The left matrix is called a Vandermonde matrix. The product between a d×m Vandermonde matrix
and a m-dimensional vector can be computed using the Moenck-Borodin algorithm (an algorithm
similar to the FFT), in O(r log2 l), where r = max(d,m) and l = min(d,m) [11]. Since m ≤ d,
the cost of step 4 can therefore be reduced to O(d log2m).
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