
Supplementary material for Exponential expressivity
in deep neural networks through transient chaos

Ben Poole1, Subhaneil Lahiri1, Maithra Raghu2, Jascha Sohl-Dickstein2, Surya Ganguli1
1Stanford University, 2Google Brain

{benpoole,sulahiri,sganguli}@stanford.edu, {maithra,jaschasd}@google.com

Below is a series of appendices giving derivations of results in the main paper, followed by details of
results along with more visualizations.

1 Derivation of a transient dynamical mean field theory for deep networks

We study a deep feedforward network with D layers of weights W1, . . . ,WD and D + 1 layers of
neural activity vectors x0, . . . ,xD, with Nl neurons in each layer l, so that xl ∈ RNl and Wl is an
Nl ×Nl−1 weight matrix. The feedforward dynamics elicited by an input x0 is given by

xl = φ(hl) hl = Wl xl−1 + bl for l = 1, . . . , D, (1)

where bl is a vector of biases, hl is the pattern of inputs to neurons at layer l, and φ is a single neuron
scalar nonlinearity that acts component-wise to transform inputs hl to activities xl. The synaptic
weights Wl

ij are drawn i.i.d. from a zero mean Gaussian with variance σ2
w/Nl−1, while the biases

are drawn i.i.d. from a zero mean Gaussian with variance σ2
b . This weight scaling ensures that the

input contribution to each individual neuron at layer l from activities in layer l − 1 remains O(1),
independent of the layer width Nl−1.

1.1 Derivation of the length map

As a single input point x0 propagates through the network, it’s length in downstream layers can either
grow or shrink. To track the propagation of this length, we track the normalized squared length of the
input vector at each layer,

ql =
1

Nl

Nl∑
i=1

(hli)
2. (2)

This length is the second moment of the empirical distribution of inputs hli across all Nl neurons in
layer l for a fixed set of weights. This empirical distribution is expected to be Gaussian for large Nl,
since each individual hli = wl,i · φ(hl−1) + bli is Gaussian distributed, as a sum of a large number
of independent random variables, and each hli is independent of hlj for i 6= j because the synaptic
weights vectors and biases into each neuron are chosen independently.

While the mean of this Gaussian is 0, its variance can be computed by considering the variance of the
input to a single neuron:

ql =
〈
(hli)

2
〉

=
〈[

wl,i · φ(hl−1)
]2〉

+
〈
(bli)

2
〉

= σ2
w

1

Nl−1

Nl−1∑
i=1

φ(hl−1
i)2 + σ2

b , (3)

where 〈·〉 denotes an average over the distribution of weights and biases into neuron i at layer l. Here
we have used the identity 〈wl,i

j wl,i
k 〉 = δjk σ

2
w/Nl−1. Now the empirical distribution of inputs across

layer l− 1 is also Gaussian, with mean zero and variance ql−1. Therefore we can replace the average

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

over neurons in layer l − 1 in (3) with an integral over a Gaussian random variable, obtaining

ql = V(ql−1 |σw, σb) ≡ σ2
w

∫
Dz φ

(√
ql−1z

)2

+ σ2
b , for l = 2, . . . , D, (4)

where Dz = dz√
2π
e−

z2

2 is the standard Gaussian measure, and the initial condition for the variance
map is q1 = σ2

wq0 + σ2
b , where q0 = 1

N0
x0 · x0 is the length in the initial activity layer. The function

V in (4) is an iterative variance map that predicts how the length of an input in (2) changes as it
propagates through the network. Its derivation relies on the well-known self-averaging assumption
in the statistical physics of disordered systems, which, in our context, means that the empirical
distribution of inputs across neurons for a fixed network converges for large width, to the distribution
of inputs to a single neuron across random networks.

1.2 Derivation of a correlation map for the propagation of two points

Now consider the layer-wise propagation of two inputs x0,1 and x0,2. The geometry of these two
inputs as they propagate through the layers is captured by the 2 by 2 matrix of inner products

qlab =
1

Nl

Nl∑
i=1

hli(x
0,a)hli(x

0,b) a, b ∈ {1, 2}. (5)

The joint empirical distribution of hli(x
0,a) and hli(x

0,a) across i at large Nl will converge to a 2
dimensional Gaussian distribution with covariance qlab. Propagating this joint distribution forward
one layer using ideas similar to the derivation above for 1 input yields

ql12 = C(cl−1
12 , ql−1

11 , ql−1
22 |σw, σb) ≡ σ2

w

∫
Dz1Dz2 φ (u1)φ (u2) + σ2

b , (6)

u1 =

√
ql−1
11 z1, u2 =

√
ql−1
22

[
cl−1
12 z1 +

√
1− (cl−1

12)2z2

]
,

where cl12 =
ql12√

ql11

√
ql12

is the correlation coefficient (CC). Here z1 and z2 are independent standard

Gaussian variables, while u1 and u2 are correlated Gaussian variables with covariance matrix
〈uaub〉 = ql−1

ab . The integration over z1 and z2 can be thought of as the large Nl limit of sums over
hli(x

0,a) and hli(x
0,b).

When both input points are at their fixed point length, q∗, the dynamics of their correlation coefficient
can be obtained by simply setting ql11 = ql22 = q∗(σw, σb) in (6) and dividing by q∗ to obtain a
recursion relation for cl12:

cl12 =
1

q∗
C(cl−1

12 , q∗, q∗ |σw, σb) (7)

Direct calculation reveals that cl12(1) = 1 as expected. Of particular interest is the slope χ1 of this
map at 1. A direct, if tedious calculation shows that

∂cl12

∂cl−1
12

= σ2
w

∫
Dz1Dz2 φ

′ (u1)φ′ (u2) . (8)

To obtain this result, one has to apply the chain rule and product rule from calculus, as well as employ
the identity ∫

DzF (z)z =

∫
DzF ′(z), (9)

which can be obtained via integration by parts. Evaluating the derivative at 1 yields

χ1 ≡
∂cl12

∂cl−1
12

∣∣∣∣∣
c=1

= σ2
w

∫
Dz
[
φ′
(√
q∗z
)]2

. (10)

2 Derivation of evolution equations for Riemannian curvature

Here we derive recursion relations for Riemannian curvature quantitites.

2

2.1 Curvature and length in terms of inner products

Consider a translation invariant manifold, or 1D curve h(θ) ∈ RN that is on some constant radius
sphere so that

q(θ1, θ2) = Q(θ1 − θ2) = h(θ1) · h(θ2), (11)
with Q(0) = Nq∗. At large N , the inner-product structure of translation invariant manifolds remains
approximately translation invariant as it propagates through the network. Therefore, at large N ,
we can express inner products of derivatives of h in terms of derivatives of Q. For example, the
Euclidean metric gE is given by

gE(θ) = ∂θh(θ) · ∂θh(θ) = −Q̈(0). (12)

Here, each dot is a short hand notation for derivative w.r.t. θ. Also, the extrinsic curvature

κ(θ) =

√
(v · v)(a · a)− (v · a)2

(v · v)3
, (13)

where v(θ) = ∂θh(θ) and a(θ) = ∂2
θh(θ), simplifies to

κ(θ) =

....
Q(0)

Q̈(0)2
. (14)

Now if the translation invariant manifold lives on a sphere of radius Nq∗ where q∗ is the fixed point
radius of the length map, then its radius does not change as it propagates through the system. Then
we can also express gE and κ in terms of the correlation coefficient function c(θ) = Q(θ)/q∗ (up
to a factor of N). Thus to understand the propagation of local quantities like Euclidean length and
curvature, we need to understand the propagation of derivatives of c(θ) at θ = 0 under the C-map
in (7). Note that c(θ) is symmetric and achieves a maximum value of 1 at θ = 0. Thus the function
H1(θ) = 1 − c(θ) is symmetric with a minimum at θ = 0. We consider the propagation of H1

though the C-map. But first we consider the propagation of derivatives under function composition in
general.

2.2 Behavior of first and second derivatives under function composition

Assume H1(∆t) is an even function and H1(0) = 0, so that its Taylor expansion can be written
as H1(∆t) = 1

2Ḧ
1(0)∆t2 + 1

4

....
H

1
(0)∆t4 + We are interested in determining how the second

and fourth derivatives of H propagate under composition with another function G, so that H2 =
G(H1(∆t)) . We assume G(0) = 0. We can use the chain rule and the product rule to derive:

Ḧ2(0) = Ġ(0)Ḧ1(0) (15)
....
H

2
(0) = 3G̈(0)Ḧ1(0)2 + Ġ(0)

....
H

1
(0). (16)

2.3 Evolution equations for curvature and length

We now apply the above iterations withH1(θ) = 1−c(θ) andG(c) = 1− 1
q∗ C(1−c, q

∗, q∗ |σw, σb).
Clearly, G(0) = 0 the symmetric H1 obeys H1(0) = 0, satisfying the above iterations of second and
fourth derivatives. Taking into account these derivative recursions, using the expressions for κ and
gE in terms of derivatives of c(θ) at 0, and carefully accounting for factors of q∗ and N , we obtain
the final evolution equations that have been successfully tested against experiments:

ḡE,l = χ1 ḡ
E,l−1 (17)

(κ̄l)2 = 3
χ2

χ2
1

+
1

χ1
(κ̄l−1)2, (18)

where χ1 is the stretch factor defined in (10) and χ2 is defined analogously as

χ2 = σ2
w

∫
Dz
[
φ′′
(√
q∗z
)]2

. (19)

χ2 is closely related to the second derivative of the correlation coefficient map in (7) at cl−1
12 = 1.

Indeed this second derivative is χ2q
∗.

3

3 Upper bounds on the complexity of shallow neural representations

Consider a shallow network with 1 hidden layer x1 and one input layer x0, so that x1 = φ(W1x0)+b.
The network can compute functions through a linear readout of the hidden layer x1. We are
interested in how complex these neural representations can get, with one layer of synaptic weights
and nonlinearities, as a function the number of hidden units N1. In particular, we are interested in
how the length and curvature of an input manifold x0(θ) changes as it propagates to become x1(θ)
in the hidden layer. We would like to upper bound the maximal achievable length and curvature over
all possible choices of W1 and b.

3.1 Upper bound on Euclidean length

Here, we derive such an upper bound on the Euclidean length for a very general class of nonlinearities
φ(h). We simply assume that (1) φ(h) is monotonically non-decreasing (so that φ′(h) ≥ 0∀h) and
(2) has with bounded dynamic range R, i.e. maxh φ(h)−minh φ(h) = R. The Euclidean length in
hidden space is

LE =

∫
dθ

√√√√ N1∑
i=1

(∂θx1
i (θ))

2 ≤
N1∑
i=1

∫
dθ
∣∣∂θx1

i (θ)
∣∣ , (20)

where the inequality follows from the triangle inequality. Now suppose that for any i, ∂θx1
i (θ) never

changes sign across θ. Furthermore, assume that θ ranges from 0 to Θ. Then∫ Θ

0

dθ
∣∣∂θx1

i (θ)
∣∣ = x1

i (Θ)− x1
i (0) ≤

(
max
h

φ(h)−min
h
φ(h)

)
= R. (21)

More generally, let r1 denote the maximal number of times that any one neuron has a change in sign
of the derivative ∂θx1

i (θ) across θ. Then applying the above argument to each segment of constant
sign yields ∫ Θ

0

dθ
∣∣∂θx1

i (θ)
∣∣ ≤ (1 + r1)R. (22)

Now how many times can ∂θx1
i (θ) change sign? Since ∂θx1

i (θ) = φ′(hi) ∂θhi, where ∂θhi(θ) =
[Wl∂θx

0(θ)]i, and φ(hi) is monotonically increasing, the number of times ∂θx1
i (θ) changes sign

equals the number of times the input ∂θhi(θ) changes sign. In turn, suppose s0 is the maximal
number of times any one dimensional projection of the derivative vector ∂θx0(θ) changes sign across
θ. Then the number of times the sign of ∂θhi(θ) changes for any i cannot exceed s0 because hi is a
linear projection of x0. Together this implies r1 ≤ s0. We have thus proven:

LE ≤ N1(1 + s0)R. (23)

4 Simulation details

All neural network simulations were implemented in Keras and Theano. For all simulations (except
Figure 5C), we used inputs and hidden layers with a width of 1,000 and tanh activations. We found
that our results were mostly insensitive to width, but using larger widths decreased the fluctuations in
the averaged quantities. Simulation error bars are all standard deviations, with the variance computed
across the different inputs, h1(θ). If not mentioned, the weights in the network are initialized in the
chaotic regime with σb = 0.3, σw = 4.0.

Computing κ(θ) requires the computation of the velocity and acceleration vectors, corresponding to
the first and second derivatives of the neural network hl(θ) with respect to θ. As θ is always one-
dimensional, we can greatly speed up these computations by using forward-mode auto-differentiation,
evaluating the Jacobian and Hessian in a feedforward manner. We implemented this using the R-op
in Theano.

4.1 Details on Figure 4G: backpropagating curvature

To identify the curvature of the decision boundary, we first had to identify points that lied along the
decision boundary. We randomly initialized data points and then optimized G(xD(xl))2 with respect

4

to the input x using Adam. This yields a set of inputs xl where we compute the Jacobian and Hessian
of G(xD(xl)) to evaluate principal curvatures.

4.2 Details on Figure 5C-D: evaluating expressivity

To evaluate the set of functions reachable by a network, we first parameterized function space using a
Fourier basis up to a particular maximum frequency, ωmax on a sampled set of one dimensional inputs
parameterized by θ. We then took the output activations of each neural network and linearly regressed
the output activations onto each Fourier basis. For each basis, we computed the angle between the
predicted basis vector and the true basis vector. These are the quantities that appear in Figure 5C-D.
Given any function with bounded frequency, we can represent it in this Fourier basis, and decompose
the error in the prediction of the function into the error in prediction of each Fourier component. Thus
error in the predicting the Fourier basis is a reasonable proxy for error in prediction of functions with
bounded frequency.

5 Additional visualization of hidden actions

Figure 1: Two-dimensional t-SNE embeddings of hidden activations of a network in the chaotic
regime. These can be compared to the PCA visualizations in Fig. 3A of the main paper. Our
results reveal that the decreasing radii of curvature of both the t-SNE plots and PCA plots with
depth is an illusion, or artifact of attempting to fit a fundamentally high dimensional curve into a
low dimensional space. Instead, our curvature evolution equations reveal the geometric nature of
curve without resorting to dimensionality reduction. As the depth increases, the radius of curvature
stays constant while the length grows exponentially. As a result, the curve makes a number of turns
that is exponentially large in depth, where each turn occurs at a depth independent acceleration. In
this manner, the curve fills up the high dimensional hidden representation space. The t-SNE plot
faithfully reflects the number of turns, but not their radius of curvature.

5

6 A view from the function space perspective

We have shown above that for a fixed set of weights and biases in the chaotic regime, the internal
representation hl(x0) at large depth l, rapidly de-correlates from itself as the input x0 changes (see
e.g. Fig. 3B in the main paper). Here we ask a dual question: for a fixed input manifold, how
does a deep network move in a function space over this manifold as the weights in a single layer
change? Consider for example, a random one parameter family of deep networks parameterized
by ∆ ∈ [−1, 1]. In this family, we assume that the bias vectors bl in each layer are chosen as i.i.d.
random Gaussian vectors with zero mean and variance σ2

b , independent of ∆. Moreover, we assume
the weight matrix Wl has elements that are drawn i.i.d. from zero mean Gaussians with variance σ2

w,
independent of ∆ for all layers except l = 2. The only dependence on ∆ in this family of networks
originates in the weights in layer l = 2, chosen as

Wl(∆) =
√

1− |∆|W +
√
|∆|dW. (24)

Here both a base matrix W and a perturbation matrix dW have matrix elements that are zero mean
i.i.d. Gaussians with variance σ2

w. Each matrix element of W2(∆) thus also has variance σ2
w just

like all the other layers. In turn, this family of networks induces a family of functions hD(h1,∆).
For simplicity, we restrict these functions to a simple input manifold, the circle,

h1(θ) =
√
N1q∗

[
u0 cos(θ) + u1 sin(θ)

]
, (25)

as considered previously. This circle is at the fixed point radius q∗(σw, σb), and the family of networks
induces a family of functions from the circle to the hidden representation space in layer l, namely
RNl . We denote these functions by hl(θ,∆). How similar are these functions as ∆ changes? This
can be quantified through the correlation in function space

Ql(∆1,∆2) ≡
∫

dθ

2π

1

ND

ND∑
i=1

hli(θ,∆1)hli(θ,∆2), (26)

and the associated correlation coefficient,

Cl(∆) =
Ql(0,∆)√

Ql(0, 0)Ql(∆,∆)
. (27)

Because of our restriction to an input circle at the fixed point radius, Ql(0, 0) = Ql(∆,∆) = q∗ for
all l and ∆ in the large width limit. By using logic similar to the derivation of (6), we can derive a
recursion relation for the function space correlation Ql(0,∆):

Ql(0,∆) = σ2
w

∫
Dz1Dz2 φ (u1)φ (u2) + σ2

b , l = 3, . . . , D (28)

Ql(0,∆) =
√

1− |∆|σ2
w

∫
Dz1Dz2 φ (u1)φ (u2) + σ2

b , l = 2,

u1 =
√
q∗z1, u2 =

√
q∗
[
Cl−1(∆)z1 +

√
1− (Cl−1(∆))2z2

]
,

where Cl(∆) = Ql(0,∆)/q∗. The initial condition for this recursion is C1(∆) = 1, since the family
of functions in the first layer of inputs is independent of ∆. Now, the difference in weights at a
nonzero ∆ reduces the function space correlation to C2(∆) < 1. At this point, the representation in
h2 is different for the two networks at parameter values 0 and ∆. Moreover, in the chaotic regime,
this difference will amplify due to the similarity between the function space evolution equation in
(28) and the evolution equation for the similarity of two points in (6). In essence, just as two points in
the input exponentially separate as they propagate through a single network in the chaotic regime, a
pair of different functions separate when computed in the final layer. Thus a small perturbation in the
weights into layer 2 can yield a very large change in the space of functions from the input manifold
to layer D. Moreover, as ∆ varies from -1 to 1, the function hD(θ,∆) roughly undergoes a random
walk in function space whose autocorrelation length decreases exponentially with depth D. This
weight chaos, or a sensitive dependence of the function computed by a deep network with respect
to weight changes far from the final layer, is another manifestation of deep neural expressivity. Our
companion paper ? further explores the expressivity of deep random networks in function space and
also finds an exponential growth in expressivity with depth.

6

	Derivation of a transient dynamical mean field theory for deep networks
	Derivation of the length map
	Derivation of a correlation map for the propagation of two points

	Derivation of evolution equations for Riemannian curvature
	Curvature and length in terms of inner products
	Behavior of first and second derivatives under function composition
	Evolution equations for curvature and length

	Upper bounds on the complexity of shallow neural representations
	Upper bound on Euclidean length

	Simulation details
	Details on Figure 4G: backpropagating curvature
	Details on Figure 5C-D: evaluating expressivity

	Additional visualization of hidden actions
	A view from the function space perspective

