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Abstract

In this paper, we propose a very deep fully convolutional encoding-decoding frame-
work for image restoration such as denoising and super-resolution. The network is
composed of multiple layers of convolution and deconvolution operators, learning
end-to-end mappings from corrupted images to the original ones. The convolu-
tional layers act as the feature extractor, which capture the abstraction of image
contents while eliminating noises/corruptions. Deconvolutional layers are then
used to recover the image details. We propose to symmetrically link convolutional
and deconvolutional layers with skip-layer connections, with which the training
converges much faster and attains a higher-quality local optimum. First, the skip
connections allow the signal to be back-propagated to bottom layers directly, and
thus tackles the problem of gradient vanishing, making training deep networks
easier and achieving restoration performance gains consequently. Second, these
skip connections pass image details from convolutional layers to deconvolutional
layers, which is beneficial in recovering the original image. Significantly, with
the large capacity, we can handle different levels of noises using a single model.
Experimental results show that our network achieves better performance than recent
state-of-the-art methods.

1 Introduction

The task of image restoration is to recover a clean image from its corrupted observation, which
is known to be an ill-posed inverse problem. By accommodating different types of corruption
distributions, the same mathematical model applies to problems such as image denoising and super-
resolution. Recently, deep neural networks (DNNs) have shown their superior performance in image
processing and computer vision tasks, ranging from high-level recognition, semantic segmentation to
low-level denoising, super-resolution, deblur, inpainting and recovering raw images from compressed
ones. Despite the progress that DNNs achieve, some research questions remain to be answered. For
example, can a deeper network in general achieve better performance? Can we design a single deep
model which is capable to handle different levels of corruptions?

Observing recent superior performance of DNNs on image processing tasks, we propose a convolu-
tional neural network (CNN)-based framework for image restoration. We observe that in order to
obtain good restoration performance, it is beneficial to train a very deep model. Meanwhile, we show
that it is possible to achieve very promising performance with a single network when processing
multiple different levels of corruptions due to the benefits of large-capacity networks. Specifically,
the proposed framework learns end-to-end fully convolutional mappings from corrupted images to the
clean ones. The network is composed of multiple layers of convolution and deconvolution operators.
As deeper networks tend to be more difficult to train, we propose to symmetrically link convolutional
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and deconvolutional layers with skip-layer connections, with which the training procedure converges
much faster and is more likely to attain a high-quality local optimum.

Our main contributions are summarized as follows.

e A very deep network architecture, which consists of a chain of symmetric convolutional
and deconvolutional layers, for image restoration is proposed in this paper. The convolu-
tional layers act as the feature extractor which encode the primary components of image
contents while eliminating the corruption. The deconvolutional layers then decode the image
abstraction to recover the image content details.

e We propose to add skip connections between corresponding convolutional and deconvolu-
tional layers. These skip connections help to back-propagate the gradients to bottom layers
and pass image details to top layers, making training of the end-to-end mapping easier
and more effective, and thus achieving performance improvement while the network going
deeper. Relying on the large capacity and fitting ability of our very deep network, we also
propose to handle different level of noises/corruption using a single model.

e Experimental results demonstrate the advantages of our network over other recent state-
of—theﬁrt methods on image denoising and super-resolution, setting new records on these
topics

Related work Extensive work has been done on image restoration in the literature. See detail
reviews in a survey [21]]. Traditional methods such as Total variation [24, 23], BM3D algorithm
[S] and dictionary learning based methods [31} 110} 2] have shown very good performance on image
restoration topics such as image denoising and super-resolution. Since image restoration is in general
an ill-posed problem, the use of regularization [34} 9] has been proved to be essential.

An active and probably more promising category for image restoration is the DNN based methods.
Stacked denoising auto-encoder [29]] is one of the most well-known DNN models which can be used
for image restoration. Xie et al. [[32]] combined sparse coding and DNN pre-trained with denoising
auto-encoder for low-level vision tasks such as image denoising and inpainting. Other neural networks
based methods such as multi-layer perceptron [1]] and CNN [[15] for image denoising, as well as DNN
for image or video super-resolution [4, |30} 7} [14]] and compression artifacts reduction [6]] have been
actively studied in these years.

Burger et al. [1]] presented a patch-based algorithm learned with a plain multi-layer perceptron.
They also concluded that with large networks, large training data, neural networks can achieve
state-of-the-art image denoising performance. Jain and Seung [[15] proposed a fully convolutional
CNN for denoising. They found that CNNs provide comparable or even superior performance to
wavelet and Markov Random Field (MRF) methods. Cui et al. [4] employed non-local self-similarity
(NLSS) search on the input image in multi-scale, and then used collaborative local auto-encoder for
super-resolution in a layer by layer fashion. Dong et al. [7]] proposed to directly learn an end-to-end
mapping between the low/high-resolution images. Wang et al. [30] argued that domain expertise
represented by the conventional sparse coding can be combined to achieve further improved results.
An advantage of DNN methods is that these methods are purely data driven and no assumptions about
the noise distributions are made.

2 Very deep RED-Net for Image Restoration

The proposed framework mainly contains a chain of convolutional layers and symmetric decon-
volutional layers, as shown in Figure [I We term our method “RED-Net”—very deep Residual
Encoder-Decoder Networks.

2.1 Architecture

The framework is fully convolutional and deconvolutional. Rectification layers are added after each
convolution and deconvolution. The convolutional layers act as feature extractor, which preserve
the primary components of objects in the image and meanwhile eliminating the corruptions. The
deconvolutional layers are then combined to recover the details of image contents. The output of
the deconvolutional layers is the “clean” version of the input image. Moreover, skip connections
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Figure 1: The overall architecture of our proposed network. The network contains layers of symmetric
convolution (encoder) and deconvolution (decoder). Skip-layer connections are connected every a few (in our
experiments, two) layers.

are also added from a convolutional layer to its corresponding mirrored deconvolutional layer. The
convolutional feature maps are passed to and summed with the deconvolutional feature maps element-
wise, and passed to the next layer after rectification.

For low-level image restoration problems, we prefer using neither pooling nor unpooling in the
network as usually pooling discards useful image details that are essential for these tasks. Motivated
by the VGG model [27], the kernel size for convolution and deconvolution is set to 3 x3, which has
shown excellent image recognition performance. It is worth mentioning that the size of input image
can be arbitrary since our network is essentially a pixel-wise prediction. The input and output of the
network are images of the same size w x h X ¢, where w, h and c are width, height and number of
channels. In this paper, we use ¢ = 1 although it is straightforward to apply to images with ¢ > 1. We
found that using 64 feature maps for convolutional and deconvolutional layers achieves satisfactory
results, although more feature maps leads to slightly better performance. Deriving from the above
architecture, in this work we mainly conduct experiments with two networks, which are 20-layer and
30-layer respectively.

2.1.1 Deconvolution decoder

Architectures combining layers of convolution and deconvolution [22,[12]] have been proposed for
semantic segmentation lately. In contrast to convolutional layers, in which multiple input activations
within a filter window are fused to output a single activation, deconvolutional layers associate a single
input activation with multiple outputs. Deconvolution is usually used as learnable up-sampling layers.
One can simply replace deconvolution with convolution, which results in an architecture that is very
similar to recently proposed very deep fully convolutional neural networks [19,[7]. However, there
exist differences between a fully convolution model and our model.

First, in the fully convolution case, the noise is eliminated step by step, i.e., the noise level is reduced
after each layer. During this process, the details of the image content may be lost. Nevertheless, in our
network, convolution preserves the primary image content. Then deconvolution is used to compensate
the details. We compare the 5-layer and 10-layer fully convolutional network with our network
(combining convolution and deconvolution, but without skip connection). For fully convolutional
networks, we use padding and up-sample the input to make the input and output the same size. For
our network, the first 5 layers are convolutional and the second 5 layers are deconvolutional. All the
other parameters for training are the same. In terms of Peak Signal-to-Noise Ratio (PSNR), using
deconvolution works slightly better than the fully convolutional counterpart.

On the other hand, to apply deep learning models on devices with limited computing power such
as mobile phones, one has to speed-up the testing phase. In this situation, we propose to use down-
sampling in convolutional layers to reduce the size of the feature maps. In order to obtain an output
of the same size as the input, deconvolution is used to up-sample the feature maps in the symmetric
deconvolutional layers. We experimentally found that the testing efficiency can be well improved
with almost negligible performance degradation.
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Figure 2: An example of a building block in the proposed framework. For ease of visualization, only two skip
connections are shown in this example, and the ones in layers represented by fx are omitted.

2.1.2 Skip connections

An intuitive question is that, is deconvolution able to recover image details from the image abstraction
only? We find that in shallow networks with only a few layers of convolution, deconvolution is able to
recover the details. However, when the network goes deeper or using operations such as max pooling,
deconvolution does not work so well, possibly because too much image detail is already lost in the
convolution. The second question is that, when our network goes deeper, does it achieve performance
gain? We observe that deeper networks often suffer from gradient vanishing and become hard to
train—a problem that is well addressed in the literature.

To address the above two problems, inspired by highway networks [28]] and deep residual networks
[L1]], we add skip connections between two corresponding convolutional and deconvolutional layers
as shown in Figure [I] A building block is shown in Figure 2] There are two reasons for using
such connections. First, when the network goes deeper, as mentioned above, image details can be
lost, making deconvolution weaker in recovering them. However, the feature maps passed by skip
connections carry much image detail, which helps deconvolution to recover a better clean image.
Second, the skip connections also achieve benefits on back-propagating the gradient to bottom layers,
which makes training deeper network much easier as observed in [28] and [[L1]. Note that our skip
layer connections are very different from the ones proposed in [28] and [[L1], where the only concern
is on the optimization side. In our case, we want to pass information of the convolutional feature
maps to the corresponding deconvolutional layers.

Instead of directly learning the mappings from input X to the output Y, we would like the network to
fit the residual [L1]] of the problem, which is denoted as 7(X) =Y — X. Such a learning strategy
is applied to inner blocks of the encoding-decoding network to make training more effective. Skip
connections are passed every two convolutional layers to their mirrored deconvolutional layers. Other
configurations are possible and our experiments show that this configuration already works very well.
Using such skip connections makes the network easier to be trained and gains restoration performance
via increasing network depth.

The very deep highway networks [28]] are essentially feed-forward long short-term memory (LSTMs)
with forget gates, and the CNN layers of deep residual network [[11]] are feed-forward LSTMs without
gates. Note that our deep residual networks are in general not in the format of standard feed-forward
LSTMs.

2.2 Discussions

Training with symmetric skip connections As mentioned above, using skip connections mainly
has two benefits: (1) passing image detail forwardly, which helps to recover clean images and (2)
passing gradient backwardly, which helps to find better local minimum. We design experiments to
show these observations.

We first compare two networks trained for denoising noises of o = 70. In the first network, we use 5
layers of 33 convolution with stride 3. The input size of training data is 243243, which results in
a vector after 5 layers of convolution. Then deconvolution is used to recover the input. The second
network uses the same settings as the first one, except for adding skip connections. The results are
show in Figure[3[a). We can observe that it is hard for deconvolution to recover details from only a
vector encoding the abstraction of the input, which shows that the ability on recovering image details
for deconvolution is limited. However, if we use skip connections, the network can still recover the
input, because details are passed from top layers by skip connections.

We also train five networks to show that using skip connections help to back-propagate gradient in
training to better fit the end-to-end mapping, as shown in Figure [3(b). The five networks are: 10, 20
and 30 layer networks without skip connections, and 20, 30 layer networks with skip connections.
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Figure 3: Analysis on skip connections: (a) Recovering image details using deconvolution and skip connections;
(b) The training loss during training; (c) Comparisons of skip connection types in [11] and our model, where
“Block-:-RED” is the connections in our model with block size ¢ and “Block-z-He et al.” is the connections in He
et al. [11] with block size . PSNR values at the last iteration for the curves are: 25.08, 24.59, 25.30 and 25.21.

As we can see, the training loss increases when the network going deeper without skip connections
(similar phenomenon is also observed in [11]), but we obtain a lower loss value when using them.

Comparison with deep residual networks [11] One may use different types of skip connections
in our network, a straightforward alternate is that in [11]. In [11], the skip connections are added
to divide the network into sequential blocks. A benefit of our model is that our skip connections
have element-wise correspondence, which can be very important in pixel-wise prediction problems.
We carry out experiments to compare the two types of skip connections. Here the block size
indicates the span of the connections. The results are shown in Figure 3(c). We can observe that our
connections often converge to a better optimum, demonstrating that element-wise correspondence
can be important.

Dealing with different levels of noises/corruption An important question is that, can we handle
different levels of corruption with a single model? Almost all existing methods need to train different
models for different levels of corruptions. Typically these methods need to estimate the corruption
level at first. We use a trained model in [1], to denoise different levels of noises with ¢ being 10,
30, 50 and 70. The obtained average PSNR on the 14 images are 29.95dB, 27.81dB, 18.62dB and
14.84dB, respectively. The results show that the parameters trained on a single noise level cannot
handle different levels of noises well. Therefore, in this paper, we aim to train a single model
for recovering different levels of corruption, which are different noise levels in the task of image
denoising and different scaling parameters in image super-resolution. The large capacity of the
network is the key to this success.

2.3 Training

Learning the end-to-end mapping from corrupted images to clean ones needs to estimate the weights
O represented by the convolutional and deconvolutional kernels. This is achieved by minimizing the
Euclidean loss between the outputs of the network and the clean image. In specific, given a collection
of N training sample pairs X, Y;, where X is a corrupted image and Y is the clean version as the
ground-truth. We minimize the following Mean Squared Error (MSE):

X
LO)=5 F(X:;0)-Yill%. (1)
i=1

We implement and train our network using Caffe [16]. In practice, we find that using Adam [17]
with learning rate 10~% for training converges faster than using traditional stochastic gradient descent
(SGD). The base learning rate for all layers are the same, different from [7, 15], in which a smaller
learning rate is set for the last layer. This trick is not necessary in our network.

Following general settings in the literature, we use gray-scale image for denoising and the luminance
channel for super-resolution in this paper. 300 images from the Berkeley Segmentation Dataset
(BSD) [20] are used to generate the training set. For each image, patches of size 50x50 are sampled















