
A A Quart-sized Review of Continuous Linear Algebra

In this section we introduce continuous analogues of matrices and their factorisations. We only
provide a brief quart-sized review for what is needed in this exposition. Chapters 3 and 4 of Townsend
[6] contains a reservoir-sized review.

A matrix F 2 Rm⇥n is an m⇥ n array of numbers where F (i, j) denotes the entry in row i, column
j. We will also look at cases where either m or n is infinite. A column qmatrix (quasi-matrix)
Q 2 R[a,b]⇥m is a collection of m functions defined on [a, b] where the row index is continuous
and column index is discrete. Writing Q = [q

1

, . . . , qm] where qj : [a, b] ! R is the j th function,
Q(y, j) = qj(y) denotes the value of the j th function at y 2 [a, b]. Q> 2 Rm⇥[a,b] denotes a row
qmatrix with Q>

(j, y) = Q(y, j). A cmatrix (continous-matrix) C 2 R[a,b]⇥[c,d] is a two dimensional
function where both the row and column indices are continuous and C(y, x) is value of the function
at (y, x) 2 [a, b]⇥ [c, d]. C> 2 R[c,d]⇥[a,b] denotes its transpose with C>

(x, y) = C(y, x).

Qmatrices and cmatrices permit all matrix multiplications with suitably defined inner products. Let
F 2 Rm⇥n, Q 2 R[a,b]⇥m, P 2 R[a,b]⇥n, R 2 R[c,d]⇥m and C 2 R[a,b]⇥[c,d]. It follows that
F (:, j) 2 Rm, Q(y, :) 2 R1⇥m, Q(:, i) 2 R[a,b], C(y, :) 2 R1⇥[c,d] etc. Then the following hold:

• QF = S 2 R[a,b]⇥n where S(y, j) = Q(y, :)F (:, j) =
Pm

k=1

Q(y, k)F (i, k).
• Q>P = H 2 Rm⇥n where H(i, j) = Q(:, j)>P (:, j) =

R b

a
Q>

(i, s)P (s, j)ds.
• QR>

= D 2 R[a,b]⇥[c,d] where D(y, x) = Q(y, :)R(x, :)> =

Pm
1

Q(y, k)R>
(k, x).

• CR = T 2 R[a,b]⇥m where T (y, j) = C(y, :)R(:, j) =
R d

c
C(y, s)R(s, j)ds.

Here, the integrals are with respect to the Lebesgue measure.

A cmatrix has a singular value decomposition (SVD). If C 2 R[a,b]⇥[c,d], an SVD of C is the sum
C(y, x) =

P1
j=1

�juj(y)vj(x), which converges in L2. Here �
1

� �
2

� . . . . are the singular
values of C. {uj}j�1

and {vj}j�1

are the left and right singular vectors and form orthonormal bases
for L2

([a, b]) and L2

([c, d]) respectively, i.e.
R b

a
uj(s)uk(s)ds = (j = k). It is known that the

SVD of a cmatrix exists uniquely with �j ! 0, and continuous singular vectors (Theorem 3.2, [6]).
Further, if C is Lipshcitz continuous w.r.t both variables then the SVD is absolutely and uniformly
convergent. Writing the singular vectors as infinite qmatrices U = [u

1

, u
2

. . . ], V = [v
1

, v
2

. . . ], and
⌃ = diag(�

1

,�
2

. . . ) we can write the SVD as,

C = U⌃V >
=

1X

j=1

�jU(:, j)V (:, j)>.

If only m < 1 singular values are nonzero then we say that C is of rank m. The SVD of a Qmatrix
Q 2 R[a,b]⇥m is, Q = U⌃V >

=

Pm
j=1

�jU(:, j)V (:, j)>, where U 2 R[a,b]⇥m and V 2 Rm⇥m

have orthonormal columns and ⌃ = diag(�
1

, . . . ,�m) with �
1

� �
2

� · · · � �m � 0. The SVD of
a qmatrix also exists uniquely (Theorem 4.1, [6]). The rank of a column qmatrix is the number of
linearly independent columns (i.e. functions) and is equal to the number of nonzero singular values.

Finally, the pseudo inverse of the cmatrix C is C†
= V ⌃

�1U> with ⌃

�1

= diag(1/�
1

, 1/�
2

, . . . ).
The p-operator norm of a cmatrix, for 1  p  1 is kCkp = supkxkp=1

kCxkp where x 2 R[c,d],

Cx 2 R[a,b], kxkpp =

R d

c
(x(s))pds for p < 1 and kxk1 = sups2[c,d] x(s). The Frobenius

norm of a cmatrix is kCkF =

⇣R b

a

R d

c
C(y, x)2dxdy

⌘
1/2

. It can be shown that kCk
2

= �
1

and
kCk2F =

P
j �

2

j where �
1

� �
2

� . . . are its singular values. Note that analogous relationships hold
with finite matrices. The pseudo inverse and norms of a qmatrix are similarly defined and similar
relationships hold with its singular values.

Notation: In what follows we will use 1
[a,b] to denote the function taking value 1 everywhere

in [a, b] and 1m to denote m-vectors of 1’s. When we are dealing with Lp norms of a function
we will explicitly use the subscript Lp to avoid confusion with the operator/Frobenius norms of
qmatrices and cmatrices. For example, for a cmatrix kCk2L2 =

R R
C(·, ·)2 = kCk2F . As we have

already done, throughout the paper we will overload notation for inner products, multiplications and
pseudo-inverses depending on whether they hold for matrices, qmatrices or cmatrices. E.g. when
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p, q 2 Rm, p>q =

Pm
1

piqi and when p, q 2 R[a,b], p>q =

R b

a
p(s)q(s)ds. P will be used to denote

probabilities of events while p will denote probability density functions (pdf).

B Some Perturbation Theory Results for Continuous Linear Algebra

We recommend that readers unfamiliar with continuous linear algebra first read the review in Ap-
pendix A. Throughout this section L(·) maps a matrix (including q/cmatrices) to its eigenvalues.
Similarly, �(·) maps a matrix to its singular values. When we are dealing with infinite sequences and
qmatrices “=" refers to convergence in L2. When dealing with infinite sequences and cmatrices, “="
refers to convergence in the operator norm. For all theorems, we follow the template of Stewart and
Sun [27] for the matrix case and hence try to stick with their notation.

Before we proceed, we introduce the “cmatrix" I
[0,1] on [0, 1]. For any u 2 R[0,1] this is the operator

which satisfies I
[0,1]u = u. That is, (I

[0,1]u)(y) =
R
1

0

I
[0,1](y, x)u(x)dx = u(y). Intuitively, it can

be thought of as the Dirac delta function along the diagonal, �(x � y). Let Q = [q
1

, q
2

, . . . , ] 2
R[0,1]⇥1 be a qmatrix containing an orthonormal basis for [0, 1] and Qk 2 R[0,1]⇥k denote the first
k columns of Q. We make note of the following observation.

Theorem 8. QkQ>
k ! I

[0,1] as k ! 1. Here convergence is in the operator norm.

Proof. We need to show that for all x 2 R[0,1], kQkQ>
k x� xk

2

! 0. Let x = Q↵ =

P1
k=1

↵kqk
be the representation of x in the Q-basis. Here ↵ = (↵

1

,↵
2

, . . . ) satisfies
P

k ↵
2

k < 1. We then
have kQkQ>

k x� xk2
2

=

P1
j=k+1

↵2

j ! 0 by the properties of sequences in `2.

We now proceed to our main theorems. We begin with a series of intermediary results.

Theorem 9. Let X 2 R[0,1]⇥m. Define the linear operator T(X) = AX � XB where A 2
R[0,1]⇥[0,1] and B 2 Rm⇥m are a square cmatrix and matrix, respectively. Then, T is nonsingular if
and only if L(A) \ L(B) = ?.

Proof. Assume � 2 L(A) [ L(B). Then, let Ap = �p, q>B = �q> where p 2 R[0,1] and q 2 Rm.
Then T(pq>) = 0 and T is singular. This proves one side of the theorem.

Now, assume that L(A) \ L(B) = ?. As the operator is linear, it is sufficient to show that
AX �XB = C has a unique solution for any C 2 R[0,1]⇥m. Let the Schur decomposition of B be
Q = V >BV where V is orthogonal and Q is upper triangular. Writing Y = XV and D = CV it is
sufficient to show that AY � Y Q = D has a unique solution. We write

Y = (y
1

, y
2

, . . . ym) 2 R[0,1]⇥m and D = (d
1

, d
2

, . . . , dm) 2 R[0,1]⇥m

and use an inductive argument over the columns of Y .

The first column of Y is given by Ay
1

� Q
11

y
1

= (A � Q
11

I
[0,1])y1 = d

1

. Since Q
11

2 L(B)

and L(A) \ L(B) is empty (A�Q
11

I
[0,1]) is nonsingular. Therefore y

1

is uniquely determined by
inverting the cmatrix (see Appendix A). Assume y

1

, y
2

. . . , yk�1

are uniquely determined. Then, the
kth column is given by (A�QkkI

[0,1])yk = dk+
Pk�1

i=1

Qikyi. Again, (A�QkkI
[0,1]) is nonsingular

by assumption, and hence this uniquely determines yk.

Corollary 10. Let T be as defined in Theorem 9. Then

L(T) = L(A)� L(B) = {↵� � : ↵ 2 L(A),� 2 L(B)}.

Proof. If � 2 L(T) there exists X such that (A� �I
[0,1])X �XB = 0. Therefore, by Theorem 9

there exists ↵ 2 L(A) and � 2 L(B) such that � = ↵� �. Therefore, L(T) ⇢ L(A)� L(B).

Conversely, consider any ↵ 2 L(A) and � 2 L(B). Then there exists a 2 R[0,1], b 2 Rm such
that Aa = ↵a and b>B = �b>. Writing X = ab> we have AX �XB = (↵� �)ab>. Therefore,
L(A)� L(B) ⇢ L(T).
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Theorem 11. Let T be as defined in Theorem 9. Then

inf

kXkF=1

kT(X)k
F

= minL(T) = min |L(A)� L(B)|. (7)

Proof. For any qmatrix P = (p
1

, p
2

, . . . , pm) 2 R[0,1]⇥m let vec(P ) = [p>
1

, p>
2

, . . . , p>m]

> 2
R[0,m]⇥1 be the concatenation of all functions. Then vec(XB) =

~Bvec(X) where,

~B =

2

664

B
11

I
[0,1] B

21

I
[0,1] · · · Bm1

I
[0,1]

B
12

I
[0,1] B

22

I
[0,1] · · · Bm2

I
[0,1]

...
...

. . .
...

B
1mI

[0,1] B
2mI

[0,1] · · · BmmI
[0,1]

3

775 2 R[0,m]⇥[0,m].

Here I
[0,1] have been translated and should be interpreted as being a dirac delta function on that

block. Similarly, vec(AX) =

~Avec(X) where ~A = diag(A,A, . . . , A) 2 R[0,m]⇥[0,m]. Therefore
vec(T(X)) = (

~A� ~B)

~X . Now noting that kXk
F

= kvec(X)k
2

we have,

inf

kXkF=1

kT(X)k
F

= inf

kvec(X)k2=1

kvec(T(X))k
2

= min |L( ~A� ~B)|.

The theorem follows by noting that the eigenvalues of ( ~A� ~B) are the same as those of L(T).

Theorem 12. Let X
1

, Y
1

2 R[0,1]⇥` have orthonormal columns. Then, there exist Q 2 R1⇥[0,1]

and U
11

, V
11

2 R`⇥` such that the following holds,

QX
1

U
11

=


I`
0

�
2 R1⇥`, QY

1

V
11

=

"
�

⌃

0

#
2 R1⇥`.

Here � = diag(�
1

, . . . , �`), ⌃ = diag(�
1

, . . . ,�`) and they satisfy

0  �
1

 · · ·  �`, �1

� · · · � �` � 0, and �2

i + �2

i = 1, i = 1, . . . , `.

Proof. Let X
2

, Y
2

2 R[0,1]⇥1 be orthonormal bases for the complementary subspaces of
R(X

1

),R(Y
1

), respectively. Denote X = [X
1

, X
2

], Y = [Y
1

, Y
2

] and

W = X>Y =

✓
W

11

W
12

W
21

W
22

◆
2 R1⇥1,

where W
11

= X>
1

Y
1

2 R`⇥` and the rest are defined accordingly. Now, using Theorem 5.1 from [27]
there exist orthogonal matrices U = diag(U

11

, U
22

), V = diag(V
11

, V
22

) where U
11

, V
11

2 R`⇥`

and U
22

, V
22

2 R1⇥1 such that the following holds,

U>WV =

 
� �⌃ 0
⌃ � 0
0 0 I1

!
2 R1⇥1.

Here �,⌃ satisfy the conditions of the theorem. Now set bX = [

bX
1

, bX
2

], bY = [

bY
1

, bY
2

] where
bX
1

= X
1

U
11

, bX
2

= X
2

U
11

, bY
1

= Y
1

V
11

, bY
2

= Y
2

V
11

. Then, bX>Y = U>WV . Setting
Q =

bX> and setting U
11

, V
11

as above yields,

QX
1

U
11

=

✓
U>
11

X>
1

U>
22

X>
2

◆
X

1

U
11

=


I`
0

�
, QY

1

V
11

=

✓
U>
11

X>
1

U>
22

X>
2

◆
Y
1

V
11

=

"
�

⌃

0

#

where U>
11

X>
1

Y
1

U
11

= �, U>
22

X>
2

Y
1

U
11

= [⌃

>,0>
]

> from the decomposition of U>WV .

Remark 13. Stewart and Sun [27] prove Theorem 5.1 for a finite unitary W . However, it is
straightforward to verify that the same holds if W is a unitary operator on the `2 sequence space, i.e.,
Theorem 5.1 is valid for (countably) infinite matrices.
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Definition 14 (Canonical Angles). Let X ,Y be ` dimensional subspaces of the same dimension
for functions on [0, 1] and X

1

, Y
1

2 R[0,1]⇥` be orthonormal functions spanning these subspaces.
Then the canonical angles between X and Y are the diagonals of the matrix ⇥[X ,Y]

�

= sin

�1

(⌃)

where ⌃ is from Theorem 12. It follows that cos⇥[X ,Y] = � where sin and cos are in the usual
trigonometric sense and satisfy cos

2

(x) + sin

2

(x) = 1.

Corollary 15. Let X ,Y, X
1

, Y
1

be as in Definition 14 and X
2

, Y
2

be orthonormal functions for their
complementary spaces. Then, the nonzero singular values of X>

2

Y
1

are the sines of the nonzero
canonical angles between X ,Y . The singular values of X>

1

Y
1

are the cosines of the nonzero
canonical angles.

Proof. From the proof of Theorem 12,

X>
2

Y
1

= U
22

✓
⌃

0

◆
U>
11

, X>
1

Y
1

= U
11

�U>
11

.

Since U
11

, U
22

are orthogonal, the above are the SVDs of X>
2

Y
1

and X>
1

Y
1

.

Theorem 16. Let X ,Y be ` dimensional subspaces of functions on [0, 1] and X
1

, Y
1

2 R[0,1]⇥l be
an orthonormal bases. Let sin⇥[X ,Y] = diag(�

1

, . . . ,�`). Denote PX = X
1

X>
1

and PY = Y
1

Y >
1

.
Then, the singular values of PX (I

[0,1] � PY) are �
1

,�
2

, . . . ,�`, 0, 0, . . . .

Proof. By Theorem 12, there exists Q 2 R1⇥[0,1], U
11

, V
11

2 R`⇥`, such that

QPX (I
[0,1] � PY)Q

>
= QX

1

X>
1

Q>Q(I
[0,1] � Y

1

Y >
1

)Q>

= (QX
1

U
1

)(U>
1

X>
1

Q>
)(I

[0,1] �QY
1

V
11

(V >
11

Y >
1

Q>
)) =

"
⌃

0
0

#
[

⌃ �� 0
]

Here we have used I
[0,1] = Q>Q. The proof of this uses a technical argument involving the dual

space of the class of operators described by cmatrices. (In the discrete matrix case this is similar to
how the outer product of a complete orthonormal basis results in the identity UU>

= I .) The last
step follows from Theorem 12 and some algebra. Noting that [⌃ �� 0

] has orthonormal rows, it
follows that the singular values of PX (I

[0,1] � PY) are ⌃.

Theorem 17. Let A 2 R[0,1]⇥[0,1] satisfy,

A = [

X
1

X
2

]


L
1

0
0 L

2

� 
X>

1

X>
2

�

where X
1

2 R[0,1]⇥` and [X
1

, X
2

] is unitary. Let Z 2 R[0,1]⇥m and T = AZ � ZB where
B 2 Rm⇥m. Let � = min |L(L

2

)� L(B)| > 0. Then,

��
sin⇥[R(X

1

),R(Z)]k
F

 kTk
F

�
.

Proof. First note that X>
2

T = L
2

X>
2

Z �X>
2

ZB. The claim follows from Theorems 11 and 15.

��
sin⇥[R(X

1

),R(Z)]k
F

= kX>
2

Zk
F

 kX>
2

Tk
F

min |L(L
2

)� L(B)| 
kTk

F

�
.
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Theorem 18 (Wedin’s Sine Theorem for cmatrices – Frobenius form). Let A, ˜A,E 2 R[0,1]⇥[0,1]

with ˜A = A+ E. Let A, ˜A have the following conformal partitions,

A = [

U
1

U
2

]


⌃

1

0
0 ⌃

2

� 
V >
1

V >
2

�
, ˜A =

⇥
˜U
1

˜U
2

⇤ ˜
⌃

1

0
0 ˜

⌃

2

� 
˜V >
1

˜V >
2

�
.

where U
1

, ˜U
1

2 R[0,1]⇥m, V
1

, ˜V
1

2 R[0,1]⇥m and U
2

, ˜U
2

2 R[0,1]⇥1, V
2

, ˜V
2

2 R[0,1]⇥1. Let
R = A ˜V

1

� ˜U
1

˜

⌃

1

2 R[0,1]⇥m and S = A>
˜U
1

� ˜V
1

˜

⌃

1

2 R[0,1]⇥m. Assume there exists � > 0

such that, min |�(˜⌃
1

)� �(⌃
2

)| � � and min |�(˜⌃
1

)| � �. Let �
1

,�
2

denote the canonical angles
between (R(U

1

),R(

˜U
1

)) and (R(V
1

),R(

˜V
1

)) respectively. Then,

q
k sin�

1

k2
F

+ k sin�
2

k2
F



q
kRk2

F

+ kSk2
F

�
.

Remark 19. The two conditions on � are needed because the theorem doesn’t require ⌃
1

,⌃
2

, ˜⌃
1

, ˜⌃
2

to be ordered. If they were ordered, then it reduces to � = min |�(˜⌃
1

)� �(⌃
2

)| > 0.

Proof. First define Q 2 R[0,2]⇥[0,2],

Q =


0 A
A> 0

�
.

It can be verified that if ui 2 R[0,1], vi 2 R[0,1] are a left/right singular vector pair with singular
value �i, then (ui, vi) 2 R[0,2] is an eigenvector with eigenvalue �i and (ui,�vi) 2 R[0,2] is an
eigenvector with eigenvalue ��i. Writing,

X =

1p
2

✓
U
1

U
1

V
1

�V
1

◆
, Y =

1p
2

✓
U
2

U
2

V
2

�V
2

◆
,

we have,

Q = [

X Y
]

2

64

⌃

1

0 0 0
0 �⌃

1

0 0
0 0 ⌃

2

0
0 0 0 �⌃

2

3

75

X>

Y >

�
.

We similarly define ˜Q, ˜X, ˜Y for ˜A. Now let T = Q ˜X� ˜Xdiag(

˜

⌃

1

,�˜

⌃

1

). We will apply Theorem 17
with L

1

= diag(⌃

1

,�⌃

1

), L
2

= diag(⌃

2

,�⌃

2

), Z =

˜X , B = diag(

˜

⌃

1

,�˜

⌃

1

). Then, using the
conditions on � gives us,

��
sin⇥[R(X),R(

˜X)]k
F

 kTk
F

�
.

It is straightforward to verify that kTk2
F

= kRk2
F

+ kSk2
F

. To conclude the proof, first note that

XX>
(I

[0,2] � Y Y >
) =


(U

1

U>
1

)(I
[0,1] � ˜U

1

˜U>
1

) 0
0 (V

1

V >
1

)(I
[0,1] � ˜V

1

˜V >
1

)

�

Now, using Theorem 16 we have k sin⇥[R(X),R(

˜X)]k2
F

= k sin�2

1

k2
F

+ k sin�2

2

k2
F

.

We can now prove Lemma 6 which follows directly from Theorem 18.

Proof of Lemma 6. Let ˜U? 2 R[0,1]⇥m be an orthonormal basis for the complementary sub-
space of R(

˜U). Then, by Corollary 15, k ˜U>
?Uk2

F

= k sin⇥[R(

˜U),R(U)]k2
F

, k ˜V >
? V k2

F

=

k sin⇥[R(

˜V ),R(V )]k2
F

. For R,S as defined in Theorem 18, we have. kRk2
F

, kSk2
F

< kEk2
F

.
The lemma follows via the sin–cos relationships for canonical angles,

min�( ˜U>U)

2

= 1�max�( ˜U>
?U)

2 � 1� k ˜U>
?Uk2

F

� 1� 2kEk2
F

�2
.

where � = �m(A).

Next we prove the pseudo-inverse theorem. Recall that for A 2 R[0,1]⇥m the SVD is A = U⌃V >

where U 2 R[0,1]⇥m, ⌃ 2 Rm⇥m and V 2 Rm⇥m where U, V have orthonormal columns. Denote
its pseudo-inverse by A†

= V ⌃

�1U>.
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Proof of Lemma 7. Let A = U⌃V be the SVD of A and ˜A =

˜U ˜

⌃

˜V be the SVD of ˜A. Let
eP =

˜U ˜U>, R = V V >, eR =

˜V ˜V >, P? = I
[0,1] � UU>, eR? = I

[0,1] � ˜V ˜V > and P = UU>. We
then have,

˜A† �A†
= � ˜A† ePERA†

+ (

˜A>
˜A)

† eRE>P? +

eR?EP (AA>
)

†

k ˜A† �A†k
2

 k ˜A†k
2

kEk
2

kA†k
2

+ k( ˜A>
˜A)

†k
2

kEk
2

+ kEk
2

k(AA>
)

†k
2

=

⇣
k ˜A†k

2

kA†k
2

+ k ˜A†k2
2

+ kA†k2
2

⌘
kEk

2

 3max{k ˜Ak2
2

, kAk2
2

}kEk
2

The first step is obtained by substitutine for eP ,E,R, eR,P?, eR? and P , the second step uses the
triangle inequality, and the third step uses ˜A>

˜A = U⌃

2U>, AA>
= V ⌃

2V >.

Remark 20. P, eP ,R, eR can be shown to be the projection operators to R(A), R(

˜A), R(A>
) and

R(

˜A>
). Here, R(A) = {Ax;x 2 Rm} ⇢ R[0,1] is the range of A. R(

˜A) ⇢ R[0,1], R(A>
) ⇢ Rm

and R(

˜A>
) ⇢ Rm are defined similarly. P?, eR? are the complementary projectors of P, eR.

Finally, we state an analogue of Weyl’s theorem for cmatrices which bounds the difference in the
singular values in terms of the operator norm of the perturbation. While Weyl’s theorem has been
studied for general operators [24], we use the form below from Townsend [6] for cmatrices.

Lemma 21 (Weyl’s Theorem for Cmatrices, [6].). Let A,E 2 R[a,b]⇥[c,d] and ˜A = A+ E. Let the
singular values of A be �

1

� �
2

, . . . and those of ˜A be �̃
1

� �̃
2

, . . . . Then,
|�i � �̃i|  kEk

2

8i � 1.

C Concentration of Kernel Density Estimation

We will first define the Hölder class in high dimensions.

Definition 22. Let X ⇢ Rd be a compact space. For any r = (r
1

, . . . , rd), ri 2 N, let |r| =
P

i ri
and Dr

=

@|r|

@x
r1
1 ...x

rd
d

. The Hölder class Hd(�, L) is the set of functions of L
2

(X ) satisfying

|Drf(x)�Drf(y)|  Lkx� yk��|r|, (8)
for all r such that |r|  b�c and for all x, y 2 X .

The following result establishes concentration of kernel density estimators. At a high level, we follow
the standard KDE analysis techniques to decompose the L2 error into bias and variance terms and
bound them separately. A similar result for 2-dimensional densities was given by Liu et al. [25].
Unlike the previous work, here we deal with the general d-dimensional case as well as explicitly
delineate the dependencies of the concentration bounds on the deviation, ".

Lemma 23. Let f 2 Hd(�, L) be a density on [0, 1]d and assume we have N i.i.d samples
{Xi}Ni=1

⇠ f . Let ˆf be the kernel density estimate obtained using a kernel with order at least
� and bandwidth h =

�
logN
N

� 1
2�+d . Then there exist constants 

1

,
2

,
3

,
4

> 0 such that for all
" < 

4

and number of samples satisfying N
logN > 1

"
2+ d

�
we have,

P
⇣
k ˆf � fkL2 > "

⌘
 

2

exp

⇣
�

3

N
2�

2�+d
(logN)

d
2�+d "2

⌘
(9)

Proof. First note that

P
�
k ˆf � fkL2 > "

�
 P

�
k ˆf � E ˆfkL2

+ kE ˆf � fkL2 > "
�
. (10)

Using the Hölderian conditions and assumptions on the kernel, standard techniques for analyzing
the KDE [13, 18], give us a bound on the bias, kE ˆf � fkL2  

5

h� , where 
5

= L
R
K(u)u�

du.
When the number of samples, N , satisfies

N

logN
>

✓
20

5

"

◆
2+

d
�

=


5

"2+
d
�

, where 
5

�

= (20
5

)

2+

d
� (11)
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we have kE ˆf �fkL2  "/2, and hence (10) turns into P
�
k ˆf �fkL2 > "

�
 P

�
k ˆf �E ˆfkL2 > "/2

�
.

The main challenge in bounding the first term is that we want the difference to hold in L2. The
standard techniques that bound the pointwise variance would not be sufficient here. To overcome the
limitations, we use Corollary 2.2 from Giné and Guillou [26]. Using their notation we have,

�2

= sup

t2[0,1]d
VX⇠f


1

hd
K

✓
X � t

h

◆�

 sup

t2[0,1]d

1

h2d

Z
K2

✓
x� t

h

◆
f(x)dx

= sup

t2[0,1]d

1

hd

Z
K2

(u)f(t+ uh)du  kfk1kKkL2

hd

U = sup

t2[0,1]d

����
1

hd
K

✓
X � t

h

◆����
1

=

kKkL1

hd
.

Then, there exist constants 
2

,
3

,0
4

such that for all " 2
⇣
0
4

�p
n

q
log

U
� ,

�2

U 0
4

⌘
we have,

P
⇣
k ˆf � E ˆfkL2 >

"

2

⌘
 

2

exp

�
�

3

Nhd"2
�
.

Substituting for h and then combining this with (10) gives us the probability inequality of the theorem.
All that is left to do is to verify the that the conditions on " hold. The upper bound condition requires
"  0

4kfk1kKkL2

kKkL1

�

= 
4

. After some algebra, the lower bound on " reduces to N
logN > 6

"
2+ d

�
.

Combining this with the condtion (11) and taking 
1

= max(
6

,
5

) gives the theorem.

In order to apply the above lemma, we need P
1

, P
21

, P
321

to satisfy the Hölder condition. The
following lemma shows that if all Ok’s are Hölderian, so are P

1

, P
21

, P
321

.

Lemma 24. Assume that the observation probabilities belong to the one dimensional Hölder class;
8` 2 [m], O` 2 H

1

(�, L). Then for some constants L
1

, L
2

, L
3

, P
1

2 H
1

(�, L
1

), P
21

2 H
2

(�, L
2

),
P
321

2 H
3

(�, L
3

).

Proof. We prove the statement for P
21

. The other two follow via a similar argument. Let r = (r
1

, r
2

),
ri 2 N, |r| = r

1

+ r
2

 �, and let (s, t), (s0, t0) 2 [0, 1]d. Note that we can write,

P
21

(s, t) =
X

k2[m]

X

`2[m]

p(x
2

= s, x
1

= t, h
2

= k, h
1

= `) =
X

k2[m]

X

`2[m]

↵klOk(s)O`(t),

where
P

k,` ↵k` = 1. Then,

@|r|P
21

(s, t)

@sr1@tr2
� @|r|P
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Here, the third step uses the Hölder conditions on Ok and O` and the fact that the partial fractions are
bounded in a bounded domain by a constant, which we denoted L0, due to the Hölder condition. Since
r
1

+r
2

= |r|  � and r
1

, r
2

are positive integers, we have x��ri  x��r, i = 1, 2 for any x 2 [0, 1],
which implies the fourth step. The last step uses Jensen’s inequality and sets L

2

⌘ L0L.

The corollary belows follws as a direct consequence of Lemmas 23 and 24. We have absorbed the
constants L

1

, L
2

, L
3

into 
1

,
2

,
3

,
4

.

Corollary 25. Assume the HMM satisfies the conditions given in Section 3. Let ✏
1

, ✏
21

, ✏
321

2 (0,
4

)

and ⌘ 2 (0, 1). If the number of samples N is large enough such that the following are true,
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✏
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3
�
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✓
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3
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✓
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⌘

◆◆
1+

3
2�

then with at least 1 � ⌘ probability the L2 errors between P
1

, P
21

, P
321

and the KDE estimates
bP
1

, bP
21

, bP
321

satisfy,

kP
1

� bP
1

kL2  ✏
1

, kP
21

� bP
21

kL2  ✏
21

, kP
321

� bP
321

kL2  ✏
321

.

D Analysis of the Spectral Algorithm

Our proof is a brute force generalization of the analysis in Hsu et al. [2]. Following their template, we
use establish a few technical lemmas. We mainly focus on the cases where our analysis is different.

Throughout this section ✏
1

, ✏
21

, ✏
321

will refer to L2 errors. Using our notation for c/q-matrices the
errors can be written as,

✏
1

= kP
1

� bP
1

kL2
= kP

1

� bP
1

kF ,
✏
21

= kP
21

� bP
21

kL2
= kP

21

� bP
21

kF ,
✏
321

= kP
321

� bP
321

kL2 .

We begin with a series of Lemmas.

Lemma 26. Let ✏
21

 "�m(P
21

) where " < 1

1+

p
2

. Denote "
0

=

✏221
((1�")�m(P21))

2 < 1. Then the
following hold,

1. �m(

bU> bP
21

) � (1� ")�m(P
21

).

2. �m(

bU>P
21

) �
p
1� "

0

�m(P
21

).

3. �m(

bU>P
21

) �
p
1� "

0

�m(P
21

).

Proof. The proof follows Hsu et al. [2] after an application of Weyl’s theorem (Lemma 21) and
Wedin’s sine theorem (Lemma 6) for cmatrices.
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We define an alternative observable representation for the true HMM given by, eb1,eb
1

2 Rm and
eB : [0, 1] ! Rm⇥m.

eb
1
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1

= (
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3x1)(
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)

†
= (

bU>O)A(x)(bU>O)

�1.

As long as bU>O is invertible, the above parameters constitute a valid observable representation. This
is guaranteed if bU is sufficiently close to U . We now define the following error terms,
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The next lemma bounds the above quantities in terms of ✏
1

, ✏
21

, ✏
321

.

Lemma 27. Assume ✏
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)/3. Then, there exists constants c
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Proof. We will use .,& to denote inequalities ignoring constants. First we bound �1 
k(bU>O)

>
(

bb1 �eb1)k
2

 �
1

(O)kbb1 �eb1k
2

. Then we note,
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where the third and fourth steps use Lemma 26 and Lemma 7 (the pseudoinverse theorem for
qmatrices). This establishes the first result. The second result is straightforward from Lemma 26.
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For the third result, we first note
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To bound the last term we decompose it as follows.

k bB(x)� eB(x)k
2

= k(bU>P
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This proves the third claim. For the last claim, we make use of the proven statements. Observe,
Z

kP
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3x1k2
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◆
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✓Z Z Z
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321
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321
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where the first step uses inclusion of the Lp norms in [0, 1]. The second step uses k · k
2

 k · k
F

for
cmatrices. A similar argument shows

R
x
kP

3x1 � bP
3x1k2  ✏

321

. Combining these results gives the
fourth claim.

Finally, we need the following Lemma. The proof almost exactly replicates the proof of Lemma 12
in Hsu et al. [2], as all operations can be done with just matrices.

Lemma 28. Assume ✏
321

 �m(P
21

)/3. Then 8t � 0,
Z

|p(x
1:t)� bp(x1:t)|dx1:t  �1 + (1 + �1)

�
(1 +�)

t�
1

+ (1 +�)

t � 1

�
, (12)

where the integral is over [0, 1]t.

We are now ready to prove Theorem 5.

Proof of Theorem 5. If ✏
1

, ✏
21

, ✏
321

satisfy the following for appropriate choices of c
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, c
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, c
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,

✏
1

 c
5

min(�m(P
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m
)✏, ✏

21

 c
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21
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2

(O)
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 c
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�m(P
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)

�
1

(O)

1

t
p
m
✏, (13)

we then have �
1

 ✏/20, �1  ✏/20 and �  0.4✏/t. Plugging these expressions into Lemma 28
gives

R
|p(x

1:t) � bp(x1:t)|dx1:t  ✏. When we plug the expresssions for ✏
1

, ✏
21

, ✏
321

in (13) into
Corollary 25 we get the required sample complexity.

E Addendum to Experiments

Details on Synthetic Experiments: Figure 3 shows the emission probabilities used in our synthetic
experiments. For the transition matrices, we sampled the entries of the matrix from a U(0, 1)
distribution and then renormalised the columns to sum to 1.

In our implementation, we use a Gaussian kernel for the KDE which is of order � = 2. While
higher order kernels can be constructed using Legendre polynomials [18], the Gaussian kernel was
more robust in practice. The bandwidth for the kernel was chosen via cross validation on density
estimation.

Details on Real Datasets: Here, we first estimate the model parameters using the training sequence.
Given a test sequence x

1:n, we predict xt+1

conditioned on the previous x
1:t for t = 1 : n.

1. Internet Traffic. Training sequence length: 10, 000. Test sequence length: 10.
2. Laser Generation. Training sequence length: 10, 000. Test sequence length: 100.
3. Physiological data. Training sequence length: 15, 000. Test sequence length: 100.
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Figure 3: An illustration of the nonparametric emission probabilities used in our experiments.
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