
Supplementary Material for “Achieving Budget-optimality with
Adaptive Schemes in Crowdsourcing”

3 Algorithm for parameter estimation

In this section we present a spectral algorithm for estimating α, to be used in the inner-loop of
Algorithm 1. Consider the data matrix Ã defined below. A simple analysis shows that E[Ã] is a rank
one matrix with ‖E[Ã]‖ =

√
`rαβ. A typical random matrix analysis shows that spectral norm of

the noise matrix ‖Ã− E[Ã]‖ is upper bounded by C(`r)1/4 for some constant C. Therefore, in the
limit of |M |, since ` = r = Θ(log |M |), we have ‖Ã‖/√`rβ = ‖E[Ã]‖/√`rβ + o(1). Hence, α is
close to the squared normalized top singular value of Ã.

Algorithm 3 Parameter Estimation Algorithm

Require: E ∈ {0, 1}|M |×n, {Aij}(i,j)∈E , `, r, β
Ensure: α

1: Construct matrix Ã ∈ {0,±1}|M |×n such that

Ãi,j =

{
Ai,j , if (i, j) ∈ E

0 , otherwise

for all i ∈ [|M |], j ∈ [n].
2: Set σ1(Ã) to be the top singular value of matrix Ã
3: α←

(
σ1(Ã)/

√
`rβ
)2

4 Proof of Theorem 2.1

We will show that there exists a family of worker reliability distributions F such that for any adaptive
task assignment scheme that assigns E[|Wi||qi] workers in expectation to a task i conditioned on
its difficulty qi, the conditional probability of error of task i conditioned on qi is lower bounded by
exp (−C ′λiβE[|Wi||qi]). We define the following family of distributions according to the spammer-
hammer model with imperfect hammers. We assume that β < a2 and

pj =

{
1/2, w.p. 1− β/a2,

1/2(1 + a), w.p. β/a2.
,

such thatE[(2pj−1)2] = β. Let E[Wi|qi] denote the expected number of workers conditioned on the
task difficulty qi, that the adaptive task assignment scheme assigns to the task i. We consider a labeling
algorithm that has access to an oracle that knows reliability of every worker (all the pj’s). Focusing
on a single task i, since we know who the spammers are and spammers give no information about the
task, we only need the responses from the reliable workers in order to make an optimal estimate. Let
Ei denote the conditional error probability of the optimal estimate conditioned on the realizations of
the answers {Aij}j∈Wi and the worker reliability {pj}j∈Wi . We have E[Ei|qi] ≡ P[ti 6= t̂i|qi]. The
following lower bound on the error only depends on the number of reliable workers, which we denote
by `i.

Without loss of generality, let ti = +1. Then, if all the reliable workers agreed on “–” answers, the
maximum likelihood estimation would be “–” for this task, and vice-versa. For a fixed number of
`i responses, the probability of error is minimum when all the workers agreed. Therefore, since
probability that a worker gives “–” answer is pj(1 − qi) + qi(1 − pj) = (1 − a(2qi − 1))/2 from
(1), we have,

E[Ei|qi, `i] ≥ E[Ei|all `i reliable workers agreed, qi, `i] ≥
1

2

(
1− a(2qi − 1))

2

)`i
, (11)

for any realizations of {Aij} and {pj}. By convexity and Jensen’s inequality, it follows that

E[`i|qi] ≥
log(2E[Ei|qi])

log((1− a(2qi − 1))/2)
. (12)
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When we recruit |Wi| workers, using Doob’s Optional-Stopping Theorem [20, 10.10], conditional
expectation of reliable number of workers is

E[`i|qi] = (β/a2)E[|Wi| |qi] . (13)

Therefore, from (12) and (13), we get

E[|Wi| |qi] ≥
1

β

a2

log((1− a(2qi − 1))/2)
log(2E[Ei|qi]) . (14)

Maximizing over all choices of a ∈ (0, 1), we get,

E[|Wi| |qi] ≥
−0.27

β(2qi − 1)2
log(2E[Ei|qi]) , (15)

for a = 0.8/(2qi − 1) which as per our assumption of β < a2 requires that β(2qi − 1)2 < 0.64. By
changing the constant in the bound, we can ensure that the bound holds for any value of β and qi.
Theorem readily follows from Equation (15).

To verify Equation 13: Define Xi,k for k ∈ [|Wi|] to be a Bernoulli random variable, for a fixed
i ∈ [m] and fixed task difficulty qi. Let Xi,k take value one when the k-th recruited worker for task
i is reliable and zero otherwise. Observe that the number of reliable workers is `i =

∑|Wi|
k=1 Xi,k.

From the spammer-hammer model that we have considered, E[Xk,i − β/a2] = 0. Define Zi,k ≡∑k
k′=1(Xi,k′ − β/a2) for k ∈ [|Wi|]. Since {(Xi,k − β/a2)}k∈[|Wi|] are mean zero i.i.d. random

variables, {Zi,k}k∈[|Wi|] is a martingale with respect to the filtration Fi,k = σ(Xi,1, Xi,2, · · · , Xi,k).
Further, it is easy to check that the random variable |Wi| for a fixed qi is a stopping time with respect
to the same filtration Fi,k and is almost surely bounded assuming the budget is finite. Therefore using
Doob’s Optional-Stopping Theorem [20, 10.10], we have E[Zi,|Wi|] = E[Zi,1] = 0. That is we have,
E[Xi,1 +Xi,2 + · · ·+Xi,|Wi|] = (β/a2)E[|Wi|]. Since this is true for any fixed task difficulty qi,
we get Equation (13).

5 Proof of Theorem 2.2

First we show that the messages returned by Algorithm 2 are normally distributed and identify their
conditional mean and conditional variance in the following lemma. Assume the number of tasks is
m, the number of workers used is n, and the task assignment is performed according to (`, r) regular
random graph. To simplify the notation, let ˆ̀≡ `− 1, r̂ ≡ r − 1, and define µ ≡ E[2pj − 1]. When
` and r are increasing with the problem size, the messages converge to a Gaussian distribution due to
the central limit theorem. We provide a proof of this lemma in Section 5.1.
Lemma 5.1. Suppose for ` = Θ(logm) and r = Θ(logm), tasks are assigned according to
(`, r)-regular random graphs. In the limit m→∞, if µ > 0, then after k = Θ(

√
logm) number of

iterations in Algorithm 2, the conditional mean µ(k)
q and the conditional variance

(
ρ

(k)
q

)2
conditioned

on the task difficulty q of the message xi are

µ(k)
q =(2q − 1)µ`(ˆ̀̂rαβ)(k−1) ,

(
ρ(k)
q

)2
=µ2`(ˆ̀̂rαβ)2(k−1)

(
α− (2q − 1)2 +

αˆ̀(1− αβ)(1 + r̂αβ)
(
1− (ˆ̀̂rα2β2)−(k−1)

)

ˆ̀̂rα2β2 − 1

)

+ `(2− µ2α)(ˆ̀̂r)k−1 . (16)

We will show that the probability of misclassification for any task in any round in Algorithm 1 is
upper bounded by e−(Cδ/4)`λβ and the expected total number of worker assignments is at most
m` when {γa = 1}a∈[T̃ ]. Since, there are utmost C1 = smaxT̃ = log2(2δmax/δmin) log2(λ1/λK)

rounds, using union bound we get the desired probability of error.

Let’s consider any task i ∈ [m] having difficulty λi. Without loss of generality assume that ti = 1

that is qi > 1/2. Let us assume that the task i gets classified in the (t, u)-round, t ∈ [T̃ ], u ∈ [st].
That is the number of workers assigned to the task i when it gets classified is `t = (`Cδλ̃)/λ̃t and
the threshold Xt,u set in that round for classification is Xt,u =

√
λ̃tµ`t

(
(`t − 1)(rt − 1)αt,uβ

)kt−1
.
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From Lemma 5.1 the message xi returned by Algorithm 2 is Gaussian with conditional mean and
conditional variance as given in (16). Therefore in the limit of m, the probability of error in task i is

lim
m→∞

P
[
t̂i 6= ti|qi

]
= lim

m→∞
P
[
xi < −Xt,u|qi

]

= lim
m→∞

Q
(µ(k)

qi + Xt,u
ρ

(k)
qi

)
(17)

≤ lim
m→∞

exp
(−(µ

(k)
qi + Xt,u)2

2(ρ
(k)
qi )2

)
(18)

= exp
(−((2qi − 1) +

√
λ̃t)

2`tβ

2(1− (2qi − 1)2β)

)
(19)

≤ exp
(−λ̃t`tβ

2

)

= exp
(−Cδλ̃`β

2

)
(20)

≤ exp
(−Cδλ`β

4

)
, (21)

whereQ(·) in (17) is the tail probability of a standard Gaussian distribution, and (18) uses the Chernoff
bound. (19) follows from substituting conditional mean and conditional variance from Equation (16),
and using `t = Θ(logm), k = Θ(

√
logm) wherem grows to infinity. (20) uses `t = (`Cδλ̃)/λ̃t and

(21) uses the fact that for the binned distribution {λ̃a, δ̃a}a∈[T̃ ], λ̃ =
(∑

a∈[T̃ ](δ̃a/λ̃a)
)−1 ≥ λ/2.

We have established that our approach guarantees the desired level of accuracy. We are left to show
that we use utmost m` assignments in expectation.

We upper bound the expected total number of workers used for tasks of difficulty level λ̃a’s for each
1 ≤ a ≤ T̃ . Recall that our adaptive algorithm runs in T̃ rounds indexed by t, where each round t
further runs st sub-rounds. The total expected number of workers assigned to δ̃a fraction of tasks of
difficulty λ̃a in t = 1 to t = a− 1 rounds is upper bounded by mδ̃a

∑a−1
t=1 st`t. The upper bound

assumes the worst-case (in terms of the budget) that these tasks do not get classified in any of these
rounds as the threshold X set in these rounds is more than absolute value of the conditional mean
message x of these tasks.

Next, in st=a sub-rounds the threshold X is set less than or equal to the absolute value of the
conditional mean message x of these tasks, i.e. X ≤ |µ(k)

qa | for (2qa − 1)2 = λ̃a. Therefore, in
each of these sa sub-rounds, probability of classification of these tasks is at least 1/2. That is the
expected total number of workers assigned to these tasks in sa sub-rounds is upper bounded by
2mδ̃a`a. Further, sa is chosen such that the fraction of these tasks remaining un-classified at the end
of sa sub-rounds is utmost same as the fraction of the tasks having difficulty λ̃a+1. That is to get the
upper bound, we can assume that the fraction of λ̃a+1 difficulty tasks at the start of sa+1 sub-rounds
is 2δ̃a+1, and the fraction of λ̃a difficulty tasks at the start of sa+1 sub-rounds is zero. Further, recall
that we have set sT̃ = 1 as in this round our threshold X is equal to zero. Therefore, we have the
following upper bound on the expected total number of worker assignments.

m∑

i=1

E[|Wi|] ≤ 2mδ̃1`1 +
T̃−1∑

a=2

4mδ̃a`a + 2mδ̃T̃ `T̃ +
T̃∑

a=2

(
mδ̃a

a−1∑

b=1

sb`b

)

≤
T̃∑

a=1

4mδ̃a`a + smax

T̃∑

a=1

mδ̃a`a (22)

≤ (4 + dlog(2δmax/δmin)e)
T̃∑

a=1

mδ̃a`a (23)

≤ (4 + dlog(2δmax/δmin)e)m`Cδ (24)
= m` , (25)
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Equation (22) uses the fact that `t = (`Cδλ̃)/λ̃t where λ̃t’s are separated apart by at least a ratio
of 2 (recall the binning distribution), therefore

∑a−1
t=1 `t ≤ `a. Equation (23) follows from the

choice of st’s in the algorithm. Equation (24) follows from using `t = (`Cδλ̃)/λ̃t and λ̃ =

(
∑
a∈[T̃ ](δ̃a/λ̃a))−1, and Equation (25) uses Cδ = (4 + dlog(2δmax/δmin)e)−1.

5.1 Proof of Lemma 5.1

We will prove it for a randomly chosen node I, and all the analyses naturally holds for a specific
i, when conditioned on qi. In our algorithm, we perform task assignment on a random bipartite
graph G([m]∪ [n], E) constructed according to the configuration model. Let Gi,k denote a subgraph
of G([m] ∪ [n], E) that includes all the nodes that are within k distance from the the “root" i. If
we run our inference algorithm for one run to estimate t̂i, we only use the responses provided by
the workers who were assigned to task i. That is we are running inference algorithm only on the
local neighborhood graph Gi,1. Similarly, when we run our algorithm for k iterations to estimate t̂i,
we perform inference only on the local subgraph Gi,2k−1. Since we update both task and worker
messages at each iteration, the local subgraph grows by distance two at each iteration. We use a result
from [9] to show that the local neighborhood of a randomly chosen task node I is a tree with high
probability. Therefore, assuming that the graph is locally tree like with high probability, we can apply
a technique known as density evolution to estimate the conditional mean and conditional variance.
The next lemma shows that the local subgraph converges to a tree in probability, in the limit m→∞
for the specified choice of `, r and k.

Lemma 5.2 (Lemma 5 from [9]). For a random (`, r)-regular bipartite graph generated according
to the configuration model,

P
[
GI,2k−1 is not a tree

]
≤
(
(`− 1)(r − 1)

)2k−2 3`r

m
. (26)

Density Evolution. Let {x(k)
i→j}(i,j)∈E and {y(k)

j→i}(i,j)∈E denote the messages at the k-th iteration

of the algorithm. For an edge (i, j) chosen uniformly at random, let x(k)
q denote the random variable

corresponding to the message x(k)
i→j conditioned on the i-th task’s difficulty being q. Similarly, let

y
(k)
p denote the random variable corresponding to the message y(k)

j→i conditioned on the j-th worker’s
quality being p.

At the first iteration, the task messages are updated according to x(1)
i→j =

∑
j′∈∂i\jAij′y

(0)
j′→i. Since

we initialize the worker messages {y(0)
j→i}(i,j)∈E with independent Gaussian random variables with

mean and variance both one, if we know the distribution of Aij′’s, then we have the distribution of
x

(1)
i→j . Since, we are assuming that the local subgraph is tree-like, all x(1)

i→j for i ∈ GI,2k−1 for any
randomly chosen node I are independent. Further, because of the symmetry in the construction of
the random graph G all messages x(1)

i→j’s are identically distributed. Precisely, x(1)
i→j are distributed

according to x
(1)
q defined in Equation (28). In the following, we recursively define x

(k)
q and y

(k)
p in

Equations (28) and (29).

For brevity, here and after, we drop the superscript k-iteration number whenever it is clear from the
context. Let xq,a’s and yp,b’s be independent random variables distributed according to xq and yp
respectively. We use a and b as indices for independent random variables with the same distribution.
Also, let zp,q,a’s and zp,q,b’s be independent random variables distributed according to zp,q , where

zp,q =

{
+1 w.p. pq + (1− p)(1− q) ,
−1 w.p. p(1− q) + (1− p)q . (27)

This represents the response given by a worker conditioned on the task having difficulty q and the
worker having ability p. Let F1 and F2 over [0, 1] be the distributions of the tasks’ difficulty level
and workers’ quality respectively. Let q ∼ F1 and p ∼ F2. Then qa’s and pb’s are independent
random variables distributed according to q and p respectively. Further, zp,qa,a’s and xqa,a’s are
conditionally independent conditioned on qa; and zpb,q,b’s and ypb,b’s are conditionally independent
conditioned on pb.
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Let d= denote equality in distribution. Then for k ∈ {1, 2, · · · }, the task messages (conditioned on
the latent task difficulty level q) are distributed as the sum of `− 1 incoming messages that are i.i.d.
according to y

(k−1)
p and weighted by i.i.d. responses:

x(k)
q

d
=

∑

b∈[`−1]

zpb,q,by
(k−1)
pb,b

. (28)

Similarly, the worker messages (conditioned on the latent worker quality p) are distributed as the sum
of r − 1 incoming messages that are i.i.d. according to x

(k)
q and weighted by the i.i.d. responses:

y(k)
p

d
=

∑

a∈[r−1]

zp,qa,ax
(k)
qa,a. (29)

For the decision variable x
(k)
I on a task I chosen uniformly at random, we have

x̂(k)
q

d
=
∑

a∈[`]

zpa,q,ay
(k−1)
pa,a . (30)

Mean and Variance Computation. Define m(k)
q ≡ E[x

(k)
q |q] and m̂

(k)
p ≡ E[y

(k)
p |p], ν(k)

q ≡
Var(x

(k)
q |q) and ν̂(k)

p ≡ Var(y
(k)
p |p). Recall the notations µ ≡ E[2p− 1], α ≡ E[(2q− 1)2], β ≡

E[(2p−1)2], ˆ̀= `−1, and r̂ = r−1. Then from (28) and (29) and using E[zp,q] = (2p−1)(2q−1)
we get the following:

m(k)
q = ˆ̀(2q− 1)Ep

[
(2p− 1)m̂(k−1)

p

]
, (31)

m̂(k)
p = r̂(2p− 1)Eq

[
(2q− 1)m(k)

q

]
, (32)

ν(k)
q = ˆ̀

{
Ep

[
ν̂(k−1)
p + (m̂(k−1)

p )2
]
− (m(k)

q /ˆ̀)2
}
, (33)

ν̂(k)
p = r̂

{
Eq

[
ν(k)
q + (m(k)

q )2
]
− (m̂(k)

p /r̂)2
}
. (34)

Define m(k) ≡ Eq[(2q− 1)m
(k)
q ] and ν(k) ≡ Eq[ν

(k)
q ]. From (31) and (32), we have the following

recursion on the first moment of the random variable x(k)
q :

m(k)
q = ˆ̀̂r(2q− 1)βm(k−1),m(k) = ˆ̀̂rαβm(k−1) . (35)

From (33) and (34), and using Eq[(m
(k)
q )2] = (m(k))2/α (from (35)), and Ep[(m̂

(k)
p )2] =

r̂2β(m(k))2 (from (32)) , we get the following recursion on the second moment:

ν(k)
q = ˆ̀̂rν(k−1) + ˆ̀̂r(m(k−1))2

(
(1− αβ)(1 + r̂αβ) + r̂α(β)2(α− (2q− 1)2)

)
/α , (36)

ν(k) = ˆ̀̂rν(k−1) + ˆ̀̂r(m(k−1))2(1− αβ)(1 + r̂αβ)/α. (37)

Since m̂(0)
p = 1 as per our assumption, we havem(1)

q = ˆ̀µ(2q−1) andm(1) = ˆ̀µα. Therefore from
(35), we have m(k) = ˆ̀µα(ˆ̀̂rαβ)k−1 and m(k)

q = ˆ̀µ(2q − 1)(ˆ̀̂rαβ)k−1. Further, since ν̂(0)
p = 1

as per our assumption, we have ν(1)
q = ˆ̀(2−µ2(2q− 1)2) and ν(1) = ˆ̀(2−µ2α). This implies that

ν(k) = aν(k−1) + bck−2, with a = ˆ̀̂r, b = µ2αˆ̀3r̂(1−αβ)(1+ r̂αβ) and c = (ˆ̀̂rαβ)2. After some
algebra, we have that ν(k) = ν(1)ak−1 + bck−2

∑k−2
`=0 (a/c)`. For ˆ̀̂r(αβ)2 > 1, we have a/c < 1

and

ν(k)
q = ˆ̀(2− µ2α)(ˆ̀̂r)k−1 + µ2 ˆ̀(ˆ̀̂rαβ)2k−2(α− (2q− 1)2)

+

(
1− 1/(ˆ̀̂r(αβ)2)k−1

ˆ̀̂rα2β2 − 1

)
(1− αβ)(1 + r̂αβ)µ2αˆ̀2(ˆ̀̂rαβ)2k−2. (38)

By a similar analysis, mean and variance of the decision variable x̂
(k)
q in (30) can also be computed.

In particular, they are `/ˆ̀ times m(k)
q and ν(k)

q . Gaussianity of the messages follows due to Central
limit theorem.
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6 Proof of Theorem 2.3

The proof uses the results derived in the proof of Lemma 5.1.

Let t̂(k)
i denote the resulting estimate of task i after running the iterative inference algorithm for k

iterations. We want to compute the conditional probability of error of a task I selected uniformly at
random in [m], conditioned on its difficulty level, i.e.,

P
[
tI 6= t̂

(k)
I

∣∣qI
]
.

In the following, we assume qI ≥ (1/2), i.e. the true label is ti = 1. Analysis for qI ≤ (1/2) would
be similar and result in the same bounds. Using the arguments given in Lemma 5.1, we have,

P
[
tI 6= t̂

(k)
I

∣∣qI
]
≤ P

[
tI 6= t̂

(k)
I

∣∣GI,2k−1 is a tree, qI
]

+ P
[
GI,2k−1 is not a tree

]
. (39)

To provide an upper bound on the first term in (39), let x(k)
i denote the decision variable for task

i after k iterations of the algorithm such that t̂(k)
i = sign(x

(k)
i ). Then as per our assumption that

ti = 1, we have,

P
[
tI 6= t̂

(k)
I |GI,2k−1is a tree, qI

]
≤ P

[
x

(k)
I ≤ 0|GI,2k−1is a tree, qI

]
. (40)

Next, we apply “density evolution" [13] and provide a sharp upper bound on the probability of
the decision variable x(k)

I being negative in a locally tree like graph given qI ≥ (1/2). The proof
technique is similar to the one introduced in [9]. Precisely, we show,

P
[
x

(k)
I ≤ 0|GI,2k−1 is a tree , qI

]
= P

[
x̂(k)
q ≤ 0

]
, (41)

where x̂
(k)
q is defined in Equations (28)-(30) using density evolution. We will prove in the following

that when ˆ̀̂r(αβ)2 > 1 and r̂α > 1,

P
[
x̂(k)
q ≤ 0

]
≤ e−`β(2qI−1)2/(2σ2

k). (42)

Theorem 2.3 follows by combining Equations (39),(26),(40) and (41).

we show that x̂(k) is sub-Gaussian with some appropriate parameter and then apply the Chernoff
bound. A random variable x with mean µ is said to be sub-Gaussian with parameter σ if for all
λ ∈ R the following bound holds for its moment generating function:

E[eλx] ≤ eµλ+(1/2)σ2λ2

. (43)

Define,

σ̃2
k ≡ 3ˆ̀3r̂µ2α(r̂αβ + 1)(ˆ̀̂rαβ)2k−4

(1− 1/(ˆ̀̂r(αβ)2)k−1

1− 1/(ˆ̀̂rαβ)

)
+ 2ˆ̀(ˆ̀̂r)k−1 , (44)

mk ≡ µˆ̀(ˆ̀̂rαβ)k−1, and mk,q ≡ (2q− 1)mk for k ∈ Z, where q ∼ F1. We will show that, x(k)
q

is sub-Gaussian with mean mk,q and parameter σ̃2
k for |λ| ≤ 1/(2mk−1r̂α), i.e.,

E[eλx
(k)
q |q] ≤ emk,qλ+(1/2)σ̃2

kλ
2

. (45)

Analyzing the Density. Notice that the parameter σ̃2
k does not depend upon the random variable

q. By definition of x̂(k)
q , (30), we have E[eλx̂

(k)
q |q] = E[eλx

(k)
q |q](`/

ˆ̀). Therefore, it follows that
E[eλx̂

(k)
q |q] ≤ e(`/ˆ̀)mk,qλ+(`/2ˆ̀)σ̃2

kλ
2

. Using the Chernoff bound with λ = −mk,q/(σ̃
2
k), we have

P[x̂(k)
q ≤ 0 | q] ≤ E[eλx̂

(k)
q |q] ≤ e−`m

2
k,q/(2

ˆ̀̃σ2
k) . (46)

Note that, with the assumption that q ≥ (1/2), mk,q is non-negative. Since

mk,qmk−1,q

σ̃2
k

≤ (2q− 1)2µ2 ˆ̀2(ˆ̀̂rαβ)2k−3

3µ2β(α)2 ˆ̀3r̂2(ˆ̀̂rαβ)2k−4
=

(2q− 1)2

3r̂α
,

it follows that |λ| ≤ 1/(2mk−1r̂α). The desired bound in (42) follows.
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Now, we are left to prove Equation (45). From (28) and (29), we have the following recursive formula
for the evolution of the moment generating functions of xq and yp:

E[eλx
(k)
q |q] =

(
Ep

[
(pq + p̄q̄)E[eλy

(k−1)
p |p] + (pq̄ + p̄q)E[e−λy

(k−1)
p |p]

])ˆ̀
, (47)

E[eλy
(k)
p |p] =

(
Eq

[
(pq + p̄q̄)E[eλx

(k)
q |q] + (pq̄ + p̄q)E[e−λx

(k)
q |q]

])r̂
, (48)

where p̄ = 1− p and q̄ = 1− q. We apply induction to prove that the messages are sub-Gaussian.
First, for k = 1, we show that x(1)

q is sub-Gaussian with mean m1,q = (2q− 1)µˆ̀and parameter
σ̃2

1 = 2ˆ̀. Since, yp is initialized as a Gaussian random variable with mean and variance both one, we
have E[eλy

(0)
p ] = eλ+(1/2)λ2

. Substituting this into Equation (47), we get for any λ,

E[eλx
(1)
q |q] =

((
E[p]q + E[p̄]q̄

)
eλ +

(
E[p]q̄ + E[p̄]q

)
e−λ

)ˆ̀
e(1/2)λ2 ˆ̀ (49)

≤ e(2q−1)µˆ̀λ+(1/2)(2ˆ̀)λ2

, (50)

where the inequality follows from the fact that aez + (1 − a)e−z ≤ e(2a−1)z+(1/2)z2 for any
z ∈ R and a ∈ [0, 1] (Lemma A.1.5 from [1]). Next, assuming E[eλx

(k)
q |q] ≤ emk,qλ+(1/2)σ̃2

kλ
2

for
|λ| ≤ 1/(2mk−1r̂α), we show that E[eλx

(k+1)
q |q] ≤ emk+1,qλ+(1/2)σ̃2

k+1λ
2

for |λ| ≤ 1/(2mkr̂α),
and compute appropriate mk+1,q and σ̃2

k+1.

Substituting the bound E[eλx
(k)
q |q] ≤ emk,qλ+(1/2)σ̃2

kλ
2

in (48), we have

E[eλy
(k)
p |p]

≤
(
Eq

[
(pq + p̄q̄)emk,qλ + (pq̄ + p̄q)e−mk,qλ

])r̂
e(1/2)σ̃2

kλ
2r̂

≤
(
Eq

[
e(2q−1)(2p−1)mk,qλ+(1/2)(mk,qλ)2

])r̂
e(1/2)σ̃2

kλ
2r̂ (51)

=
(
Eq

[
e(2p−1)(2q−1)2mkλ+(1/2)(2q−1)2(mkλ)2

])r̂
e0.5σ̃2

kλ
2r̂ (52)

where (51) uses the inequality aez + (1 − a)e−z ≤ e(2a−1)z+(1/2)z2 and (52) follows from the
definition of mk,q ≡ (2q− 1)mk. To bound the term in (52), we use the following lemma.
Lemma 6.1. For any random variable s ∈ [0, 1], |z| ≤ 1/2 and |t| < 1, we have

E
[
estz+(1/2)sz2

]
≤ exp

(
E[s]tz + (3/2)E[s]z2

)
. (53)

For |λ| ≤ 1/(2mkr̂α), using the assumption that r̂α > 1, we have mkλ ≤ (1/2). Applying Lemma
6.1 on the term in (52), with s = (2q− 1)2, z = mkλ and t = (2p− 1), we get

E[eλy
(k)
p |p] ≤ eα(2p−1)r̂mkλ+(1/2)

(
3αm2

k+σ̃2
k

)
λ2r̂ . (54)

Substituting the bound in (54) in Equation (47), we get

E[eλx
(k+1)
q |q]

≤
(
Ep

[
(pq + p̄q̄)eα(2p−1)mkλr̂ + (pq̄ + p̄q)e−α(2p−1)mkλr̂

])ˆ̀
e(1/2)(3αm2

k+σ̃2
k)λ2 ˆ̀̂r

≤
(
Ep

[
e(2q−1)(2p−1)2αmkλr̂+(1/2)(2p−1)2(αmkλr̂)

2])ˆ̀
e(1/2)(3αm2

k+σ̃2
k)λ2 ˆ̀̂r (55)

≤ e
ˆ̀̂rαβmk,qλ+(1/2)ˆ̀̂r

(
σ̃2
k+3αm2

k(1+r̂αβ)
)
λ2

, (56)

where (55) uses the inequality aez + (1− a)e−z ≤ e(2a−1)z+(1/2)z2 . Equation (56) follows from the
application of Lemma 6.1, with s = (2p−1)2, z = αmkλr̂ and t = (2q−1). For |λ| ≤ 1/(2mkr̂α),
|z| < (1/2).

In the regime where ˆ̀̂r(αβ)2 > 1, as per our assumption, mk is non-decreasing in k. At iteration k,
the above recursion holds for |λ| ≤ 1/(2r̂α) min{1/m1, · · · , 1/mk−1} = 1/(2mk−1r̂α). Hence,
we get the following recursion for mk,q and σ̃2

k such that (45) holds for |λ| ≤ 1/(2mk−1r̂α):

mk,q = ˆ̀̂rαβmk−1,q,

σ̃2
k = ˆ̀̂rσ̃2

k−1 + 3ˆ̀̂r(1 + r̂αβ)αm2
k−1 . (57)
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With the initialization m1,q = (2q− 1)µˆ̀and σ̃2
1 = 2ˆ̀, we have mk,q = µ(2q− 1)ˆ̀(αβ ˆ̀̂r)k−1 for

k ∈ {1, 2, · · · } and σ̃2
k = aσ̃2

k−1 + bck−2 for k ∈ {2, 3 · · · }, with a = ˆ̀̂r, b = 3ˆ̀3r̂µ2α(1 + αβr̂),
and c = (αβ ˆ̀̂r)2. After some algebra, we have σ̃2

k = σ̃2
1a
k−1 + bck−2

∑k−2
`=0 (a/c)`. For

ˆ̀̂r(αβ)2 6= 1, we have a/c 6= 1, whence σ̃2
k = σ̃2

1a
k−1 + bck−2(1 − (a/c)k−1)/(1 − a/c). This

finishes the proof of (45).

6.1 Proof of Lemma 6.1

Using the fact that ea ≤ 1 + a+ 0.63a2 for |a| ≤ 5/8,

E
[
estz+(1/2)sz2

]

≤ E
[
1 + stz + (1/2)sz2 + 0.63

(
stz + (1/2)sz2

)2]

≤ E
[
1 + stz + (1/2)sz2 + 0.63

(
(5/4)z

√
s
)2]

≤ 1 + E[s]tz + (3/2)E[s]z2

≤ exp
(
E[s]tz + (3/2)E[s]z2

)
.

7 Proof of Theorem 2.4

Let F denote a distribution on the worker quality pj such that pj ∼ F . Let Fβ be a collection of
all distributions F such that:

Fβ =
{
F | EF [(2pj − 1)2] = β

}
.

Define the minimax rate on the probability of error of a task i, conditioned on its difficulty level qi, as

min
τ∈T`i ,t̂

max
ti∈{±},F∈Fβ

P[ti 6= t̂i | qi] , (58)

where T`i is the set of all nonadaptive task assignment schemes that assign `i workers to task i, and
t̂ ranges over the set of all estimators of ti. Since the minimax rate is the maximum over all the
distributions F ∈ Fβ , we consider a particular worker quality distribution to get a lower bound on it.
In particular, we assume the pj’s are drawn from a spammer-hammer model with perfect hammers:

pj =

{
1/2 with probability 1− β,
1 otherwise.

Observe that the chosen spammer-hammer models belongs to Fβ , i.e. E[(2pj − 1)2] = β. To get
the optimal estimator, we consider an oracle estimator that knows all the pj’s and hence makes
an optimal estimation. It estimates t̂i using majority voting on hammers and ignores the answers
of hammers. If there are no hammers then it flips a fair coin and estimates t̂i correctly with half
probability. It does the same in case of tie among the hammers. Concretely,

t̂i = sign

( ∑

j∈Wi

I{j ∈ H})Aij
)
,

where Wi denotes the neighborhood of node i in the graph and H is the set of hammers. Note that
this is the optimal estimation for the spammer-hammer model. We want to compute a lower bound
on P[ti 6= t̂i|qi]. Let ˜̀

i be the number of hammers answering task i, i.e.,˜̀i = |Wi ∩H|. Since pj’s
are drawn from spammer-hammer model, ˜̀

i is a binomial random variable Binom(`i, β). We first
compute probability of error conditioned on ˜̀

i, i.e. P[ti 6= t̂i|˜̀i, qi]. For this, we use the following
lemma from [9].
Lemma 7.1 (Lemma 2 from [9]). For any C < 1, there exists a positive constant C ′ such that when
(2qi − 1) ≤ C, the error achieved by majority voting is at least

min
τ∈T˜̀

max
ti∈{±}

P[ti 6= t̂i|˜̀i, qi] ≥ e−C
′(˜̀
i(2qi−1)2+1). (59)
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Taking expectation with respect to random variable ˜̀
i and applying Jensen’s inequality on the term in

right side, we get a lower bound on the minimiax probability of error in (58)

min
τ∈T˜̀,t̂

max
F∈Fβ

ti∈{±}

P[ti 6= t̂i|qi] ≥ e−C
′(`iβ(2qi−1)2+1) . (60)
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