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Abstract

Maximum mean discrepancy (MMD) has been successfully applied to learn deep
generative models for characterizing a joint distribution of variables via kernel
mean embedding. In this paper, we present conditional generative moment-
matching networks (CGMMN), which learn a conditional distribution given some
input variables based on a conditional maximum mean discrepancy (CMMD) cri-
terion. The learning is performed by stochastic gradient descent with the gradi-
ent calculated by back-propagation. We evaluate CGMMN on a wide range of
tasks, including predictive modeling, contextual generation, and Bayesian dark
knowledge, which distills knowledge from a Bayesian model by learning a rela-
tively small CGMMN student network. Our results demonstrate competitive per-
formance in all the tasks.

1 Introduction

Deep generative models (DGMs) characterize the distribution of observations with a multilayered
structure of hidden variables under nonlinear transformations. Among various deep learning meth-
ods, DGMs are natural choice for those tasks that require probabilistic reasoning and uncertainty
estimation, such as image generation [1], multimodal learning [30], and missing data imputation.
Recently, the predictive power, which was often shown inferior to pure recognition networks (e.g.,
deep convolutional networks), has also been significantly improved by employing the discriminative
max-margin learning [18].

For the arguably more challenging unsupervised learning, [5] presents a generative adversarial net-
work (GAN), which adopts a game-theoretical min-max optimization formalism. GAN has been
extended with success in various tasks [21, 1]. However, the min-max formalism is often hard to
solve. The recent work [19, 3] presents generative moment matching networks (GMMN), which has
a simpler objective function than GAN while retaining the advantages of deep learning. GMMN de-
fines a generative model by sampling from some simple distribution (e.g., uniform) followed through
a parametric deep network. To learn the parameters, GMMN adopts maximum mean discrepancy
(MMD) [7], a moment matching criterion where kernel mean embedding techniques are used to
avoid unnecessary assumptions of the distributions. Back-propagation can be used to calculate the
gradient as long as the kernel function is smooth.

A GMMN network estimates the joint distribution of a set of variables. However, we are more
interested in a conditional distribution in many cases, including (1) predictive modeling: compared
to a generative model that defines the joint distribution p(x,y) of input data x and response variable
y, a conditional model p(y|x) is often more direct without unnecessary assumptions on modeling x,
and leads to better performance with fewer training examples [23, 16]; (2) contextual generation: in
some cases, we are interested in generating samples based on some context, such as class labels [21],
visual attributes [32] or the input information in cross-modal generation (e.g., from image to text [31]
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or vice versa [2]); and (3) building large networks: conditional distributions are essential building
blocks of a large generative probabilistic model. One recent relevant work [1] provides a good
example of stacking multiple conditional GAN networks [21] in a Laplacian pyramid structure to
generate natural images.

In this paper, we present conditional generative moment-matching networks (CGMMN) to learn a
flexible conditional distribution when some input variables are given. CGMMN largely extends the
capability of GMMN to address a wide range of application problems as mentioned above, while
keeping the training process simple. Specifically, CGMMN admits a simple generative process,
which draws a sample from a simple distribution and then passes the sample as well as the given
conditional variables through a deep network to generate a target sample. To learn the parame-
ters, we develop conditional maximum mean discrepancy (CMMD), which measures the Hilbert-
Schmidt norm (generalized Frobenius norm) between the kernel mean embedding of an empirical
conditional distribution and that of our generative model. Thanks to the simplicity of the condi-
tional generative model, we can easily draw a set of samples to estimate the kernel mean embedding
as well as the CMMD objective. Then, optimizing the objective can be efficiently implemented
via back-propagation. We evaluate CGMMN in a wide range of tasks, including predictive model-
ing, contextual generation, and Bayesian dark knowledge [15], an interesting case of distilling dark
knowledge from Bayesian models. Our results on various datasets demonstrate that CGMMN can
obtain competitive performance in all these tasks.

2 Preliminary
In this section, we briefly review some preliminary knowledge, including maximum mean discrep-
ancy (MMD) and kernel embedding of conditional distributions.

2.1 Hilbert Space Embedding
We begin by providing an overview of Hilbert space embedding, where we represent distributions
by elements in a reproducing kernel Hilbert space (RKHS). A RKHS F on X with kernel k is a
Hilbert space of functions f : X → R. Its inner product ⟨·, ·⟩F satisfies the reproducing property:
⟨f(·), k(x, ·)⟩F = f(x). Kernel functions are not restricted on Rd. They can also be defined on
graphs, time series and structured objects [11]. We usually view ϕ(x) := k(x, ·) as a (usually
infinite dimension) feature map of x. The most interesting part is that we can embed a distribution
by taking expectation on its feature map:

µX := EX [ϕ(X)] =

∫
Ω

ϕ(X)dP (X).

If EX [k(X,X)] ≤ ∞, µX is guaranteed to be an element in the RKHS. This kind of kernel mean
embedding provides us another perspective on manipulating distributions whose parametric forms
are not assumed, as long as we can draw samples from them. This technique has been widely applied
in many tasks, including feature extractor, density estimation and two-sample test [27, 7].

2.2 Maximum Mean Discrepancy

Let X = {xi}Ni=1 and Y = {yi}Mj=1 be the sets of samples from distributions PX and PY , re-
spectively. Maximum Mean Discrepancy (MMD), also known as kernel two sample test [7], is a
frequentist estimator to answer the query whether PX = PY based on the observed samples. The
basic idea behind MMD is that if the generating distributions are identical, all the statistics are the
same. Formally, MMD defines the following difference measure:

MMD[K, PX , PY ] := sup
f∈K

(EX [f(X)]− EY [f(Y )]),

where K is a class of functions. [7] found that the class of functions in a universal RKHS F is rich
enough to distinguish any two distributions and MMD can be expressed as the difference of their
mean embeddings. Here, universality requires that k(·, ·) is continuous and F is dense in C(X)
with respect to the L∞ norm, where C(X) is the space of bounded continuous functions on X . We
summarize the result in the following theorem:

Theorem 1 [7] Let K be a unit ball in a universal RKHS F , defined on the compact metric space
X , with an associated continuous kernel k(·, ·). When the mean embedding µp, µq ∈ F , the MMD
objective function can be expressed as MMD[K, p, q] = ∥µp − µq∥2F . Besides, MMD[K, p, q] = 0 if
and only if p = q.
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In practice, an estimate of the MMD objective compares the square difference between the empirical
kernel mean embeddings:

L̂2
MMD =

∥∥∥∥∥∥ 1

N

N∑
i=1

ϕ(xi)−
1

M

M∑
j=1

ϕ(yi)

∥∥∥∥∥∥
2

F

,

which can be easily evaluated by expanding the square and using the associated kernel k(·, ·).
Asymptotically, L̂2

MMD is an unbiased estimator.

2.3 Kernel Embedding of Conditional Distributions

The kernel embedding of a conditional distribution P (Y |X) is defined as: µY |x := EY |x[ϕ(Y )] =∫
Ω
ϕ(y)dP (y|x). Unlike the embedding of a single distribution, the embedding of a conditional

distribution is not a single element in RKHS, but sweeps out a family of points in the RKHS, each
indexed by a fixed value of x. Formally, the embedding of a conditional distribution is represented
as an operator CY |X , which satisfies the following properties:

1. µY |x = CY |Xϕ(x); 2. EY |x[g(Y )|x] = ⟨g, µY |x⟩G , (1)

where G is the RKHS corresponding to Y .

[29] found that such an operator exists under some assumptions, using the technique of cross-
covariance operator CXY : G → F :

CXY := EXY [ϕ(X)⊗ ϕ(Y )]− µX ⊗ µY ,

where ⊗ is the tensor product. An interesting property is that CXY can also be viewed as an element
in the tensor product space G ⊗ F . The result is summarized as follows.

Theorem 2 [29] Assuming that EY |X [g(Y )|X] ∈ F , the embedding of conditional distributions
CY |X defined as CY |X := CY XC−1

XX satisfies properties 1 and 2.

Given a dataset DXY = {(xi,yi)}Ni=1 of size N drawn i.i.d. from P (X,Y ), we can estimate the
conditional embedding operator as ĈY |X = Φ(K+λI)−1Υ⊤, where Φ = (ϕ(y1), ..., ϕ(yN )),Υ =

(ϕ(x1), ..., ϕ(xN )),K = Υ⊤Υ and λ serves as regularization. The estimator is an element in the
tensor product space F ⊗ G and satisfies properties 1 and 2 asymptotically. When the domain of X
is finite, we can also estimate C−1

XX and CY X directly (See Appendix A.2.2 for more details).

3 Conditional Generative Moment-Matching Networks
We now present CGMMN, including a conditional maximum mean discrepancy criterion as the
training objective, a deep generative architecture and a learning algorithm.

3.1 Conditional Maximum Mean Discrepancy
Given conditional distributions PY |X and PZ|X , we aim to test whether they are the same in the
sense that when X = x is fixed whether PY |x = PZ|x holds or not. When the domain of X is finite,
a straightforward solution is to test whether PY |x = PZ|x for each x separately by using MMD.
However, this is impossible when X is continuous. Even in the finite case, as the separate tests do
not share statistics, we may need an extremely large number of training data to test a different model
for each single value of x. Below, we present a conditional maximum mean discrepancy criterion,
which avoids the above issues.

Recall the definition of kernel mean embedding of conditional distributions. When X = x is fixed,
we have the kernel mean embedding µY |x = CY |Xϕ(x). As a result, if we have CY |X = CZ|X ,
then µY |x = µZ|x is also satisfied for every fixed x. By the virtue of Theorem 1, that PY |x = PZ|x
follows as the following theorem states.

Theorem 3 Assuming that F is a universal RKHS with an associated kernel k(·, ·),
EY |X [g(Y )|X] ∈ F , EZ|X [g(Z)|X] ∈ F and CY |X , CZ|X ∈ F ⊗ G. If the embedding of
conditional distributions CY |X = CZ|X , then PY |X = PZ|X in the sense that for every fixed x, we
have PY |x = PZ|x.
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The above theorem gives us a sufficient condition to guarantee that two conditional distributions are
the same. We use the operators to measure the difference of two conditional distributions and we
call it conditional maximum mean discrepancy (CMMD), which is defined as follows:

L2
CMMD =

∥∥CY |X − CZ|X
∥∥2
F⊗G .

Suppose we have two sample sets Ds
XY = {(xi,yi)}Ni=1 and Dd

XY = {(xi,yi)}Mi=1. Similar
as in MMD, in practice we compare the square difference between the empirical estimates of the
conditional embedding operators:

L̂2
CMMD =

∥∥∥Ĉd
Y |X − Ĉs

Y |X

∥∥∥2
F⊗G

,

where the superscripts s and d denote the two sets of samples, respectively. For notation clarity, we
define K̃ = K+λI . Then, using kernel tricks, we can compute the difference only in term of kernel
gram matrices:

L̂2
CMMD =

∥∥Φd(Kd + λI)−1Υ⊤
d − Φs(Ks + λI)−1Υ⊤

s

∥∥2
F⊗G

=Tr
(
KdK̃

−1
d LdK̃

−1
d

)
+Tr

(
KsK̃

−1
s LsK̃

−1
s

)
− 2 · Tr

(
KsdK̃

−1
d LdsK̃

−1
s

)
,

(2)

where Φd := (ϕ(yd
1), ..., ϕ(y

d
N )) and Υd := (ϕ(xd

1), ..., ϕ(x
d
N )) are implicitly formed feature ma-

trices, Φs and Υs are defined similarly for dataset Ds
XY . Kd = Υ⊤

d Υd and Ks = Υ⊤
s Υs are the

gram matrices for input variables, while Ld = Φ⊤
d Φd and Ls = Φ⊤

s Φs are the gram matrices for
output variables. Finally, Ksd = Υ⊤

s Υd and Lds = Φ⊤
d Φs are the gram matrices between the two

datasets on input and out variables, respectively.

It is worth mentioning that we have assumed that the conditional mean embedding operator CY |X ∈
F ⊗ G to have the CMMD objective well-defined, which needs some smoothness assumptions such
that C−3/2

XX CXY is Hilbert-Schmidt [8]. In practice, the assumptions may not hold, however, the
empirical estimator Φ(K + λI)−1Υ⊤ is always an element in the tensor product space which gives
as a well-justified approximation (i.e., the Hilbert-Schmidt norm exists) for practical use [29].
Remark 1 Taking a close look on the objectives of MMD and CMMD, we can find some interesting
connections. Suppose N = M . By omitting the constant scalar, the objective function of MMD can
be rewritten as

L̂2
MMD = Tr(Ld · 1) + Tr(Ls · 1)− 2 · Tr(Lds · 1),

where 1 is the matrix with all entities equaling to 1. The objective function of CMMD can be
expressed as

L̂2
CMMD = Tr(Ld · C1) + Tr(Ls · C2)− 2 · Tr(Lds · C3),

where C1, C2, C3 are some matrices based on the conditional variables x in both data sets. The
difference is that instead of putting uniform weights on the gram matrix as in MMD, CMMD applies
non-uniform weights, reflecting the influence of conditional variables. Similar observations have
been shown in [29] for the conditional mean operator, where the estimated conditional embedding
µY |x is a non-uniform weighted combination of ϕ(xi).

3.2 CGMMN Nets
We now present a conditional DGM and train it by the CMMD criterion. One desirable property of
the DGM is that we can easily draw samples from it to estimate the CMMD objective. Below, we
present such a network that takes both the given conditional variables and an extra set of random
variables as inputs, and then passes through a deep neural network with nonlinear transformations
to produce the samples of the target variables.

Specifically, our network is built on the fact that for any distribution P on sample space K and any
continuous distribution Q on L that are regular enough, there is a function G : L → K such that
G(x) ∼ P , where x ∼ Q [12]. This fact has been recently explored by [3, 19] to define a deep
generative model and estimate the parameters by the MMD criterion. For a conditional model, we
would like the function G to depend on the given values of input variables. This can be fulfilled
via a process as illustrated in Fig. 1, where the inputs of a deep neural network (DNN) consist of
two parts — the input variables x and an extra set of stochastic variables H ∈ Rd that follow
some continuous distribution. For simplicity, we put a uniform prior on each hidden unit p(h) =
d∏

i=1

U(hi), where U(h) = I(0≤h≤1) is a uniform distribution on [0, 1] and I(·) is the indicator
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function that equals to 1 if the predicate holds and 0 otherwise. After passing both x and h through
the DNN, we get a sample from the conditional distribution P (Y |x): y = f(x,h|w), where f
denotes the deterministic mapping function represented by the network with parameters w. By
default, we concatenate x and h and fill x̃ = (x,h) into the network. In this case, we have y =
f(x̃|w).

Figure 1: An example architecture of
CGMMN networks.

Due to the flexibility and rich capability of DNN on fitting
nonlinear functions, this generative process can character-
ize various conditional distributions well. For example, a
simple network can consist of multiple layer perceptrons
(MLP) activated by some non-linear functions such as the
rectified linear unit (ReLu) [22]. Of course the hidden
layer is not restricted to MLP, as long as it supports gra-
dient propagation. We also use convolutional neural net-
works (CNN) as hidden layers [25] in our experiments. It
is worth mentioning that there exist other ways to com-
bine the conditional variables x with the auxiliary vari-
ables H . For example, we can add a corruption noise to
the conditional variables x to produce the input of the net-
work, e.g., define x̃ = x+ h, where h may follow a Gaussian distribution N (0, ηI) in this case.

With the above generative process, we can train the network by optimizing the CMMD objective
with proper regularization. Specifically, let Ds

XY = {(xd
i ,y

d
i )}Ni=1 denote the given training dataset.

To estimate the CMMD objective, we draw a set of samples from the above generative model, where
the conditional variables can be set by sampling from the training set with/without small perturbation
(More details are in the experimental section). Thanks to its simplicity, the sampling procedure can
be easily performed. Precisely, we provide each x in the training dataset to the generator to get a
new sample and we denote Dd

XY = {(xs
i ,y

s
i )}Mi=1 as the generated samples. Then, we can optimize

the CMMD objective in Eq. (2) by gradient descent. See more details in Appendix A.1.
Algorithm 1 Stochastic gradient descent for CGMMN

1: Input: Dataset D = {(xi,yi)}Ni=1
2: Output: Learned parameters w
3: Randomly divide training dataset D into mini batches
4: while Stopping criterion not met do
5: Draw a minibatch B from D;
6: For each x ∈ B, generate a y; and set B′ to contain all the generated (x,y);

7: Compute the gradient ∂L̂2
CMMD
∂w on B and B′;

8: Update w using the gradient with proper regularizer.
9: end while

Note that the inverse matrices K̃−1
s and K̃−1

d in the CMMD objective are independent of the model
parameters, suggesting that we are not restricted to use differentiable kernels on the conditional
variables x. Since the computation cost for kernel gram matrix grows cubically with the sample
size, we present an mini-batch version algorithm in Alg. 1 and some discussions can be found in
Appendix A.2.1.

4 Experiments
We now present a diverse range of applications to evaluate our model, including predictive model-
ing, contextual generation and an interesting case of Bayesian dark knowledge [15]. Our results
demonstrate that CGMMN is competitive in all the tasks.

4.1 Predictive Performance
4.1.1 Results on MNIST dataset
We first present the prediction performance on the widely used MINIST dataset, which consists of
images in 10 classes. Each image is of size 28× 28 and the gray-scale is normalized to be in range
[0, 1]. The whole dataset is divided into 3 parts with 50, 000 training examples, 10, 000 validation
examples and 10, 000 testing examples.

For prediction task, the conditional variables are the images x ∈ [0, 1]28×28, and the generated
sample is a class label, which is represented as a vector y ∈ R10

+ and each yi denotes the confidence
that x is in class i. We consider two types of architectures in CGMMN — MLP and CNN.

5



Table 1: Error rates (%) on MNIST dataset
Model Error Rate
VA+Pegasos [18] 1.04
MMVA [18] 0.90
CGMMN 0.97
CVA + Pegasos [18] 1.35
CGMMN-CNN 0.47
Stochastic Pooling [33] 0.47
Network in Network [20] 0.47
Maxout Network [6] 0.45
CMMVA [18] 0.45
DSN [17] 0.39

We compare our model, denoted as CGMMN in the
MLP case and CGMMN-CNN in the CNN case, with
Varitional Auto-encoder (VA) [14], which is an unsu-
pervised DGM learnt by stochastic variational meth-
ods. To use VA for classification, a subsequent clas-
sifier is built — We first learn feature representations
by VA and then learn a linear SVM on these features
using Pegasos algorithm [26]. We also compare with
max-margin DGMs (denoted as MMVA with MLP as
hidden layers and CMMVA in the CNN case) [18],
which is a state-of-the-art DGM for prediction, and
several other strong baselines, including Stochastic
Pooling [33], Network in Network [20], Maxout Net-
work [6] and Deeply-supervised nets (DSN) [17].

In the MLP case, the model architecture is shown in Fig. 1 with an uniform distribution for hidden
variables of dimension 5. Note that since we do not need much randomness for the prediction task,
this low-dimensional hidden space is sufficient. In fact, we did not observe much difference with a
higher dimension (e.g., 20 or 50), which simply makes the training slower. The MLP has 3 hidden
layers with hidden unit number (500, 200, 100) with the ReLu activation function. A minibatch size
of 500 is adopted. In the CNN case, we use the same architecture as [18], where there are 32 feature
maps in the first two convolutional layers and 64 feature maps in the last three hidden layers. An
MLP of 500 hidden units is adopted at the end of convolutional layers. The ReLu activation function
is used in the convoluational layers and sigmoid function in the last layer. We do not pre-train our
model and a minibatch size of 500 is adopted as well. The total number of parameters in the network
is comparable with the competitors [18, 17, 20, 6].

In both settings, we use AdaM [13] to optimize parameters. After training, we simply draw a sample
from our model conditioned on the input image and choose the index of maximum element of y as
its prediction.Table 1 shows the results. We can see that CGMMN-CNN is competitive with various
state-of-the-art competitors that do not use data augumentation or multiple model voting (e.g., CM-
MVA). DSN benefits from using more supervision signal in every hidden layer and outperforms the
other competitors.
4.1.2 Results on SVHN dataset

Table 2: Error rates (%) on SVHN dataset
Model Error Rate
CVA+Pegasos [18] 25.3
CGMMN-CNN 3.13
CNN [25] 4.9
CMMVA [18] 3.09
Stochastic Pooling [33] 2.80
Network in Network [20] 2.47
Maxout Network [6] 2.35
DSN [17] 1.92

We then report the prediction performance on the Street
View House Numbers (SVHN) dataset. SVHN is a
large dataset consisting of color images of size 32× 32
in 10 classes. The dataset consists of 598, 388 train-
ing examples, 6, 000 validation examples and 26, 032
testing examples. The task is significantly harder than
classifying hand-written digits. Following [25, 18], we
preprocess the data by Local Contrast Normalization
(LCN). The architecture of out network is similar to that
in MNIST and we only use CNN as middle layers here. A minibatch size of 300 is used and the
other settings are the same as the MNIST experiments.

Table 2 shows the results. Through there is a gap between our CGMMN and some discriminative
deep networks such as DSN, our results are comparable with those of CMMVA, which is the state-
of-the-art DGM for prediction. CGMMN is compatible with various network architectures and we
are expected to get better results with more sophisticated structures.

4.2 Generative Performance
4.2.1 Results on MNIST dataset
We first test the generating performance on the widely used MNIST dataset. For generating task,
the conditional variables are the image labels. Since y takes a finite number of values, as mentioned
in Sec. 2.3, we estimate CY X and C−1

XX directly and combine them as the estimation of CY |X (See
Appendix A.2.2 for practical details).

The architecture is the same as before but exchanging the position of x and y. For the input layer,
besides the label information y as conditional variables (represented by a one-hot-spot vector of
dimension 10), we further draw a sample from a uniform distribution of dimension 20, which is
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(a) MNIST samples (b) Random CGMMN samples (c) Samples conditioned on label 0
Figure 2: Samples in (a) are from MNIST dataset; (b) are generated randomly from our CGMMN
network; (c) are generated randomly from CGMMN with conditions on label y = 0. Both (b) and
(c) are generated after running 500 epoches.

sufficiently large. Overall, the network is a 5-layer MLP with input dimension 30 and the middle
layer hidden unit number (64, 256, 256, 512), and the output layer is of dimension 28 × 28, which
represents the image in pixel. A minibatch of size 200 is adopted.

Fig. 2 shows some samples generated using our CGMMN, where in (b) the conditional variable y
is randomly chosen from the 10 possible values, and in (c) y is pre-fixed at class 0. As we can see,
when conditioned on label 0, almost all the generated samples are really in that class.

Figure 3: CGMMN samples and their nearest
neighbour in MNIST dataset. The first row is
our generated samples.

As in [19], we investigate whether the models learn
to merely copy the data. We visualize the nearest
neighbors in the MNIST dataset of several samples
generated by CGMMN in terms of Euclidean pixel-
wise distance [5] in Fig. 3. As we can see, by this
metric, the samples are not merely the copy.

Figure 4: Samples generated
by CGMMN+Autoencoder,
where the architecture follows
from [19].

As also discussed in [19], real-world data can be complicated and
high-dimensional and autoencoder can be good at representing
data in a code space that captures enough statistical information
to reliably reconstruct the data. For example, visual data, while
represented in a high dimension often exists on a low-dimensional
manifold. Thus it is beneficial to combine autoencoders with our
CGMMN models to generate more smooth images, in contrast
to Fig. 2 where there are some noise in the generated samples.
Precisely, we first learn an auto-encoder and produce code repre-
sentations of the training data, then freeze the auto-encoder weights
and learn a CGMMN to minimize the CMMD objective between
the generated codes using our CGMMN and the training data codes.
The generating results are shown in Fig. 4. Comparing to Fig. 2,
the samples are more clear.
4.2.2 Results on Yale Face dataset
We now show the generating results on the Extended Yale Face dataset [9], which contains 2, 414
grayscale images for 38 individuals of dimension 32 × 32. There are about 64 images per subject,
one per different facial expression or configuration. A smaller version of the dataset consists of 165
images of 15 individuals and the generating result can be found in Appendix A.4.2.

We adopt the same architecture as the first generating experiment for MNIST, which is a 5-layer MLP
with an input dimension of 50 (12 hidden variables and 38 dimensions for conditional variables, i.e.,
labels) and the middle layer hidden unit number (64, 256, 256, 512). A mini-batch size of 400 is
adopted. The other settings are the same as in the MNIST experiment. The overall generating
results are shown in Fig. 5, where we really generate diverse images for different individuals. Again,
as shown in Appendix A.4.1, the generated samples are not merely the copy of training data.

4.3 Distill Bayesian Models
Our final experiment is to apply CGMMN to distill knowledge from Bayesian models by learn-
ing a conditional distribution model for efficient prediction. Specifically, let θ denote the ran-
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dom variables. A Bayesian model first computes the posterior distribution given the training set
D = {(xi,yi)}Ni=1 as p(θ|D). In the prediction stage, given a new input x, a response sample y
is generated via probability p(y|x,D) =

∫
p(y|x,θ)p(θ|D)dθ. This procedure usually involves a

complicated integral thus is time consuming. [15] show that we can learn a relatively simple student
network to distill knowledge from the teacher network (i.e., the Bayesian model) and approximately
represent the predictive distribution p(y|x,D) of the teacher network.

Figure 5: CGMMN generated sam-
ples for Extended Yale Face Dataset.
Columns are conditioned on differ-
ent individuals.

Our CGMMN provides a new solution to build such a student
network for Bayesian dark knowledge. To learn CGMMN,
we need two datasets to estimate the CMMD objective — one
is generated by the teacher network and the other one is gen-
erated by CGMMN. The former sampled dataset serves as the
training dataset for our CGMMN and the latter one is gener-
ated during the training process of it. For high-dimensional
data, adopting the same strategy as [15], we sample “near"
the training data to generate the former dataset (i.e., perturb-
ing the inputs in the training set slightly before sending to the
teacher network to sample y).

Due to the space limitation, we test our model on a regres-
sion problem on the Boston housing dataset, which was also
used in [15, 10], while deferring the other results on a syn-
thetic dataset to Appendix A.3. The dataset consists of 506
data points where each data is of dimension 13. We first train
a PBP model [10], which is a scalable method for posterior
inference in Bayesian neural networks, as the teacher and then distill it using our CGMMN model.
We test whether the distilled model will degrade the prediction performance.

Table 3: Distilling results on Boston Housing
dataset, the error is measured by RMSE

PBP prediction Distilled by CGMMN
2.574± 0.089 2.580± 0.093

We distill the PBP model [10] using an
MLP network with three hidden layers and
(100, 50, 50) hidden units for middle layers. We
draw N = 3, 000 sample pairs {(xi, yi)}Ni=1
from the PBP network, where xi is the input
variables that serve as conditional variables in our model. For a fair comparison, xi is generated
by adding noise into training data to avoid fitting the testing data directly. We evaluate the predic-
tion performance on the original testing data by root mean square error (RMSE). Table 3 shows the
results. We can see that the distilled model does not harm the prediction performance. It is worth
mentioning that we are not restricted to distill knowledge from PBP. In fact, any Bayesian models
can be distilled using CGMMN.
5 Conclusions and Discussions
We present conditional generative moment-matching networks (CGMMN), which is a flexible frame-
work to represent conditional distributions. CGMMN largely extends the ability of previous DGM
based on maximum mean discrepancy (MMD) while keeping the training process simple as well,
which is done by back-propagation. Experimental results on various tasks, including predictive
modeling, data generation and Bayesian dark knowledge, demonstrate competitive performance.

Conditional modeling has been practiced as a natural step towards improving the discriminative
ability of a statistical model and/or relaxing unnecessary assumptions of the conditional variables.
For deep learning models, sum product networks (SPN) [24] provide exact inference on DGMs and
its conditional extension [4] improves the discriminative ability; and the recent work [21] presents
a conditional version of the generative adversarial networks (GAN) [5] with wider applicability.
Besides, the recent proposed conditional variational autoencoder [28] also works well on structured
prediction. Our work fills the research void to significantly improve the applicability of moment-
matching networks.
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A Appendix

A.1 Gradient Calculation

The CMMD objective can be optimized by gradient descent. Precisely, for any network parameter
w, we have that:

∂L̂2
CMMD

∂w
=

M∑
i=1

∂L̂2
CMMD

∂ys
i

∂ys
i

∂w
,

where the term
∂ys

i

∂w
can be calculated via back-propagation throughout the DNN and we use the

chain rule to compute

∂L̂2
CMMD

∂ys
i

= Tr

(
K̃−1

s KsK̃
−1
s

∂Ls

∂ys
i

)
− 2 · Tr

(
K̃−1

s KsdK̃
−1
d

∂Lds

∂ys
i

)
.

The derivative of the kernel gram matrix (i.e.,
∂Ls

∂ys
i

and
∂Lds

∂ys
i

) can be calculated directly as long

as the kernel function of output samples y is differentiable, e.g., Gaussian RBF kernel kσ(y,y′) =

exp{−∥y−y′∥2

2σ2 }.

A.2 Implementation details

Here we list some practical considerations to improve the performance of our models.

A.2.1 Minibatch Training
The CMMD objective and its gradient involve an inverse operation on matrix such as Kd + λI ,
which has O(N3) time complexity to compute. This is unbearable when the data size is large. Here,
we present a minibatch based training algorithm to learn the CGMMN models. Specifically, in each
training epoch, we first choose a small subset B ⊂ D and generate an equal number of samples
based on the observation x ∈ B (i.e., we provide each x ∈ B to the generator to get a new sample).
The overall algorithm is provided in Alg. 1. To further accelerate the algorithm, we can pre-compute
the inverse matrices K̃−1

d and K̃−1
s as cached data.

Essentially, the algorithm uses a single mini-batch to approximate the whole dataset. When the
dataset is “simple" such as MNIST, a mini-batch of size 200 is enough to represent the whole dataset,
however, for more complex datasets, larger mini-bath size is needed.

A.2.2 Finite Case for Conditional Variables
Recall the empirical estimator of conditional kernel embedding operator as mentioned in Sec. 2.3:
ĈY |X = Φ(K + λI)−1Υ⊤, where we need to compute the inverse of kernel gram matrix of the
condition variables. Since the domain of the variables is finite, the gram matrix is not invertible in
most cases. Although we can impose a λ to make the gram matrix invertible forcibly, this method
cannot get the best result in practice. Besides, the main effect of λ is serving as regularization to
avoid overfitting, not to make the gram matrix invertible [8].

Fortunately, the problem can be avoided by choosing special kernels and estimating the conditional
operator directly. More precisely, we use Kronechker Delta kernel on conditioned variables X , i.e.,
k(x, x′) = δ(x, x′). Suppose that x ∈ {1, ...,K}, then the corresponding feature map ϕ(x) is the
standard basis of ex ∈ RK . Recall that CY |X = CY XC−1

XX , instead of using the estimation before,
we now can estimate C−1

XX directly since it can be expressed as follows:

C−1
XX =

P (x = 1) ... 0
. . .

0 ... p(x = K)


−1

.

Obviously, the problem of inverse operator disappears.

10



A.2.3 Kernel Choosing

In general, we adopted Gaussian kernels as in GMMN. We also tried the strategy that combines
several Gaussian kernels with different bandwidths, but it didn’t make noticeable difference.

We tuned the bandwidth on the training set, and found that the bandwidth is appropriate if the
distance of two samples (i.e., ∥x− y∥2/σ2) is in range [0, 1].

A.3 Distill Knowledge from Bayesian Models

We evaluate our model on a toy dataset, following the setting in [15]. Specifically, the dataset is
generated by random sampling 20 one-dimensional inputs x uniformly in the interval [−4, 4]. For
each x, the response variable y is computed as y = x3 + ϵ, where ϵ ∼ N (0, 9).

We first fit the data using probabilistic backpropagation (PBP) [10], which is a scalable method for
posterior inference in Bayesian neural networks. Then we use CGMMN with a two-layer MLP archi-
tecture, which is of size (100, 50), to distill the knowledge for the PBP network (same architecture
as CGMMN) using 3, 000 samples that are generated from it.

(a) PBP prediction (b) Distilled prediction
Figure 6: Distilling results on toy dataset. (a) is the prediction given by PBP; (b) is the distilled
results using our model

Fig. 6 shows the distilled results. We can see that the distilled model is highly similar with the
original one, especially on the mean estimation.

A.4 More Results on Yale Face Dataset

A.4.1 Interpolation for Extended Yale Face samples

Figure 7: Linear interpolation for Extended Yale
Face Dataset. Columns are conditioned on differ-
ent individuals.

One of the interesting aspects of a deep gen-
erative model is that it is possible to directly
explore the data manifold. As well as to ver-
ify that our CGMMN will not merely copy the
training data, we perform linear interpolation
on the first dimension of the hidden variables
and set the other dimensions to be 0. Here we
use the same settings as in Sec. 4.2.2.

Fig. 7 shows the result. Each column is condi-
tioned on a different individual and we can find
that for each individual, as the value of the first
dimension varies, the generated samples have
the same varying trend in a continuous manner.
This result verifies that our model has a good la-
tent representation for the training data and will
not merely copy the training dataset.
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A.4.2 Results for smaller version of Yale Face Dataset

(a) Different individuals (b) Individual 15

Figure 8: CGMMN generated samples for Yale Face Dataset.
Columns in (a) are conditioned on different individuals while the
label is 15 in (b).

Here we show the generating
result for the small version of
Yale Face Dataset, which con-
sists of 165 figures of 15 in-
dividuals. We adopt the same
architecture as the generating
experiments for MNIST, which
is a 5-layer MLP with input
dimension 30 (15 hidden vari-
able and 15 dimension for con-
ditional variable) and the mid-
dle layer hidden unit number
(64, 256, 256, 512). Since the
dataset is small, we can run
our algorithm with the whole
dataset as a mini-batch. The
overall results are shown in
Fig. 8. We really generate a
wide diversity of different individuals. Obviously, our CGMMN will not merely copy the training
dataset since each figure of (b) in Fig. 8 is meaningful and unique.
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