Discrete Rényi Classifiers

Part of Advances in Neural Information Processing Systems 28 (NIPS 2015)

Bibtex Metadata Paper Reviews Supplemental


Meisam Razaviyayn, Farzan Farnia, David Tse


Consider the binary classification problem of predicting a target variable Y from a discrete feature vector X = (X1,...,Xd). When the probability distribution P(X,Y) is known, the optimal classifier, leading to the minimum misclassification rate, is given by the Maximum A-posteriori Probability (MAP) decision rule. However, in practice, estimating the complete joint distribution P(X,Y) is computationally and statistically impossible for large values of d. Therefore, an alternative approach is to first estimate some low order marginals of the joint probability distribution P(X,Y) and then design the classifier based on the estimated low order marginals. This approach is also helpful when the complete training data instances are not available due to privacy concerns. In this work, we consider the problem of designing the optimum classifier based on some estimated low order marginals of (X,Y). We prove that for a given set of marginals, the minimum Hirschfeld-Gebelein-R´enyi (HGR) correlation principle introduced in [1] leads to a randomized classification rule which is shown to have a misclassification rate no larger than twice the misclassification rate of the optimal classifier. Then, we show that under a separability condition, the proposed algorithm is equivalent to a randomized linear regression approach which naturally results in a robust feature selection method selecting a subset of features having the maximum worst case HGR correlation with the target variable. Our theoretical upper-bound is similar to the recent Discrete Chebyshev Classifier (DCC) approach [2], while the proposed algorithm has significant computational advantages since it only requires solving a least square optimization problem. Finally, we numerically compare our proposed algorithm with the DCC classifier and show that the proposed algorithm results in better misclassification rate over various UCI data repository datasets.