Estimating Jaccard Index with Missing Observations: A Matrix Calibration Approach

Part of Advances in Neural Information Processing Systems 28 (NIPS 2015)

Bibtex Metadata Paper Reviews


Wenye Li


The Jaccard index is a standard statistics for comparing the pairwise similarity between data samples. This paper investigates the problem of estimating a Jaccard index matrix when there are missing observations in data samples. Starting from a Jaccard index matrix approximated from the incomplete data, our method calibrates the matrix to meet the requirement of positive semi-definiteness and other constraints, through a simple alternating projection algorithm. Compared with conventional approaches that estimate the similarity matrix based on the imputed data, our method has a strong advantage in that the calibrated matrix is guaranteed to be closer to the unknown ground truth in the Frobenius norm than the un-calibrated matrix (except in special cases they are identical). We carried out a series of empirical experiments and the results confirmed our theoretical justification. The evaluation also reported significantly improved results in real learning tasks on benchmarked datasets.