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Abstract

This paper develops a general approach, rooted in statistical learning theory, to
learning an approximately revenue-maximizing auction from data. We introduce
t-level auctions to interpolate between simple auctions, such as welfare maximiza-
tion with reserve prices, and optimal auctions, thereby balancing the competing
demands of expressivity and simplicity. We prove that such auctions have small
representation error, in the sense that for every product distribution F over bid-
ders’ valuations, there exists a t-level auction with small t and expected revenue
close to optimal. We show that the set of t-level auctions has modest pseudo-
dimension (for polynomial t) and therefore leads to small learning error. One
consequence of our results is that, in arbitrary single-parameter settings, one can
learn a mechanism with expected revenue arbitrarily close to optimal from a poly-
nomial number of samples.

1 Introduction

In the traditional economic approach to identifying a revenue-maximizing auction, one first posits
a prior distribution over all unknown information, and then solves for the auction that maximizes
expected revenue with respect to this distribution. The first obstacle to making this approach oper-
ational is the difficulty of formulating an appropriate prior. The second obstacle is that, even if an
appropriate prior distribution is available, the corresponding optimal auction can be far too complex
and unintuitive for practical use. This motivates the goal of identifying auctions that are “simple”
and yet nearly-optimal in terms of expected revenue.

In this paper, we apply tools from learning theory to address both of these challenges. In our model,
we assume that bidders’ valuations (i.e., “willingness to pay”) are drawn from an unknown distri-
bution F . A learning algorithm is given i.i.d. samples from F . For example, these could represent
the outcomes of comparable transactions that were observed in the past. The learning algorithm
suggests an auction to use for future bidders, and its performance is measured by comparing the
expected revenue of its output auction to that earned by the optimal auction for the distribution F .

The possible outputs of the learning algorithm correspond to some set C of auctions. We view C as a
design parameter that can be selected by a seller, along with the learning algorithm. A central goal of
this work is to identify classes C that balance representation error (the amount of revenue sacrificed
by restricting to auctions in C) with learning error (the generalization error incurred by learning over
C from samples). That is, we seek a set C that is rich enough to contain an auction that closely
approximates an optimal auction (whatever F might be), yet simple enough that the best auction
in C can be learned from a small amount of data. Learning theory offers tools both for rigorously
defining the “simplicity” of a set C of auctions, through well-known complexity measures such as the
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pseudo-dimension, and for quantifying the amount of data necessary to identify the approximately
best auction from C. Our goal of learning a near-optimal auction also requires understanding the
representation error of different classes C; this task is problem-specific, and we develop the necessary
arguments in this paper.

1.1 Our Contributions

The primary contributions of this paper are the following. First, we show that well-known concepts
from statistical learning theory can be directly applied to reason about learning from data an approx-
imately revenue-maximizing auction. Precisely, for a set C of auctions and an arbitrary unknown
distribution F over valuations in [1, H], O(

H2

✏2 dC log H
✏ ) samples from F are enough to learn (up to

a 1 � ✏ factor) the best auction in C, where dC denotes the pseudo-dimension of the set C (defined
in Section 2). Second, we introduce the class of t-level auctions, to interpolate smoothly between
simple auctions, such as welfare maximization subject to individualized reserve prices (when t = 1),
and the complex auctions that can arise as optimal auctions (as t ! 1). Third, we prove that in
quite general auction settings with n bidders, the pseudo-dimension of the set of t-level auctions is
O(nt log nt). Fourth, we quantify the number t of levels required for the set of t-level auctions to
have low representation error, with respect to the optimal auctions that arise from arbitrary prod-
uct distributions F . For example, for single-item auctions and several generalizations thereof, if
t = ⌦(

H
✏ ), then for every product distribution F there exists a t-level auction with expected revenue

at least 1� ✏ times that of the optimal auction for F .

In the above sense, the “t” in t-level auctions is a tunable “sweet spot”, allowing a designer to bal-
ance the competing demands of expressivity (to achieve near-optimality) and simplicity (to achieve
learnability). For example, given a fixed amount of past data, our results indicate how much auction
complexity (in the form of the number of levels t) one can employ without risking overfitting the
auction to the data.

Alternatively, given a target approximation factor 1 � ✏, our results give sufficient conditions on t
and consequently on the number of samples needed to achieve this approximation factor. The result-
ing sample complexity upper bound has polynomial dependence on H , ✏�1, and the number n of
bidders. Known results [1, 8] imply that any method of learning a (1� ✏)-approximate auction from
samples must have sample complexity with polynomial dependence on all three of these parameters,
even for single-item auctions.

1.2 Related Work

The present work shares much of its spirit and high-level goals with Balcan et al. [4], who proposed
applying statistical learning theory to the design of near-optimal auctions. The first-order difference
between the two works is that our work assumes bidders’ valuations are drawn from an unknown
distribution, while Balcan et al. [4] study the more demanding “prior-free” setting. Since no auction
can achieve near-optimal revenue ex-post, Balcan et al. [4] define their revenue benchmark with
respect to a set G of auctions on each input v as the maximum revenue obtained by any auction
of G on v. The idea of learning from samples enters the work of Balcan et al. [4] through the
internal randomness of their partitioning of bidders, rather than through an exogenous distribution
over inputs (as in this work). Both our work and theirs requires polynomial dependence on H, 1

✏ :
ours in terms of a necessary number of samples, and theirs in terms of a necessary number of bidders;
as well as a measure of the complexity of the class G (in our case, the pseudo-dimension, and in
theirs, an analagous measure). The primary improvement of our work over of the results in Balcan
et al. [4] is that our results apply for single item-auctions, matroid feasibility, and arbitrary single-
parameter settings (see Section 2 for definitions); while their results apply only to single-parameter
settings of unlimited supply.1 We also view as a feature the fact that our sample complexity upper
bounds can be deduced directly from well-known results in learning theory — we can focus instead
on the non-trivial and problem-specific work of bounding the pseudo-dimension and representation
error of well-chosen auction classes.

Elkind [12] also considers a similar model to ours, but only for the special case of single-item auc-
tions. While her proposed auction format is similar to ours, our results cover the far more general

1See Balcan et al. [3] for an extension to the case of a large finite supply.
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case of arbitrary single-parameter settings and and non-finite support distributions; our sample com-
plexity bounds are also better even in the case of a single-item auction (linear rather than quadratic
dependence on the number of bidders). On the other hand, the learning algorithm in [12] (for single-
item auctions) is computationally efficient, while ours is not.

Cole and Roughgarden [8] study single-item auctions with n bidders with valuations drawn from
independent (not necessarily identical) “regular” distributions (see Section 2), and prove upper and
lower bounds (polynomial in n and ✏�1) on the sample complexity of learning a (1�✏)-approximate
auction. While the formalism in their work is inspired by learning theory, no formal connections
are offered; in particular, both their upper and lower bounds were proved from scratch. Our positive
results include single-item auctions as a very special case and, for bounded or MHR valuations, our
sample complexity upper bounds are much better than those in Cole and Roughgarden [8].

Huang et al. [15] consider learning the optimal price from samples when there is a single buyer
and a single seller; this problem was also studied implicitly in [10]. Our general positive results
obviously cover the bounded-valuation and MHR settings in [15], though the specialized analysis in
[15] yields better (indeed, almost optimal) sample complexity bounds, as a function of ✏�1 and/or
H .

Medina and Mohri [17] show how to use a combination of the pseudo-dimension and Rademacher
complexity to measure the sample complexity of selecting a single reserve price for the VCG mech-
anism to optimize revenue. In our notation, this corresponds to analyzing a single set C of auctions
(VCG with a reserve). Medina and Mohri [17] do not address the expressivity vs. simplicity trade-off
that is central to this paper.

Dughmi et al. [11] also study the sample complexity of learning good auctions, but their main results
are negative (exponential sample complexity), for the difficult scenario of multi-parameter settings.
(All settings in this paper are single-parameter.)

Our work on t-level auctions also contributes to the literature on simple approximately revenue-
maximizing auctions (e.g., [6, 14, 7, 9, 21, 24, 2]). Here, one takes the perspective of a seller who
knows the valuation distribution F but is bound by a “simplicity constraint” on the auction deployed,
thereby ruling out the optimal auction. Our results that bound the representation error of t-level auc-
tions (Theorems 3.4, 4.1, 5.4, and 6.2) can be interpreted as a principled way to trade off the simplic-
ity of an auction with its approximation guarantee. While previous work in this literature generally
left the term “simple” safely undefined, this paper effectively proposes the pseudo-dimension of an
auction class as a rigorous and quantifiable simplicity measure.

2 Preliminaries

This section reviews useful terminology and notation standard in Bayesian auction design and learn-
ing theory.

Bayesian Auction Design We consider single-parameter settings with n bidders. This means that
each bidder has a single unknown parameter, its valuation or willingness to pay for “winning.” (Ev-
ery bidder has value 0 for losing.) A setting is specified by a collection X of subsets of {1, 2, . . . , n};
each such subset represent a collection of bidders that can simultaneously “win.” For example, in a
setting with k copies of an item, where no bidder wants more than one copy, X would be all subsets
of {1, 2, . . . , n} of cardinality at most k.

A generalization of this case, studied in the supplementary materials (Section 5), is matroid settings.
These satisfy: (i) whenever X 2 X and Y ✓ X , Y 2 X ; and (ii) for two sets |I

1

| < |I
2

|, I
1

, I
2

2 X ,
there is always an augmenting element i

2

2 I
2

\ I
1

such that I
1

[ {i
2

} 2 X , X . The supplementary
materials (Section 6) also consider arbitrary single-parameter settings, where the only assumption is
that ; 2 X . To ease comprehension, we often illustrate our main ideas using single-item auctions
(where X is the singletons and the empty set).

We assume bidders’ valuations are drawn from the continuous joint cumulative distribution F . Ex-
cept in the extension in Section 4, we assume that the support of F is limited to [1, H]

n. As
in most of optimal auction theory [18], we usually assume that F is a product distribution, with
F = F

1

⇥ F
2

⇥ . . . ⇥ Fn and each vi ⇠ Fi drawn independently but not identically. The virtual
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value of bidder i is denoted by �i(vi) = vi� 1�Fi(vi)
fi(vi)

. A distribution satisfies the monotone-hazard
rate (MHR) condition if fi(vi)/(1 � Fi(vi)) is nondecreasing; intuitively, if its tails are no heavier
than those of an exponential distribution. In a fundamental paper, [18] proved that when every vir-
tual valuation function is nondecreasing (the “regular” case), the auction that maximizes expected
revenue for n Bayesian bidders chooses winners in a way which maximizes the sum of the virtual
values of the winners. This auction is known as Myerson’s auction, which we refer to as M. The
result can be extended to the general, “non-regular” case by replacing the virtual valuation functions
by “ironed virtual valuation functions.” The details are well-understood but technical; see Myerson
[18] and Hartline [13] for details.

Sample Complexity, VC Dimension, and the Pseudo-Dimension This section reviews several
well-known definitions from learning theory. Suppose there is some domain Q, and let c be some
unknown target function c : Q ! {0, 1}. Let D be an unknown distribution over Q. We wish to
understand how many labeled samples (x, c(x)), x ⇠ D, are necessary and sufficient to be able to
output a ĉ which agrees with c almost everywhere with respect to D. The distribution-independent
sample complexity of learning c depends fundamentally on the “complexity” of the set of binary
functions C from which we are choosing ĉ. We define the relevant complexity measure next.

Let S be a set of m samples from Q. The set S is said to be shattered by C if, for every subset
T ✓ S, there is some cT 2 C such that cT (x) = 1 if x 2 T and cT (y) = 0 if y /2 T . That is, ranging
over all c 2 C induces all 2|S| possible projections onto S. The VC dimension of C, denoted VC(C),
is the size of the largest set S that can be shattered by C.

Let errS(ĉ) = (

P
x2S |c(x) � ĉ(x)|)/|S| denote the empirical error of ĉ on S, and let err(ĉ) =

Ex⇠D[|c(x)� ĉ(x)|] denote the true expected error of ĉ with respect to D. A key result from learning
theory [23] is: for every distribution D, a sample S of size ⌦(✏�2

(VC(C) + ln

1

� )) is sufficient to
guarantee that errS(ĉ) 2 [err(ĉ) � ✏, err(ĉ) + ✏] for every ĉ 2 C with probability 1 � �. In this
case, the error on the sample is close to the true error, simultaneously for every hypothesis in C. In
particular, choosing the hypothesis with the minimum sample error minimizes the true error, up to
2✏. We say C is (✏, �)-uniformly learnable with sample complexity m if, given a sample S of size
m, with probability 1� �, for all c 2 C, |errS(c)� err(c)| < ✏: thus, any class C is (✏, �)-uniformly
learnable with m = ⇥

�
1

✏2

�
VC(C) + ln

1

�

��
samples. Conversely, for every learning algorithm A

that uses fewer than VC(C)
✏ samples, there exists a distribution D0 and a constant q such that, with

probability at least q, A outputs a hypothesis ĉ0 2 C with err(ĉ0) > err(ĉ) + ✏
2

for some ĉ 2 C. That
is, the true error of the output hypothesis is more than ✏

2

larger the best hypothesis in the class.

To learn real-valued functions, we need a generalization of VC dimension (which concerns binary
functions). The pseudo-dimension [19] does exactly this.2 Formally, let c : Q ! [0, H] be a real-
valued function over Q, and C the class we are learning over. Let S be a sample drawn from D, |S| =
m, labeled according to c. Both the empirical and true error of a hypothesis ĉ are defined as before,
though |ĉ(x) � c(x)| can now take on values in [0, H] rather than in {0, 1}. Let (r1, . . . , rm) 2
[0, H]

m be a set of targets for S. We say (r1, . . . , rm) witnesses the shattering of S by C if, for each
T ✓ S, there exists some cT 2 C such that fT (xi

) � ri for all xi 2 T and cT (xi
) < ri for all

xi /2 T . If there exists some ~r witnessing the shattering of S, we say S is shatterable by C. The
pseudo-dimension of C, denoted dC , is the size of the largest set S which is shatterable by C. The
sample complexity upper bounds of this paper are derived from the following theorem, which states
that the distribution-independent sample complexity of learning over a class of real-valued functions
C is governed by the class’s pseudo-dimension.

Theorem 2.1 [E.g. [1]] Suppose C is a class of real-valued functions with range in [0, H] and
pseudo-dimension dC . For every ✏ > 0, � 2 [0, 1], the sample complexity of (✏, �)-uniformly learning
f with respect to C is m = O

⇣�
H
✏

�
2

�
dC ln

�
H
✏

�
+ ln

�
1

�

��⌘
.

Moreover, the guarantee in Theorem 2.1 is realized by the learning algorithm that simply outputs
the function c 2 C with the smallest empirical error on the sample.

2The fat-shattering dimension is a weaker condition that is also sufficient for sample complexity bounds.
All of our arguments give the same upper bounds on the pseudo-dimension and the fat-shattering dimension of
various auction classes, so we present the stronger statements.
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Applying Pseudo-Dimension to Auction Classes For the remainder of this paper, we consider
classes of truthful auctions C.3 When we discuss some auction c 2 C, we treat c : [0, H]

n ! R
as the function that maps (truthful) bid tuples to the revenue achieved on them by the auction c.
Then, rather than minimizing error, we aim to maximize revenue. In our setting, the guarantee of
Theorem 2.1 directly implies that, with probability at least 1� � (over the m samples), the output of
the empirical revenue maximization learning algorithm — which returns the auction c 2 C with the
highest average revenue on the samples — chooses an auction with expected revenue (over the true
underlying distribution F ) that is within an additive ✏ of the maximum possible.

3 Single-Item Auctions

To illustrate out ideas, we first focus on single-item auctions. The results of this section are general-
ized significantly in the supplementary (see Sections 5 and 6).

Section 3.1 defines the class of t-level single-item auctions, gives an example, and interprets the auc-
tions as approximations to virtual welfare maximizers. Section 3.2 proves that the pseudo-dimension
of the set of such auctions is O(nt log nt), which by Theorem 2.1 implies a sample-complexity up-
per bound. Section 3.3 proves that taking t = ⌦(

H
✏ ) yields low representation error.

3.1 t-Level Auctions: The Single-Item Case

We now introduce t-level auctions, or Ct for short. Intuitively, one can think of each bidder as
facing one of t possible prices; the price they face depends upon the values of the other bidders.
Consider, for each bidder i, t numbers 0  `i,0  `i,1  . . .  `i,t�1

. We refer to these t numbers
as thresholds. This set of tn numbers defines a t-level auction with the following allocation rule.
Consider a valuation tuple v:

1. For each bidder i, let ti(vi) denote the index ⌧ of the largest threshold `i,⌧ that lower bounds
vi (or -1 if vi < `i,0). We call ti(vi) the level of bidder i.

2. Sort the bidders from highest level to lowest level and, within a level, use a fixed lexico-
graphical tie-breaking ordering � to pick the winner.4

3. Award the item to the first bidder in this sorted order (unless ti = �1 for every bidder i, in
which case there is no sale).

The payment rule is the unique one that renders truthful bidding a dominant strategy and charges 0
to losing bidders — the winning bidder pays the lowest bid at which she would continue to win. It is
important for us to understand this payment rule in detail; there are three interesting cases. Suppose
bidder i is the winner. In the first case, i is the only bidder who might be allocated the item (other
bidders have level -1), in which case her bid must be at least her lowest threshold. In the second
case, there are multiple bidders at her level, so she must bid high enough to be at her level (and,
since ties are broken lexicographically, this is her threshold to win). In the final case, she need not
compete at her level: she can choose to either pay one level above her competition (in which case
her position in the tie-breaking ordering does not matter) or she can bid at the same level as her
highest-level competitors (in which case she only wins if she dominates all of those bidders at the
next-highest level according to �). Formally, the payment p of the winner i (if any) is as follows.
Let ⌧̄ denote the highest level ⌧ such that there at least two bidders at or above level ⌧ , and I be the
set of bidders other than i whose level is at least ⌧̄ .

Monop If ⌧̄ = �1, then pi = `i,0 (she is the only potential winner, but must have level � 0 to win).
Mult If ti(vi) = ⌧̄ then pi = `i,⌧̄ (she needs to be at level ⌧̄ ).

3An auction is truthful if truthful bidding is a dominant strategy for every bidder. That is: for every bidder i,
and all possible bids by the other bidders, i maximizes its expected utility (value minus price paid) by bidding
its true value. In the single-parameter settings that we study, the expected revenue of the optimal non-truthful
auction (measured at a Bayes-Nash equilibrium with respect to the prior distribution) is no larger than that of
the optimal truthful auction.

4When the valuation distributions are regular, this tie-breaking can be done by value, or randomly; when
it is done by value, this equates to a generalization of VCG with nonanonymous reserves (and is IC and has
identical representation error as this analysis when bidders are regular).
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Unique If ti(vi) > ⌧̄ , if i � i0 for all i0 2 I , she pays pi = `i,⌧̄ , otherwise she pays pi = `i,⌧̄+1

(she either needs to be at level ⌧̄ + 1, in which case her position in � does not matter, or at
level ⌧̄ , in which case she would need to be the highest according to �).

We now describle a particular t-level auction, and demonstrate each case of the payment rule.

Example 3.1 Consider the following 4-level auction for bidders a, b, c. Let `a,· = [2, 4, 6, 8], `b,· =
[1.5, 5, 9, 10], and `c,· = [1.7, 3.9, 6, 7]. For example, if bidder a bids less than 2 she is at level �1,
a bid in [2, 4) puts her at level 0, a bid in [4, 6) at level 1, a bid in [6, 8) at level 2, and a bid of at
least 8 at level 3. Let a � b � c.

Monop If va = 3, vb < 1.5, vc < 1.7, then b, c are at level �1 (to which the item is never allocated).
So, a wins and pays 2, the minimum she needs to bid to be at level 0.

Mult If va � 8, vb � 10, vc < 7, then a and b are both at level 3, and a � b, so a will win and
pays 8 (the minimum she needs to bid to be at level 3).

Unique If va � 8, vb 2 [5, 9], vc 2 [3.9, 6], then a is at level 3, and b and c are at level 1. Since
a � b and a � c, a need only pay 4 (enough to be at level 1). If, on the other hand,
va 2 [4, 6], vb = [5, 9] and vc � 6, c has level at least 2 (while a, b have level 1), but c
needs to pay 6 since a, b � c.

Remark 3.2 (Connection to virtual valuation functions) t-level auctions are naturally inter-
preted as discrete approximations to virtual welfare maximizers, and our representation error bound
in Theorem 3.4 makes this precise. Each level corresponds to a constraint of the form “If any bidder
has level at least ⌧ , do not sell to any bidder with level less than ⌧ .” We can interpret the `i,⌧ ’s
(with fixed ⌧ , ranging over bidders i) as the bidder values that map to some common virtual value.
For example, 1-level auctions treat all values below the single threshold as having negative virtual
value, and above the threshold uses values as proxies for virtual values. 2-level auctions use the
second threshold to the refine virtual value estimates, and so on. With this interpretation, it is intu-
itively clear that as t ! 1, it is possible to estimate bidders’ virtual valuation functions and thus
approximate Myerson’s optimal auction to arbitrary accuracy.

3.2 The Pseudo-Dimension of t-Level Auctions

This section shows that the pseudo-dimension of the class of t-level single-item auctions with n
bidders is O(nt log nt). Combining this with Theorem 2.1 immediately yields sample complexity
bounds (parameterized by t) for learning the best such auction from samples.

Theorem 3.3 For a fixed tie-breaking order, the set of n-bidder single-item t-level auctions has
pseudo-dimension O (nt log(nt)).

Proof: Recall from Section 2 that we need to upper bound the size of every set that is shatterable
using t-level auctions. Fix a set of samples S =

�
v1, . . . ,vm

�
of size m and a potential witness

R =

�
r1, . . . , rm

�
. Each auction c induces a binary labeling of the samples vj of S (whether c’s

revenue on vj is at least rj or strictly less than rj). The set S is shattered with witness R if and only
if the number of distinct labelings of S given by any t-level auction is 2m.

We upper-bound the number of distinct labelings of S given by t-level auctions (for some fixed
potential witness R), counting the labelings in two stages. Note that S involves nm numbers — one
value vji for each bidder for each sample, and a t-level auction involves nt numbers — t thresholds
`i,⌧ for each bidder. Call two t-level auctions with thresholds {`i,⌧} and {ˆ`i,⌧} equivalent if

1. The relative order of the `i,⌧ ’s agrees with that of the ˆ`i,⌧ ’s, in that both induce the same
permutation of {1, 2, . . . , n}⇥ {0, 1, . . . , t� 1}.

2. merging the sorted list of the vji ’s with the sorted list of the `i,⌧ ’s yields the same partition
of the vji ’s as does merging it with the sorted list of the ˆ`i,⌧ ’s.

Note that this is an equivalence relation. If two t-level auctions are equivalent, every comparison
between a valuation and a threshold or two valuations is resolved identically by those auctions.
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Using the defining properties of equivalence, a crude upper bound on the number of equivalence
classes is

(nt)! ·
✓
nm+ nt

nt

◆
 (nm+ nt)2nt. (1)

We now upper-bound the number of distinct labelings of S that can be generated by t-level auctions
in a single equivalence class C. First, as all comparisons between two numbers (valuations or
thresholds) are resolved identically for all auctions in C, each bidder i in each sample vj of S
is assigned the same level (across auctions in C), and the winner (if any) in each sample vj is
constant across all of C. By the same reasoning, the identity of the parameter that gives the winner’s
payment (some `i,⌧ ) is uniquely determined by pairwise comparisons (recall Section 3.1) and hence
is common across all auctions in C. The payments `i,⌧ , however, can vary across auctions in the
equivalence class.

For a bidder i and level ⌧ 2 {0, 1, 2, . . . , t�1}, let Si,⌧✓S be the subset of samples in which bidder i
wins and pays `i,⌧ . The revenue obtained by each auction in C on a sample of Si,⌧ is simply `i,⌧
(and independent of all other parameters of the auction). Thus, ranging over all t-level auctions in
C generates at most |Si,⌧ | distinct binary labelings of Si,⌧ — the possible subsets of Si,⌧ for which
an auction meets the corresponding target rj form a nested collection.

Summarizing, within the equivalence class C of t-level auctions, varying a parameter `i,⌧ generates
at most |Si,⌧ | different labelings of the samples Si,⌧ and has no effect on the other samples. Since
the subsets {Si,⌧}i,⌧ are disjoint, varying all of the `i,⌧ ’s (i.e., ranging over C) generates at most

nY

i=1

t�1Y

⌧=0

|Si,⌧ |  mnt (2)

distinct labelings of S.

Combining (1) and (2), the class of all t-level auctions produces at most (nm + nt)3nt distinct
labelings of S. Since shattering S requires 2

m distinct labelings, we conclude that 2m  (nm +

nt)3nt, implying m = O(nt log nt) as claimed. ⌅

3.3 The Representation Error of Single-Item t-Level Auctions

In this section, we show that for every bounded product distribution, there exists a t-level auction
with expected revenue close to that of the optimal single-item auction when bidders are independent
and bounded. The analsysis “rounds” an optimal auction to a t-level auction without losing much
expected revenue. This is done using thresholds to approximate each bidder’s virtual value: the
lowest threshold at the bidder’s monopoly reserve price, the next 1

✏ thresholds at the values at which
bidder i’s virtual value surpasses multiples of ✏, and the remaining thresholds at those values where
bidder i’s virtual value reaches powers of 1 + ✏. Theorem 3.4 formalizes this intuition.

Theorem 3.4 Suppose F is distribution over [1, H]

n. If t = ⌦

�
1

✏ + log

1+✏ H
�
, Ct contains a

single-item auction with expected revenue at least 1� ✏ times the optimal expected revenue.

Theorem 3.4 follows immediately from the following lemma, with ↵ = � = 1. We prove this more
general result for later use.

Lemma 3.5 Consider n bidders with valuations in [0, H] and with P[maxi vi > ↵] � �. Then,
Ct contains a single-item auction with expected revenue at least a 1 � ✏ times that of an optimal
auction, for t = ⇥

⇣
1

�✏ + log

1+✏
H
↵

⌘
.

Proof: Consider a fixed bidder i. We define t thresholds for i, bucketing i by her virtual value,
and prove that the t-level auction A using these thresholds for each bidder closely approximates the
expected revenue of the optimal auction M. Let ✏0 be a parameter defined later.
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Set `i,0 = ��1

i (0), bidder i’s monopoly reserve.5 For ⌧ 2 [1, d 1

�✏0 e], let `i,⌧ = ��1

i (⌧ · ↵�✏0)
(�i 2 [0,↵]). For ⌧ 2 [d 1

�✏0 e, d
1

�✏0 e+ dlog
1+

✏
2

H
↵ e], let `i,⌧ = ��1

i (↵(1 + ✏
2

)

⌧�d 1
�✏0 e

) (�i > ↵).

Consider a fixed valuation profile v. Let i⇤ denote the winner according to A, and i
0

the winner
according to the optimal auction M. If there is no winner, we interpret �i⇤(vi⇤) and �i0 (vi0 ) as 0.
Recall that M always awards the item to a bidder with the highest positive virtual value (or no one,
if no such bidders exist). The definition of the thresholds immediately implies the following.

1. A only allocates to non-negative ironed virtual-valued bidders.
2. If there is no tie (that is, there is a unique bidder at the highest level), then i

0
= i⇤.

3. When there is a tie at level ⌧ , the virtual value of the winner of A is close to that of M:
If ⌧ 2 [0, d 1

�✏0 e] then �i0 (vi0 )� �i⇤(vi⇤)  ↵�✏0;

if ⌧ 2 [d 1

�✏0 e, d
1

�✏0 e+ dlog
1+

✏
2

H
↵ e], �i⇤ (vi⇤ )

�
i
0 (v

i
0 )

� 1� ✏
2

.

These facts imply that
Ev[Rev(A)] = Ev[�i⇤(vi⇤)] � (1� ✏

2

) ·Ev[�i0 (vi0 )]�↵�✏0 = (1� ✏
2

) ·Ev[Rev(M)]�↵�✏0. (3)
are equal. The first and final equality follow from A and M’s allocations depending on ironed
virtual values, not on the values themselves, thus, the ironed virtual values are equal in expectation
to the unironed virtual values, and thus the revenue of the mechanisms (see [13], Chapter 3.5 for
discussion).

As P[maxi vi > ↵] � �, it must be that E[Rev(M)] � ↵� (a posted price of ↵ will achieve this
revenue). Combining this with (3), and setting ✏0 = ✏

2

implies Ev[Rev(A)] � (1� ✏)Ev[Rev(M)].
⌅

Combining Theorems 2.1 and 3.4 yields the following Corollary 3.6.

Corollary 3.6 Let F be a product distribution with all bidders’ valuations in [1, H]. Assume that
t = ⇥

�
1

✏ + log

1+✏ H
�

and m = O
⇣�

H
✏

�
2

�
nt log (nt) log H

✏ + log

1

�

�⌘
=

˜O
⇣

H2n
✏3

⌘
. Then with

probability at least 1 � �, the single-item empirical revenue maximizer of Ct on a set of m samples
from F has expected revenue at least 1� ✏ times that of the optimal auction.

Open Questions

There are some significant opportunities for follow-up research. First, there is much to do on the
design of computationally efficient (in addition to sample-efficient) algorithms for learning a near-
optimal auction. The present work focuses on sample complexity, and our learning algorithms are
generally not computationally efficient.6 The general research agenda here is to identify auction
classes C for various settings such that:

1. C has low representation error;
2. C has small pseudo-dimension;
3. There is a polynomial-time algorithm to find an approximately revenue-maximizing auction

from C on a given set of samples.7

There are also interesting open questions on the statistical side, notably for multi-parameter prob-
lems. While the negative result in [11] rules out a universally good upper bound on the sample
complexity of learning a near-optimal mechanism in multi-parameter settings, we suspect that posi-
tive results are possible for several interesting special cases.

5Recall from Section 2 that �i denotes the virtual valuation function of bidder i. (From here on, we always
mean the ironed version of virtual values.) It is convenient to assume that these functions are strictly increasing
(not just nondecreasing); this can be enforced at the cost of losing an arbitrarily small amount of revenue.

6There is a clear parallel with computational learning theory [22]: while the information-theoretic foun-
dations of classification (VC dimension, etc. [23]) have been long understood, this research area strives to
understand which low-dimensional concept classes are learnable in polynomial time.

7The sample-complexity and performance bounds implied by pseudo-dimension analysis, as in Theo-
rem 2.1, hold with such an approximation algorithm, with the algorithm’s approximation factor carrying
through to the learning algorithm’s guarantee. See also [4, 11].
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