
Spherical Random Features for Polynomial Kernels

Jeffrey Pennington Felix X. Yu Sanjiv Kumar

Google Research
{jpennin, felixyu, sanjivk}@google.com

Abstract

Compact explicit feature maps provide a practical framework to scale kernel meth-
ods to large-scale learning, but deriving such maps for many types of kernels
remains a challenging open problem. Among the commonly used kernels for non-
linear classification are polynomial kernels, for which low approximation error
has thus far necessitated explicit feature maps of large dimensionality, especially
for higher-order polynomials. Meanwhile, because polynomial kernels are un-
bounded, they are frequently applied to data that has been normalized to unit `2
norm. The question we address in this work is: if we know a priori that data is
normalized, can we devise a more compact map? We show that a putative affir-
mative answer to this question based on Random Fourier Features is impossible
in this setting, and introduce a new approximation paradigm, Spherical Random
Fourier (SRF) features, which circumvents these issues and delivers a compact
approximation to polynomial kernels for data on the unit sphere. Compared to
prior work, SRF features are less rank-deficient, more compact, and achieve bet-
ter kernel approximation, especially for higher-order polynomials. The resulting
predictions have lower variance and typically yield better classification accuracy.

1 Introduction

Kernel methods such as nonlinear support vector machines (SVMs) [1] provide a powerful frame-
work for nonlinear learning, but they often come with significant computational cost. Their training
complexity varies from O(n2) to O(n3), which becomes prohibitive when the number of training
examples, n, grows to the millions. Testing also tends to be slow, with an O(nd) complexity for
d-dimensional vectors.

Explicit kernel maps provide a practical alternative for large-scale applications since they rely on
properties of linear methods, which can be trained in O(n) time [2, 3, 4] and applied in O(d) time,
independent of n. The idea is to determine an explicit nonlinear map Z(·) : Rd → RD such
that K(x,y) ≈ 〈Z(x), Z(y)〉, and to perform linear learning in the resulting feature space. This
procedure can utilize the fast training and testing of linear methods while still preserving much of
the expressive power of the nonlinear methods.

Following this reasoning, Rahimi and Recht [5] proposed a procedure for generating such a non-
linear map, derived from the Monte Carlo integration of an inverse Fourier transform arising from
Bochner’s theorem [6]. Explicit nonlinear random feature maps have also been proposed for other
types of kernels, such as intersection kernels [7], generalized RBF kernels [8], skewed multiplicative
histogram kernels [9], additive kernels [10], and semigroup kernels [11].

Another type of kernel that is used widely in many application domains is the polynomial kernel
[12, 13], defined by K(x,y) = (〈x,y〉+ q)

p, where q is the bias and p is the degree of the polyno-
mial. Approximating polynomial kernels with explicit nonlinear maps is a challenging problem, but
substantial progress has been made in this area recently. Kar and Karnick [14] catalyzed this line of
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research by introducing the Random Maclaurin (RM) technique, which approximates 〈x,y〉p by the
product

∏p
i=1〈wi,x〉

∏p
i=1〈wi,y〉, where wi is a vector consisting of Bernoulli random variables.

Another technique, Tensor Sketch [15], offers further improvement by instead writing 〈x,y〉p as
〈x(p),y(p)〉, where x(p) is the p-level tensor product of x, and then estimating this tensor product
with a convolution of count sketches.

Although these methods are applicable to any real-valued input data, in practice polynomial kernels
are commonly used on `2-normalized input data [15] because they are otherwise unbounded. More-
over, much of the theoretical analysis developed in former work is based on normalized vectors [16],
and it has been shown that utilizing norm information improves the estimates of random projections
[17]. Therefore, a natural question to ask is, if we know a priori that data is `2-normalized, can we
come up with a better nonlinear map?1 Answering this question is the main focus of this work and
will lead us to the development of a new form of kernel approximation.

Restricting the input domain to the unit sphere implies that 〈x,y〉 = 2−2||x−y||2 , ∀ x, y ∈ Sd−1,
so that a polynomial kernel can be viewed as a shift-invariant kernel in this restricted domain. As
such, one might expect the random feature maps developed in [5] to be applicable in this case. Un-
fortunately, this expectation turns out to be false because Bochner’s theorem cannot be applied in
this setting. The obstruction is an inherent limitation of polynomial kernels and is examined exten-
sively in Section 3.1. In Section 3.2, we propose an alternative formulation that overcomes these
limitations by approximating the Fourier transform of the kernel function as the positive projec-
tion of an indefinite combination of Gaussians. We provide a bound on the approximation error
of these Spherical Random Fourier (SRF) features in Section 4, and study their performance on a
variety of standard datasets including a large-scale experiment on ImageNet in Section 5 and in the
Supplementary Material.

Compared to prior work, the SRF method is able to achieve lower kernel approximation error with
compact nonlinear maps, especially for higher-order polynomials. The variance in kernel approxi-
mation error is much lower than that of existing techniques, leading to more stable predictions. In
addition, it does not suffer from the rank deficiency problem seen in other methods. Before describ-
ing the SRF method in detail, we begin by reviewing the method of Random Fourier Features.

2 Background: Random Fourier Features

In [5], a method for the explicit construction of compact nonlinear randomized feature maps was
presented. The technique relies on two important properties of the kernel: i) The kernel is shift-
invariant, i.e. K(x,y) = K(z) where z = x−y and ii) The functionK(z) is positive definite on Rd.
Property (ii) guarantees that the Fourier transform of K(z), k(w) = 1

(2π)d/2

∫
ddzK(z) ei〈w,z〉 ,

admits an interpretation as a probability distribution. This fact follows from Bochner’s celebrated
characterization of positive definite functions,

Theorem 1. (Bochner [6]) A function K ∈ C(Rd) is positive definite on Rd if and only if it is the
Fourier transform of a finite non-negative Borel measure on Rd.

A consequence of Bochner’s theorem is that the inverse Fourier transform of k(w) can be interpreted
as the computation of an expectation, i.e.,

K(z) =
1

(2π)d/2

∫
ddw k(w) e−i〈w,z〉

= Ew∼p(w) e
−i〈w,x−y〉 (1)

= 2E w∼p(w)
b∼U(0,2π)

[
cos(〈w,x〉+ b) cos(〈w,y〉+ b)

]
,

where p(w) = (2π)−d/2k(w) and U(0, 2π) is the uniform distribution on [0, 2π). If the above
expectation is approximated using Monte Carlo with D random samples wi, then K(x,y) ≈
〈Z(x), Z(y)〉 with Z(x) =

√
2/D

[
cos(wT

1 x + b1), ..., cos(wT
Dx + bD)

]T
. This identification is

1We are not claiming total generality of this setting; nevertheless, in cases where the vector length carries
useful information and should be preserved, it could be added as an additional feature before normalization.
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made possible by property (i), which guarantees that the functional dependence on x and y factorizes
multiplicatively in frequency space.

Such Random Fourier Features have been used to approximate different types of positive-definite
shift-invariant kernels, including the Gaussian kernel, the Laplacian kernel, and the Cauchy kernel.
However, they have not yet been applied to polynomial kernels, because this class of kernels does
not satisfy the positive-definiteness prerequisite for the application of Bochner’s theorem. This
statement may seem counter-intuitive given the known result that polynomial kernels K(x,y) are
positive definite kernels. The subtlety is that this statement does not necessarily imply that the
associated single variable functions K(z) = K(x − y) are positive definite on Rd for all d. We
will prove this fact in the next section, along with the construction of an efficient and effective
modification of the Random Fourier method that can be applied to polynomial kernels defined on
the unit sphere.

3 Polynomial kernels on the unit sphere

In this section, we consider approximating the polynomial kernel defined on Sd−1 × Sd−1,

K(x,y) =
(

1− ||x− y||2

a2

)p
= α (q + 〈x,y〉)p (2)

with q = a2/2− 1, α = (2/a2)p. We will restrict our attention to p ≥ 1, a ≥ 2.

The kernel is a shift-invariant radial function of the single variable z = x − y, which with a slight
abuse of notation we write as K(x,y) = K(z) = K(z), with z = ||z||.2 In Section 3.1, we show
that the Fourier transform of K(z) is not a non-negative function, so a straightforward application
of Bochner’s theorem to produce Random Fourier Features as in [5] is impossible in this case.
Nevertheless, in Section 3.2, we propose a fast and accurate approximation of K(z) by a surrogate
positive definite function which enables us to construct compact Fourier features.

3.1 Obstructions to Random Fourier Features

Because z = ||x − y|| =
√

2− 2 cos θ ≤ 2, the behavior of K(z) for z > 2 is undefined and
arbitrary since it does not affect the original kernel function in eqn. (2). On the other hand, it should
be specified in order to perform the Fourier transform, which requires an integration over all values
of z. We first consider the natural choice of K(z) = 0 for z > 2 before showing that all other
choices lead to the same conclusion.
Lemma 1. The Fourier transform of {K(z), z ≤ 2; 0, z > 2} is not a non-negative function of w
for any values of a, p, and d.

Proof. (See the Supplementary Material for details). A direct calculation gives,

k(w) =

p∑
i=0

p!

(p− i)!

(
1− 4

a2

)p−i(
2

a2

)i(
2

w

)d/2+i
Jd/2+i(2w) ,

where Jν(z) is the Bessel function of the first kind. Expanding for large w yields,

k(w)∼ 1√
πw

(
1− 4

a2

)p(
2

w

)d/2
cos
(

(d+ 1)
π

4
−2w

)
, (3)

which takes negative values for some w for all a > 2, p, and d.

So a Monte Carlo approximation of K(z) as in eqn. (1) is impossible in this case. However, there is
still the possibility of defining the behavior of K(z) for z > 2 differently, and in such a way that the
Fourier transform is positive and integrable on Rd. The latter condition should hold for all d, since
the vector dimensionality d can vary arbitrarily depending on input data.

We now show that such a function cannot exist. To this end, we first recall a theorem due to Schoen-
berg regarding completely monotone functions,

2We also follow this practice in frequency space, i.e. if k(w) is radial, we also write k(w) = k(w).
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Definition 1. A function f is said to be completely monotone on an interval [a, b] ⊂ R if it is con-
tinuous on the closed interval, f ∈ C([a, b]), infinitely differentiable in its interior, f ⊂ C∞((a, b)),
and (−1)lf (l)(x) ≥ 0 , x ∈ (a, b), l = 0, 1, 2, . . .

Theorem 2. (Schoenberg [18]) A function φ is completely monotone on [0,∞) if and only if Φ ≡
φ(|| · ||2) is positive definite and radial on Rd for all d.

Together with Theorem 1, Theorem 2 shows that φ(z) = K(
√
z) must be completely monotone

if k(w) is to be interpreted as a probability distribution. We now establish that φ(z) cannot be
completely monotone and simultaneously satisfy φ(z) = K(

√
z) for z ≤ 2.

Proposition 1. The function φ(z) = K(
√
z) is completely monotone on [0, a2].

Proof. From the definition of φ, φ(z) =
(
1− z

a2

)p
, φ is continuous on [0, a2], infinitely differen-

tiable on (0, a2), and its derivatives vanish for l > p. They obey (−1)lφ(l)(z) = p!
(p−l)!

φ(z)
(a2−z)l ≥ 0,

where the inequality follows since z < a2. Therefore φ is completely monotone on [0, a2].

Theorem 3. Suppose f is a completely monotone polynomial of degree n on the interval [0, c],
c <∞, with f(c) = 0. Then there is no completely monotone function on [0,∞) that agrees with f
on [0, a] for any nonzero a < c.

Proof. Let g ∈ C([0,∞))
⋂
C∞((0,∞)) be a non-negative function that agrees with f on [0, a]

and let h = g − f . We show that for all non-negative integers m there exists a point χm satisfying
a < χm ≤ c such that h(m)(χm) > 0. Form = 0, the point χ0 = c obeys h(χ0) = g(χ0)−f(χ0) =
g(χ0) > 0 by the definition of g. Now, suppose there is a point χm such that a < χm ≤ c and
h(m)(χm) > 0. The mean value theorem then guarantees the existence of a point χm+1 such that

a < χm+1 < χm and h(m+1)(χm+1) = h(m)(χm)−h(m)(a)
χm−a = h(m)(χm)

χm−a > 0, where we have utilized
the fact that h(m)(a) = 0 and the induction hypothesis. Noting that f (m) = 0 for all m > n, this
result implies that g(m)(χm) > 0 for all m > n. Therefore g cannot be completely monotone.

Corollary 1. There does not exist a finite non-negative Borel measure on Rd whose Fourier trans-
form agrees with K(z) on [0, 2].

3.2 Spherical Random Fourier features

From the section above, we see that the Bochner’s theorem cannot be directly applied to the poly-
nomial kernel. In addition, it is impossible to construct a positive integrable k̂(w) whose inverse
Fourier transform K̂(z) equals K(z) exactly on [0, 2]. Despite this result, it is nevertheless possible
to find K̂(z) that is a good approximation of K(z) on [0, 2], which is all that is necessary given
that we will be approximating K̂(z) by Monte Carlo integration anyway. We present our method of
Spherical Random Fourier (SRF) features in this section.

We recall a characterization of radial functions that are positive definite on Rd for all d due to
Schoenberg.
Theorem 4. (Schoenberg [18]) A continuous function f : [0,∞) → R is positive definite and
radial on Rd for all d if and only if it is of the form f(r) =

∫∞
0
e−r

2t2dµ(t), where µ is a finite
non-negative Borel measure on [0,∞).

This characterization motivates an approximation for K(z) as a sum of N Gaussians, K̂(z) =∑N
i=1 cie

−σ2
i z

2

. To increase the accuracy of the approximation, we allow the ci to take negative val-
ues. Doing so enables its Fourier transform (which is also a sum of Gaussians) to become negative.
We circumvent this problem by mapping those negative values to zero,

k̂(w) = max

(
0,

N∑
i=1

ci

( 1√
2σi

)d
e−w

2/4σ2
i

)
, (4)

and simply defining K̂(z) as its inverse Fourier transform. Owing to the max in eqn. (4), it is not
possible to calculate an analytical expression for K̂(z). Thankfully, this isn’t necessary since we
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Figure 1: K(z), its approximation K̂(z), and the corresponding pdf p(w) for d = 256, a = 2 for
polynomial orders (a) 10 and (b) 20. Higher-order polynomials are approximated better, see eqn. (6).

Algorithm 1 Spherical Random Fourier (SRF) Features
Input: A polynomial kernel K(x,y) = K(z), z = ||x − y||2, ||x||2 = 1, ||y||2 = 1, with bias a ≥ 2,
order p ≥ 1, input dimensionality d and feature dimensionality D.
Output: A randomized feature map Z(·) : Rd → RD such that 〈Z(x), Z(y)〉 ≈ K(x,y).

1. Solve argminK̂

∫ 2

0
dz
[
K(z)− K̂(z)

]2
for k̂(w), where K̂(z) is the inverse Fourier transform of k̂(w),

whose form is given in eqn. (4). Let p(w) = (2π)−d/2k̂(w).
2. Draw D iid samples w1, ...,wD from p(w).
3. Draw D iid samples b1, ..., bD ∈ R from the uniform distribution on [0, 2π].

4. Z(x) =
√

2
D

[
cos(wT

1 x+ b1), ..., cos(w
T
Dx+ bD)

]T

can evaluate it numerically by performing a one dimensional numerical integral,

K̂(z) =

∫ ∞
0

dww k̂(w)(w/z)d/2−1Jd/2−1(wz) ,

which is well-approximated using a fixed-width grid in w and z, and can be computed via a single
matrix multiplication. We then optimize the following cost function, which is just the MSE between
K(z) and our approximation of it,

L =
1

2

∫ 2

0

dz
[
K(z)− K̂(z)

]2
, (5)

which defines an optimal probability distribution p(w) through eqn. (4) and the relation p(w) =
(2π)−d/2k(w). We can then follow the Random Fourier Feature [5] method to generate the nonlin-
ear maps. The entire SRF process is summarized in Algorithm 1. Note that for any given of kernel
parameters (a, p, d), p(w) can be pre-computed, independently of the data.

4 Approximation error

The total MSE comes from two sources: error approximating the function, i.e. L from eqn. (5),
and error from Monte Carlo sampling. The expected MSE of Monte-Carlo converges at a rate of
O(1/D) and a bound on the supremum of the absolute error was given in [5]. Therefore, we focus
on analyzing the first type of error.

We describe a simple method to obtain an upper bound onL. Consider the function K̂(z) = e−
p

a2 z
2

,
which is a special case of eqn. (4) obtained by setting N = 1, ci = 1, and σ1 =

√
p/a2. The MSE

between K(z) and this function thus provides an upper bound to our approximation error,

L =
1

2

∫ 2

0

dz [K̂(z)−K(z)]2 ≤ 1

2

∫ a

0

dz [K̂(z)−K(z)]2

=
1

2

∫ a

0

dz

[
exp

(
−2p

a2
z2
)

+

(
1− z2

a2

)2p

− 2 exp
(
− p

a2
z2
)(

1− z2

a2

)p ]
=
a

4

√
π

2p
erf(

√
2p) +

a

4

√
π

Γ(p+ 1)

Γ(p+ 3
2 )
− a

2

√
π

Γ(p+ 1)

Γ(p+ 3
2 )
M( 1

2 , p+ 3
2 ,−p) .
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Figure 2: Comparison of MSE of kernel approximation on different datasets with various polynomial
orders (p) and feature map dimensionalities. The first to third rows show results of usps, gisette,
adult, respectively. SRF gives better kernel approximation, especially for large p.

In the first line we have used the fact that integrand is positive and a ≥ 2. The three terms on the
second line are integrated using the standard integral definitions of the error function, beta function,
and Kummer’s confluent hypergeometric function [19], respectively. To expose the functional de-
pendence of this result more clearly, we perform an expansion for large p. We use the asymptotic
expansions of the error function and the Gamma function,

erf(z) = 1− e−z
2

z
√
π

∞∑
k=0

(−1)k
(2k − 1)!!

(2z2)k
,

log Γ(z) = z log z − z − 1

2
log

z

2π
+

∞∑
k=2

Bk
k(k − 1)

z1−k ,

whereBk are Bernoulli numbers. For the third term, we write the series representation ofM(a, b, z),

M(a, b, z) =
Γ(b)

Γ(a)

∞∑
k=0

Γ(a+ k)

Γ(b+ k)

zk

k!
,

expand each term for large p, and sum the result. All together, we obtain the following bound,

L ≤ 105

4096

√
π

2

a

p5/2
, (6)

which decays at a rate of O(p−2.5) and becomes negligible for higher-order polynomials. This is
remarkable, as the approximation error of previous methods increases as a function of p. Figure 1
shows two kernel functions K(z), their approximations K̂(z), and the corresponding pdfs p(w).

5 Experiments

We compare the SRF method with Random Maclaurin (RM) [14] and Tensor Sketch (TS) [15],
the other polynomial kernel approximation approaches. Throughout the experiments, we choose the
number of Gaussians,N , to equal 10, though the specific number had negligible effect on the results.
The bias term is set as a = 4. Other choices such as a = 2, 3 yield similar performance; results
with a variety of parameter settings can be found in the Supplementary Material. The error bars and
standard deviations are obtained by conducting experiments 10 times across the entire dataset.
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Dataset Method D = 29 D = 210 D = 211 D = 212 D = 213 D = 214 Exact
usps
p = 3

RM 87.29 ± 0.87 89.11 ± 0.53 90.43 ± 0.49 91.09 ± 0.44 91.48 ± 0.31 91.78 ± 0.32
TS 89.85 ± 0.35 90.99 ± 0.42 91.37 ± 0.19 91.68 ± 0.19 91.85 ± 0.18 91.90 ± 0.23 96.21
SRF 90.91 ± 0.32 92.08 ± 0.32 92.50 ± 0.48 93.10 ± 0.26 93.31 ± 0.16 93.28 ± 0.24

usps
p = 7

RM 88.86 ± 1.08 91.01 ± 0.44 92.70 ± 0.38 94.03 ± 0.30 94.54 ± 0.30 94.97 ± 0.26
TS 92.30 ± 0.52 93.59 ± 0.20 94.53 ± 0.20 94.84 ± 0.10 95.06 ± 0.23 95.27 ± 0.12 96.51
SRF 92.44 ± 0.31 93.85 ± 0.32 94.79 ± 0.19 95.06 ± 0.21 95.37 ± 0.12 95.51 ± 0.17

usps
p = 10

RM 88.95 ± 0.60 91.41 ± 0.46 93.27 ± 0.28 94.29 ± 0.34 95.19 ± 0.21 95.53 ± 0.25
TS 92.41 ± 0.48 93.85 ± 0.34 94.75 ± 0.26 95.31 ± 0.28 95.55 ± 0.25 95.91 ± 0.17 96.56
SRF 92.63 ± 0.46 94.33 ± 0.33 95.18 ± 0.26 95.60 ± 0.27 95.78 ± 0.23 95.85 ± 0.16

usps
p = 20

RM 88.67 ± 0.98 91.09 ± 0.42 93.22 ± 0.39 94.32 ± 0.27 95.24 ± 0.27 95.62 ± 0.24
TS 91.73 ± 0.88 93.92 ± 0.28 94.68 ± 0.28 95.26 ± 0.31 95.90 ± 0.20 96.07 ± 0.19 96.81
SRF 92.27 ± 0.48 94.30 ± 0.46 95.48 ± 0.39 95.97 ± 0.32 96.18 ± 0.23 96.28 ± 0.15

gisette
p = 3

RM 89.53 ± 1.43 92.77 ± 0.40 94.49 ± 0.48 95.90 ± 0.31 96.69 ± 0.33 97.01 ± 0.26
TS 93.52 ± 0.60 95.28 ± 0.71 96.12 ± 0.36 96.76 ± 0.40 97.06 ± 0.19 97.12 ± 0.27 98.00
SRF 91.72 ± 0.92 94.39 ± 0.65 95.62 ± 0.47 96.50 ± 0.40 96.91 ± 0.36 97.05 ± 0.19

gisette
p = 7

RM 89.44 ± 1.44 92.77 ± 0.57 95.15 ± 0.60 96.37 ± 0.46 96.90 ± 0.46 97.27 ± 0.22
TS 92.89 ± 0.66 95.29 ± 0.39 96.32 ± 0.47 96.66 ± 0.34 97.16 ± 0.25 97.58 ± 0.25 97.90
SRF 92.75 ± 1.01 94.85 ± 0.53 96.42 ± 0.49 97.07 ± 0.30 97.50 ± 0.24 97.53 ± 0.15

gisette
p = 10

RM 89.91 ± 0.58 93.16 ± 0.40 94.94 ± 0.72 96.19 ± 0.49 96.88 ± 0.23 97.15 ± 0.40
TS 92.48 ± 0.62 94.61 ± 0.60 95.72 ± 0.53 96.60 ± 0.58 96.99 ± 0.28 97.41 ± 0.20 98.10
SRF 92.42 ± 0.85 95.10 ± 0.47 96.35 ± 0.42 97.15 ± 0.34 97.57 ± 0.23 97.75 ± 0.14

gisette
p = 20

RM 89.40 ± 0.98 92.46 ± 0.67 94.37 ± 0.55 95.67 ± 0.43 96.14 ± 0.55 96.63 ± 0.40
TS 90.49 ± 1.07 92.88 ± 0.42 94.43 ± 0.69 95.41 ± 0.71 96.24 ± 0.44 96.97 ± 0.28 98.00
SRF 92.12 ± 0.62 94.22 ± 0.45 95.85 ± 0.54 96.94 ± 0.29 97.47 ± 0.24 97.75 ± 0.32

Table 1: Comparison of classification accuracy (in %) on different datasets for different polynomial
orders (p) and varying feature map dimensionality (D). The Exact column refers to the accuracy of
exact polynomial kernel trained with libSVM. More results are given in the Supplementary Material.
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Figure 3: Comparison of CRAFT features on usps dataset with polynomial order p = 10 and
feature maps of dimension D = 212. (a) Logarithm of ratio of ith-leading eigenvalue of the ap-
proximate kernel to that of the exact kernel, constructed using 1,000 points. CRAFT features are
projected from 214 dimensional maps. (b) Mean squared error. (c) Classification accuracy.

Kernel approximation. The main focus of this work is to improve the quality of kernel approxima-
tion, which we measure by computing the mean squared error (MSE) between the exact kernel and
its approximation across the entire dataset. Figure 2 shows MSE as a function of the dimensionality
(D) of the nonlinear maps. SRF provides lower MSE than other methods, especially for higher order
polynomials. This observation is consistent with our theoretical analysis in Section 4. As a corollary,
SRF provides more compact maps with the same kernel approximation error. Furthermore, SRF is
stable in terms of the MSE, whereas TS and RM have relatively large variance.

Classification with linear SVM. We train linear classifiers with liblinear [3] and evaluate classifi-
cation accuracy on various datasets, two of which are summarized in Table 1; additional results are
available in the Supplementary Material. As expected, accuracy improves with higher-dimensional
nonlinear maps and higher-order polynomials. It is important to note that better kernel approxima-
tion does not necessarily lead to better classification performance because the original kernel might
not be optimal for the task [20, 21]. Nevertheless, we observe that SRF features tend to yield better
classification performance in most cases.

Rank-Deficiency. Hamid et al. [16] observe that RM and TS produce nonlinear features that are
rank deficient. Their approximation quality can be improved by first mapping the input to a higher
dimensional feature space, and then randomly projecting it to a lower dimensional space. This
method is known as CRAFT. Figure 3(a) shows the logarithm of the ratio of the ith eigenvalue
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Figure 4: Computational time to generate randomized feature
map for 1,000 random samples on a fixed hardware with p = 3.
(a) d = 1, 000. (b) d = D.
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Figure 5: Doubly stochastic gra-
dient learning curves with RFF
and SRF features on ImageNet.

of the various approximate kernel matrices to that of the exact kernel. For a full-rank, accurate
approximation, this value should be constant and equal to zero, which is close to the case for SRF.
RM and TS deviate from zero significantly, demonstrating their rank-deficiency.

Figures 3(b) and 3(c) show the effect of the CRAFT method on MSE and classification accuracy.
CRAFT improves RM and TS but it has no or even a negative effect on SRF. These observations all
indicate that the SRF is less rank-deficient than RM and TS.

Computational Efficiency. Both RM and SRF have computational complexity O(ndD), whereas
TS scales as O(np(d + D logD)), where D is the number of nonlinear maps, n is the number of
samples, d is the original feature dimension, and p is the polynomial order. Therefore the scalability
of TS is better than SRF when D is of the same order as d (O(D logD) vs. O(D2)). However,
the computational cost of SRF does not depend on p, making SRF more efficient for higher-order
polynomials. Moreover, there is little computational overhead involved in the SRF method, which
enables it to outperform TS for practical values of D, even though it is asymptotically inferior. As
shown in Figure 4(a), even for the low-order case (p = 3), SRF is more efficient than TS for a fixed
d = 1000. In Figure 4(b), where d = D, SRF is still more efficient than TS up to D . 4000.

Large-scale Learning. We investigate the scalability of the SRF method on the ImageNet 2012
dataset, which consists of 1.3 million 256 × 256 color images from 1000 classes. We employ the
doubly stochastic gradient method of Dai et al. [22], which utilizes two stochastic approximations
— one from random training points and the other from random features associated with the kernel.
We use the same architecture and parameter settings as [22] (including the fixed convolutional neural
network parameters), except we replace the RFF kernel layer with an `2 normalization step and an
SRF kernel layer with parameters a = 4 and p = 10. The learning curves in Figure 5 suggest that
SRF features may perform better than RFF features on this large-scale dataset. We also evaluate
the model with multi-view testing, in which max-voting is performed on 10 transformations of the
test set. We obtain Top-1 test error of 44.4%, which is comparable to the 44.5% error reported in
[22]. These results demonstrate that the unit norm restriction does not have a negative impact on
performance in this case, and that polynomial kernels can be successfully scaled to large datasets
using the SRF method.

6 Conclusion
We have described a novel technique to generate compact nonlinear features for polynomial kernels
applied to data on the unit sphere. It approximates the Fourier transform of kernel functions as
the positive projection of an indefinite combination of Gaussians. It achieves more compact maps
compared to the previous approaches, especially for higher-order polynomials. SRF also shows less
feature redundancy, leading to lower kernel approximation error. Performance of SRF is also more
stable than the previous approaches due to reduced variance. Moreover, the proposed approach
could easily extend beyond polynomial kernels: the same techniques would apply equally well to
any shift-invariant radial kernel function, positive definite or not. In the future, we would also like
to explore adaptive sampling procedures tuned to the training data distribution in order to further
improve the kernel approximation accuracy, especially when D is large, i.e. when the Monte-Carlo
error is low and the kernel approximation error dominates.

Acknowledgments. We thank the anonymous reviewers for their valuable feedback and Bo Xie for
facilitating experiments with the doubly stochastic gradient method.
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