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The supplementary material is divided into these sections. Section A details the design of stochastic
power EP methods and presents relationships between SEP and SVI. Section B extends the discus-
sion of distributed algorithms and SEP’s applicability to latent variable models. Section C provides
experimental details of the Bayesian neural network experiments and presents further emprical eval-
ucations of the method.

A Further theoretical connections

We described the extensions of stochastic expectation propagation (SEP) in the main text, and we
provide more details in this section.

A.1 Power EP and alpha-EP

The relationship between EP and variational inference (VI) can be explained by introducing power
EP (PEP) [1]. As a preparation let us consider the alpha-divergence1 introduced in [2]

Dα[p(θ)||q(θ)] =
4

1− α2

(
1−

∫
θ

p(θ)
1+α
2 q(θ)

1−α
2 dθ

)
. (1)

Two cases of KL-divergence also belongs to the family of alpha-divergence by definition:

D1[p(θ)||q(θ)]
4
= lim
α→1

Dα[p(θ)||q(θ)] = KL[p(θ)||q(θ)], (2)

D-1[p(θ)||q(θ)]
4
= lim
α→-1

Dα[p(θ)||q(θ)] = KL[q(θ)||p(θ)]. (3)

Minka [1] also introduced alpha-EP as a generalisation of EP to alpha-divergences, which changes
the moment matching step to alpha-projection [3] that returns the minimiser of the alpha divergence
Dα[p̃n(θ)||q(θ)] wrt. q(θ). Examples include moment projection proj[·] which takes α = 1, and
information projection which chooses α = −1. However alpha-projections are difficult to compute
in general, motivating power EP (Algorithm 1) – so called because it raises potentials to a power
before referencing standard EP updates – as a practical alternative. Minka [1] showed that power
EP with power 1/β, β < ∞ returns a local optimum of the alpha divergence with α = −1 + 2/β
when converged. However this still leaves the pathological case α = −1 or β =∞ since the above
equivalence does not apply. Thus variational message passing (VMP), which takes α→ −1, cannot
be interpreted as a special case of power EP. This observation extends to stochastic PEP as well
(Algorithm 2). Instead we derive stochastic VMP in the spirit which SEP extends EP, which keeps
the computational steps using current global estimate but ties all the local factors. We discuss this
extension in detail in the next section and provide its connection to stochastic variational inference.

1A little math can show the updates of alpha-EP using different existing alpha-divergence definitions are
equivalent, although the corresponding alpha will change.
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Algorithm 1 PEP
1: choose a factor fn to refine:
2: compute cavity distribution
q−n(θ) ∝ q(θ)/fn(θ)1/β

3: compute tilted distribution
p̃n(θ) ∝ p(xn|θ)1/βq−n(θ)

4: moment matching:
fn(θ)← [proj[p̃n(θ)]/q−n(θ)]

β

5: inclusion:
q(θ)← q(θ)fn(θ)/f

old
n (θ)

Algorithm 2 Stochastic PEP
1: choose a datapoint xn ∼ D:
2: compute cavity distribution
q−1(θ) ∝ q(θ)/f(θ)1/β

3: compute tilted distribution
p̃n(θ) ∝ p(xn|θ)1/βq−1(θ)

4: moment matching:
fn(θ)← [proj[p̃n(θ)]/q−1(θ)]

β

5: inclusion:
q(θ)← q(θ)fn(θ)/f(θ)

6: implicit update:
f(θ)← f(θ)1−

1
N fn(θ)

1
N

A.2 Connecting SVMP to SVI

We first briefly sketch the VMP algorithm using the EP framework, but replacing the moment match-
ing step with natural parameter matching. We assume the approximate posterior q(θ) is in some
exponential family:

q(θ) ∝ exp [〈λq,φ(θ)〉] . (4)

At time t we have the current estimate of the natural parameter λtq , which is defined as the sum of

local variational parameters2: λtq
4
= λ0 +

∑N
n=1 λ

t
n. Here λ0 represents the natural parameter of

the prior distribution p0(θ). VMP iteratively computes the update of each local estimate λt+1
n in the

following procedure. First VMP computes the expected sufficient statistics ŝn about datapoint xn
using λtq , e.g. ŝn = Eq[t(zn, xn)] in the original SVI paper [4]. Then VMP forms the gradient as
though optimising the maximised evidence lower bound (ELBO) but with q−1(θ) as the prior:

∇λtqL = λt−1 + ŝn − λtq, (5)

λt−1 = λtq − λtn. (6)

Next VMP zeros the gradient and recovers the current update λt+1
n = ŝn. The stochastic version

of VMP, if extended in a way as SEP developed from EP, defines the global variational parameters

as λtq
4
= λ0 + Nλt. It computes the expected sufficient statistics ŝn in the same way as VMP but

changes the cavity to λt−1 = λtq −λt in the ELBO maximisation steps. Readers can verify that this
returns the current update λt+1 = ŝn using the important fact that the local update ONLY depends
on the global parameter λtq . Now since we tie all the local updates, the global parameter update
λt+1
q = λ0 + Nλt+1 = λ0 + N ŝn. In practice we perform a damped update, where a typical

choice of step size is ε = 1/N like in SEP:

λt+1
q ← (1− 1

N
)λtq +

1

N
(λ0 +Nλt+1) = λ0 + (N − 1)λt + ŝn. (7)

On the other hand, [5] summarises stochastic variational inference (SVI) as to compute the current
update by zeroing the gradient

∇λqL = λ0 +N ŝn − λq, (8)

which returns λt+1
q = λ0+N ŝn as well. This implies that SVI, when using learning rate ε = 1/N ,

is equivalent to SVMP.

A.3 SEP from a global approximation perspective

In this section we provide some intuition about SEP via an interpretation as approximating minimi-
sation of a global divergence like VI (although it is computed in a truly local way). This framework
utilises alpha-divergence, but on the global posterior, and we motivate it by describing VI and SVI as

2This notation implicitly assumes that the prior and the approximate posterior belong to the approximate
distribution family. In general we can propose another factor to approximate p0(θ), and our result still applies.
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Figure 1: (a) A geometric view of AEP/PEP comparison. (b) A cartoon illustration of DEP, SEP and
DSEP. For each algorithm we show the approximate posterior on the top and the tilted distribution
at the bottom.

divergence minimisation. VI performs global optimisation on KL[q(θ)||p(θ|D)], and its stochastic
version, SVI, can be interpreted as at each step minimising KL[q(θ)||p(θ|{xn}N )] with theN repli-
cas {xn}N = {xn,xn, ...,xn}. Similarly, we state SEP as a stochastic global optimisation proce-
dure, which computes an iterative procedure to minimise alpha-divergence Dα[p(θ|{xn}N )||q(θ)]
with α = -1 + 2/N . Indeed we can understand the inner-loop of AEP as PEP with power 1/N if
considering f(θ)N as a large composite factor to approximate the likelihood term of xn raised to
power N .

However minimising the alpha-divergence between the true posterior p(θ|D) and the global ap-
proximation q(θ) recovers PEP on the whole dataset instead, and the factor to include in the tilted

distribution changes to the intractable geometric average avg[{p(xn|θ)}]
4
= [

∏
n p(xn|θ)]1/N .

Readers might have noticed that the update of PEP on the full dataset is given by q(θ) ←
proj[avg[{p̃n(θ)}]]. In other words, we can interpret AEP as an approximation to the impracti-
cal batch PEP by interchanging projections and averaging operations, and we illustrate a geometric
view for this in Fig. 1(a).

It is important to note that SEP/AEP at convergence does not minimise the alpha divergence glob-
ally. Like PEP, the inner-loop computes proj[p̃n(θ)], where one can show that it moves towards
minimising Dα(p(θ|{xn}N )||qn(θ)) using the same techniques as before. However the outer-loop
averages the natural parameters of the intermediate answers, which does not follow the gradient
direction of alpha-divergence minimisation. Furthermore, local/global optimisation of alpha diver-
gence are inconsistent in terms of fixed points except at α = −1, the divergence utilised in VI and
VMP. Indeed we provide the fixed point conditions of AEP which reveals its local nature.
Proposition 1. The fixed points of averaged EP, if they exist, can be written as q(θ) = avg[{qn(θ)}],
where

qn(θ) = proj[p̃n(θ)], (9)

p̃n(θ) ∝ q(θ)
p(xn|θ)
f(θ)

. (10)

These fixed points are also the fixed points of stochastic EP when the learning rates satisfy the
Robbins-Monro condition [6].

This fixed point condition applies to stochastic PEP as well when α 6= −1, and importantly it also
implies the pathology of constructing SVMP by using SPEP and limiting α to −1.

B Algorithmic design details

B.1 Distributed computing methods

We have shown in the main paper that a proper design of data partitioning improves SEP’s approxi-
mation accuracy. This distributed algorithm is inspired by the Distributed EP (DEP) algorithm [7, 8]
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Algorithm 3 DEP
1: compute cavity distribution
q−k(θ) ∝ q(θ)/fk(θ)

2: compute tilted distribution
p̃k(θ) ∝ p(Dk|θ)q−k(θ)

3: moment matching:
fk(θ)← proj[p̃k(θ)]/q−k(θ)

Algorithm 4 DSEP
1: compute cavity distribution
q−1(θ) = q(θ)/fk(θ)

2: choose a datapoint xn ∼ Dk
3: compute tilted distribution
p̃nk (θ) ∝ p(xn|θ)q−1(θ)

4: moment matching:
fnk (θ)← proj[p̃nk (θ)]/q−1(θ)

5: inclusion:
fk(θ)← fk(θ)

1−1/Nkfnk (θ)
1/Nk

Algorithm 5 DAEP
1: compute cavity distribution
q−1(θ) ∝ q(θ)/fk(θ)

2: for each xn ∈ Dk:
3: compute tilted distribution
p̃nk (θ) ∝ p(xn|θ)q−1(θ)

4: moment matching:
fnk (θ)← proj[p̃nk (θ)]/q−1(θ)

5: inclusion:
fk(θ)

Nk ←
∏
n f

n
k (θ)

Figure 2: Comparing the variants of distributed design for Expectation Propagation (EP) on the
current data piece Dk. One should notice that the definitions of fk(θ) are different for DEP and
DSEP/DAEP. Distributed EP (DEP) uses sampling methods to compute the projection step, while
Distributed SEP/AEP (DSEP/DAEP) still keeps deterministic computations.

presented in Algorithm 3. DEP first partitions the dataset into K disjoint pieces {Dk = {xi}Nki=1}
with N =

∑K
i=1Nk, which is well-justified since the true posterior can also be derived as

p(θ|D) ∝ p0(θ)
K∏
k=1

p(Dk|θ), (11)

p(Dk|θ) =
∏

xn∈Dk

p(xn|θ). (12)

Next DEP assigns factors to each sub-dataset likelihood, i.e. q(θ) ∝ p0(θ)
∏
k fk(θ) with each

fk(θ) approximating p(Dk|θ). The projection step is no longer analytically tractable in general
since the tilted distribution with multiple datapoints often lacks a simple form. Instead DEP handles
moment matching with sampling, making it stochastic in the sense of having an stochastic approxi-
mation of the moments.

To construct a deterministic counterpart of DEP, we consider running SEP/AEP inside each parti-
tion. We name this approach as Distributed SEP/AEP (DSEP/DAEP) and provide a comparison in
Fig. 1(b) with DEP and SEP on the sub-dataset likelihood factors using sampling protocol. Differ-
ent from DEP, the approximate posterior for DSEP is defined as q(θ) ∝ p0(θ)

∏
k fk(θ)

Nk , with
fk(θ)

Nk approximating p(Dk|θ). The computations are almost the same as SEP/AEP except that
the updates only modify the copies of the corresponded subset. These two algorithms are also de-
tailed in Algorithm 4 and 5, respectively. In section C.3 we provide an emprical study on comparing
SEP, EP and DSEP approximations.

B.2 SEP with latent variables

In this section we show the applicability of SEP to latent variables without scaling the memory
consumption with N . We consider a model containing latent variables hn associated with each
observation xn, which are drawn i.i.d. from a prior p0(hn). SEP proposes approximations to the
true posterior over parameters and hidden variables

p(θ, {hn}|D) ∝ p0(θ)
∏
n

p0(hn)p(xn|hn,θ) (13)

by tying the factors for the global parameter θ but retaining the local factors for the hidden variables:

q(θ, {hn})
4∝ p0(θ)f(θ)N

N∏
n=1

gn(hn). (14)

In other words, SEP uses f(θ)gn(hn) to approximate p(xn|hn,θ)p0(hn).
Next we show a critical advantage of SEP when approximating the latent variable posterior distri-
butions: the local factors gn(hn) do not need to be maintained in memory (though see caveats men-
tioned below). More formally, the cavity distribution is q−n(θ, {hn}) ∝ q(θ, {hn})/(f(θ)gn(hn))
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Table 1: Datasets Used in the Experiments with Neural Networks. The memory numbers reported
include dataset storage and temporal maintainance of computation graphs in Theano (∼ 100MB).

Dataset N D MB (EP) MB (SEP) MB reduced
Kin8nm 8192 8 168.23 109.76 58.47
Naval Propulsion 11,934 16 261.75 113.92 147.83
Combined Cycle Power Plant 9568 4 148.70 110.99 37.71
Protein Structure 45,730 9 815.55 121.52 694.02
Wine Quality Red 1599 11 122.21 107.90 14.30
Year Prediction MSD 515,345 90 67837.90 2730.55 65107.34

and the tilted distribution is p̃n(θ, {hn}) ∝ q−n(θ, {hn})p(xn|hn,θ)p0(hn). This leads to the a
moment-update that minimises

KL

p0(θ)f(θ)N−1p(xn|hn,θ)p0(hn) ∏
m6=n

gm(hm)||p0(θ)f(θ)N−1f ′(θ)gn(hn)
∏
m6=n

gm(hm)

 .
with respect to f ′(θ)gn(hn). Importantly, the terms involving

∏
m6=n gm(hm) cancel, meaning that

these factors do not contribute to the local approximation step. For simple models the moments of
hn can be computed analytically given q−1(θ), thus gn(hn) is never stored in memory resulting
in a reduced memory footprint by a factor of N again. However in practice people may prefer
maintaining the g factors in memory, if the moment computation requires another optimisation inner-
loop (which might be more expensive than the moment matching step itself). Examples include
latent Dirichlet allocation [9] that has a hierachy of latent variables, where VI methods also store
variational q distributions for some of the hidden variables. One potential recipe in this scenario is
to learn the moments/messages passed in each SEP step in the spirit of [10, 11].

It is also possible to have latent variables globally shared or shared in a data subset Dk. But we can
also extend SEP to these latent variables accordingly, which still provides computation gains in space
complexity. In mathematical forms, assume hk a latent variable shared in Dk. Then we construct
q(hk) ∝ p0(hk)gk(hk)

Nk to approximate its posterior. This procedure still reduces memory by a
factor of N/K.

C Further experimental results

C.1 Details of Bayesian neural network tests

We perform neural network regression experiments with publicly available data sets and neural
networks with one hidden layer. Table 1 lists the analyzed data sets and shows summary statistics.
We use neural networks with 50 hidden units in all cases except in the two largest ones, i.e., Year
Prediction MSD and Protein Structure, where we use 100 hidden units. The different methods,
SEP, EP and ADF were run by performing 40 passes over the available training data, updating the
parameters of the posterior approximation after seeing each data point. The data sets are split into
random training and test sets with 90% and 10% of the data, respectively. This splitting process is
repeated 20 times and the average test performance of each method is reported. In the two largest
data sets, Year Prediction MSD and Protein Structure, we do the train-test splitting only one and
five times respectively. The data sets are normalized so that the input features and the targets have
zero mean and unit variance in the training set. The normalization on the targets is removed for
prediction.

We also provide the memory consumption details for experiments using probabilistic back-
propagation (PBP) in Table 1. We observe substantial memory reductions by running SEP instead
of EP, while still attaining similar accuracies. Especially for Year Prediction MSD dataset, which is
a typical large-scale dataset both in the number of observations N and the dimensionality D, SEP
achieves saving tens of gigabytes. We performed the test for EP using a machine with more than
100GB RAM, while SEP only required 2.7GB memory, including the space of storing the dataset
(1.9GB). These numbers reveal the huge memory requirement of full EP and further support SEP as
a practical alternative in big data, big model settings.
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Figure 3: Performance of EP methods on Bayesian logistic regression with sampling moment com-
putations, measured in approximate KL divergence described in the main text.

C.2 Stochastic EP with sampling protocal

Although not a main purpose, we further test the performance of SEP when using sampling methods
to compute moments 3. We re-use the settings of probit regression but change the probit unit to
sigmoid function, making the moment projection analytically intractable. We randomly partition
the dataset into K = 20 subsets {Dk}, construct the approximate posterior with local factors over
the subsets, and tie them in SEP/AEP as before. Note that we perform sequential computations for
DEP and AEP although they are ideally suited for parallel computing. Again as presented in Figure
3, SEP performs almost as well as EP, which further justifies SEP even with sampling methods. Also
AEP is indistinguishable from DEP, but it reduces memory by a factor of K.

C.3 Further Comparisons for SEP, DSEP and full EP

The assumption we made in the main text to achieve SEP ≈ full EP is that the contributions of
each likelihood term to the posterior are similar. We show further results here on the approximation
produced by different EP methods when there is significant heterogeneity in the data. We generated
synthetic XOR classification data by sampling from 4 unit Gaussians with means (3, 3), (−3,−3),
(3,−3) and (−3, 3), and labelling the clusters centered at the former two as negative examples (and
positive for the others). The model p(yn|xn,θ) is kernel probit regression using RBF kernel with
width l = 1.0, which is the same as the model presented in Section 5.1 in the main text except that
the features are changed to kernel representations. This makes the feature vectors high dimensional,
and the local nature of kernels also makes the kernel-expanded inputs very different if the datapoints
belong to different clusters. We generated 50 ∗ 4 test data and {10 ∗ 4, 20 ∗ 4, 50 ∗ 4} training data
and ran SEP/DSEP/full EP to approximate the posterior distribution of θ. For DSEP we partitioned
the dataset into 4 subsets according to the associated centroid. Each experiment was repeated 10
times to collect average test data log-likilihood and classification errors.

Table 2 shows the quatitative numbers of performances and Figure 4 visualises the contuors of
probability p(y = 1|x,D) with true posterior approximated by q(θ). Interestingly SEP is slightly
better then the others on the classification error metric. But importantly EP achieves the best test
log-likelihood numbers and in general DSEP produces very similar results (shown by both the table
and the figure), meaning that even for small datasets running full EP might be unnecessary. Also
the three methods become indistinguishable when the size of the dataset N increases. We argue the
main reason is that the posterior contributions are getting similar since more datapoints are observed
in the circle of kernel width.

We further tested the robustness of all three methods to outliers. We reused the settings above and
randomly flipped 10% labels of training data. Qualitative results in Figure 5 show that SEP is almost
as robust as DSEP/EP in this example. We had tried different types of outliers and failed to find the
cases where EP/DSEP significantly outperforms SEP. Future work should further characterises that
when SEP gives bad approximations and separately whether it fails in the same way as EP fails,
e.g. EP can fail to converge.

3code adjusted from ep-stan: https://github.com/gelman/ep-stan
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Table 2: Average test results of all methods on kernel Probit regression.
mean error test log-likelihood

N SEP DSEP EP SEP DSEP EP
10 ∗ 4 0.032±0.0058 0.055±0.0127 0.032±0.0097 -0.405±0.011 -0.380±0.010 -0.378±0.009
20 ∗ 4 0.007±0.0014 0.008±0.0024 0.012±0.0031 -0.326±0.007 -0.320±0.006 -0.317±0.003
50 ∗ 4 0.003±0.0010 0.003±0.0014 0.006±0.0009 -0.243±0.004 -0.233±0.007 -0.238±0.003

Figure 4: Comparing predictions of kernel probit regression trained by SEP/DSEP/EP, with increas-
ing training data size N .
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Figure 5: Comparing predictions of kernel probit regression trained by SEP/DSEP/EP, with 10%
labels flipped.
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