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1 Error Analysis of Monotonic Matrix Completion

For our technical results, we shall consider a simpler easier-to-anlyze sampling model. We shall assume that instead
of choosing each entry of the matrix independently with some probability, we instead choose |€2| number of entries in
the matrix independently with replacement. We shall analyze our algorithm, M M C, for the case of 7' = 1. When

T =1, we get
S mnXq
Z=R( ) (1
€2
G =LPAV(Zqg,Xq) )
M; ;= §(Zi5),¥i = [m]. j = [n], 3)
For technical convenience, let p = ﬁ Note that this p is not the same as p used in the main paper. Here, p = ﬁ,
is defined keeping in mind that 7‘% can be roughly thought of as the probability of sampling an element in the matrix.

Finally, define the mean squared error (MSE) of our estimate M can be defined as

n m

N 1 N
MSE(M) =E | — > "> (M, ; — M; ;)*| . (4)
We are interested in analyzing the M S E of M output by M M C for T = 1. We shall make the following assumptions

2 MMC model and technical assumptions

Al || Z*|| = O(y/n), i.e. the spectral norm of Z* is of the order of \/n.

A2. 0,41(X) = O(y/n) with probability at least 1 — ¢.
The MMC model makes the following assumptions. These assumptions are the same as in the main paper. We
enumerate it here for the sake of clarity.

Ml. X = M*+ N.

M2. EN = 0.

M3. M}, = g*(Zf;) Vi=[n],j = [m].

M4. Assume that n > m, and rank(Z*) = r < m.

MS5. Boundedness assumption: |Z;;| < 1,|X; ;| < 1foralli € [n],j € [m].

M6. ¢* : R — R is monotonic and 1-Lipschitz.



M7. The set Q is generated by sampling uniformly at random with replacement from the index set [n] x [m].

We would like to remark that our 1— Lipschitz assumption made in M6, has been done just to simplify our final
expression. The proofs that we present here go though with minor changes for the general L— Lipschitz case.

2.1 Notation

All of our matrices, unless explicitly stated, will be n x m with n > m. ||A|| is the spectral norm of matrix A, and

||Al|« is the nuclear norm of matrix A. We shall denote by o1(A4) > 02(A) > ... the singular values of matrix A.
def

Finally, let G = {g | g : [-W, W] — [—1, 1] is monotonic and 1-Lipschitz}.

2.2 Main Theorem

Theorem 1. Denote by y; = E||N||, uo = E||N||%. Let a = ||M* — Z*||. Then, under assumptions Al, A2, and
modeling assumptions M1-M7, the MSE of the estimator output by M M C with T = 1 is given by

MSE(N [T \/mn log vmn

r U2
\mw* o T\ mva (“1+f>+

M<f>¢>

2.3 Interpretation of our results

®)

In order to obtain best results, we assume that « = O(y/n). Typically u3 = O(y/n), and pe = O(n). In these settings
we can simplify the above expression to

- mn log(n) mn rmnlog?(
MSE(M) = 6
sElat) =0 | Mg g ©

This result can be converted into a sample complexity bound as follows. If we are given || = max ( n'/? , 2 log(")‘[)
then

MSE(M) < \/Z +e. (7)

3 Towards proof of Theorem (1)

We begin with the following technical lemma that will be used in the proof.

Lemma 1. Let G = {g|g : [-W, W] — [—1, 1] is monotonic and 1-Lipschitz}. With probability at least 1 — § over
the sample z1, . . ., zy, the following statement is true for all g € G
~ w
n

Proof. Let R,,(G) be the empirical Rademacher complexity of function class G, and let N (€, G) be the Lo covering
number of the function clas G. From [1, Lemma 6] we know that

LS (gz) - 90)? — Blg(z) - v)?

n

where O hides logarithmic dependence onn,W,1/4.

Nx(e,G) < -2

€))
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€



The above covering number allows us to bound the empirical Rademacher complexity of the function class G via
Dudley’s entropy bound. Using [2, Lemma A.3], and the fact that N (¢, G) > Na(€,G, 21, - - ., 2, ) We get

1
Rn(G) < inf da + 10/ \/w de (10)
a>0 o n

1T [2W 15e(L
§4a—|—10/ \/Lg(e)de an
o n
1
§40¢+10\/%/ L 4e (12)
n J, €
2W 4de n
<10y 2= ==
<10 - log(lo 2W> (13)

Using a uniform convergence bound in terms of the Rademacher complexity of the function class [3, Theorem 8] we
get the desired result. O

Lemma 2. Let e; = E[-L- Zi’j(Z’j — Z};)?]. Then, under assumptions A1-A2 and M1-M8, we have

. 1
s <o (LU0 1 o b s )

Proof.
1 ~ 2 1 N, * (r7k 2
%E ;(Mw *M',j) %E iZj(Q(Z7,J) 9" (Z; J))
1 P x /A > * * 2
= %E ;(Q(ZZJ) g (Zi,j)+g (Z%J) 9 (ZiJ))

mn 4~ mn
Ts
T
= 2T + 275.
‘We shall bound 75 in terms of €5.
Bounding 75:
1 * (77 *
Ty = —RY (9"(Zi;) — 9" (Z;)° (14)
mn 4=
2 iEZ(Z— —ZF ) ¥ (15)
mn — 3 7,7

where inequality (a) follows from the fact that g* is 1-Lipschitz. Next we shall bound 7} in terms of e, and other
terms.



Bounding 77:

E n;;j(mz,j)g*m)f —E élg(mmg*(z,nf ;
Ti1
= mln;(g(ZAw) g*(ZZ,J))Z -E |(12|%:(§(ZA”)9*(AU))2]
Aq

(16)

Next we shall bound T} ; as follows. Since, g, g*, by definition belong to G, and because § is the solution to the
optimization problem

g=argminy (9(Zi;) — Xi;)%, (17)
g€eg 3

hence via the generalized Pythagorean inequality [4] we have

> (3(Zi) = Xij) +Z 9 (Zij) <D (Xij—9"(Zij) (18)

Q Q
Using Equation (18) we can bound 77 ; as follows

y » » ,
Ti,=E @Z(g(Z@j)*g( m‘))
L Q
y » | D ,
<E 9] (Xij—9 (Zi,j))Q—@ (Xi,j—g(Zi,j))
L Q Q
1 * (77 2 1 * * 2
=E @ (Xij—9"(Zij)) E @ (Xij—g (Zzg)) +
L Q Q i
I
1 * [ r7% 2 1 N, 2
E o (Xi; —9"(Z;))"| —E %Z(Xi,jfg( i) |+ (19)
. Z’j Z’J -
Iy
_1 )
B |y (e = 0" (2|~ | o (X o (20)P | +
L Q %]
I3
1 oy 1 P
E mn (Xij —9(Zij))"| —E @Z(Xm 9(Zij))
,J Q

Iy
We shall look at the terms Iy, I3, I3, I4 and bound them separately. From assumption A1 we know that g*(Z; ) is the

best estlmator of X; ; in mean squared. Hence, I < 0. We next bound I, I3, I4. |Z*|o < 1, and | X*|o < 1 hence
|Xi,; — g*(Z7 ;)| < 2. 1f we call Az the random variable whose expectation is /3, then Az < 4 surely. Moreover we

can apply lemma (1) to guarantee that Az < O ( %) with probability at least 1 — §. Choose § = \/%ﬁ\ We

Iy =EA; <45+ (1—6)0O < 1og(||g|/5)> =0 < 1ogg?|)> . (20)

then have




Next, we bound Iy. This needs a slightly careful treatment, since Z,», ;j is random. Let A = ﬁX oA. Let A =

S oyu;v; be the SVD of A with 0y > 0 > - -0, By definition Z = P,(A). Hence, A — Z = s OiUIY;
This means that -

A~ Z]w < ||A—Z||
=1 Y ||
i>r+1

= Or41
SUl(A—X)+UT+1(X)7 (21)
where we used Weyl’s inequality to get the last line from the penultimate line. We shall now use the above bound on
Z — A to obtain upper bound on | Z|, as follows
L@ s
|Z‘oo < ‘Z_A|oo + IA_Xloo + |X|<>o
®)
<A = X[+ [Xoo + |4 = X[ + 07r42(X)
= 2[[A = X[+ [X]oo + 0741 (X)
= 9|4~ X|| + 1+ 0,1 (X)
©
<2A-X||+ 14 0p11(X) (22)

To obtain inequality (a) we used the triangle inequality, and to obtain inequality (b) we used Equation (21). Now,
consider the event

2mnlog (247) 2 log( ™ Ymn
&= A-X|| < 6 o 23

From Lemma 5 we know that conditioned on X, P(£1) > 1 — § over the randomness in ). Using equation (22) we
get that on event &;

mn log (™) +\/mnlog((m—f—n)/é)) w (24)

Zlw =0 | 0p 1 (X

Now let I} be the argument to the expectation operator in I4. Let us define another event

& = {If; < \/W} (25)

By arguments similar to the one used in lemma (1), we get that P(£11) > 1 — 0 over the random choice of 2. Notice
that I} < 4 surely. We are now ready to calculate I, as follows

Iy = ExEqx 1}
< ExP(&)Eqx,e, 1) + 4P(€1)
< ExP(&)(P(Er) I, + 4P(E1r)) + 4P(&;)

B \/ blog((ry n)/9) 6)
Substituting the value of b, and using § = ﬁ’ and using assumption A2, we get that
Iy = ExEq x Iy (27)
1 mnlog((m + n)|Q|) mnlog((m + n)|Q|)
<8 +E —O0 | or41(X 28
<8 +Ex ] (U +1(X) + 0] + 310 (28)
—0 ([ oe* (tm+ mie) ) 9)



Notice that A; uses § — g* which is a 2 Lipchitz function. By perfoming a similar analysis as in I it is easy to show
that A, = 0(14)

Bounding ;.
1 5 1 * *
I ] Z(Xz‘,j - 9" (Zi;)) - ] Z(Xi,j - 9" (25)? (30
Q Q
1 * * (7 5 *
2 > (9°(Z8) = 9(Zi)2Xi 5 — 9" (Zij) — 9" (Z1)) (31)
< 4E@| 9 (Z35) = 9" (Ziy) (32)
41@@ > 12t — Zigl (33)
1 . 1 5
:4E%;|Z;j Zij| +4 E|Q|Z| Zi,j|—E%;|Z;j—Zi,j| (34)
As
(©) 1 ~
g4E%Z|Z;j — Zij| + 44 (35)
%7
(d) 1 ~
<4 E%lei*,j — Zi i + 4405 = 4(\/ez + As) (36)

where, to get inequality (a) we used the fact that | X; ;| < 1 and |g*| < 1. To get inequality (b) we used the fact that g*
is 1 Lipschitz. To get inequality (c) we used concentration of measure. Finally, to get inequality (d) we used Jensen’s

inequality to bound E|z| < v Ex2. Our next step is to bound As.

Bounding As: The idea is to consider the event £; as was done during bounding the term I,. Once again we shall
consider the event

2mn log (™3+2) 2log (% )mn
312 IQ\

& =11A-X]| < (37)

Similar to arguments there, we know from Equation (24) that on event &;

\ZA\OOZO <UT+1(X)+mnlog( Q] )+\/mnlog((m+n)/§)> w

1€ 39

Consider the collection of random variables i, . .., §|q|, Where each  takes the value Z7; — ZAi,]‘, where (i, ) is
chosen u.a.r. with replacement from [n] x [m]. It is easy to see that each of &, € [0,b + 1] on &;. Applying Hoeffding
inequality we get on £; with probability at least 1 — § over the random choice of €2, and on event &;

1 5 (b+1)2
— AN i AY log(1/d 38
|Q|;| ij J| Z| i~ Zig —\/ 210 og(1/6) (38)
By arguments similar to the ones used in estabhshlng bounds for I, we get

n mn /mn
A5 < 1 Q — . 3
This concludes our first set of calculations. With this we have

o v/mnlog(n) n mn \/7
MSE(M)_O<|Q|+\/E+ +ez+f) (40)
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The rest of the proof establishes upper bounds on €.

3.1 Bounding ¢,.

In order to establish an upper bound on €5 we first need the following projection lemma. This lemma is similar in spirit
to a lemma of S.Chatterjee [5, Lemma 3.5]. Before we establish this lemma, we would like to clarify the notation that
we use. Let 01 > 09 > oy, be the singular values of a matrix A.

Lemma 3. Let A = 221 oy, be the SVD of a known, rectangular matrix A € R*™, with the singular values
01 > 09... > o, arranged in decreasing order. Let B be an unknown n x m matrix. Given 1 < r < m, let
BEP.(A)E S oizy, be the projection estimator of B. Then,

K2

1P-(4) = Bllr < VI|Bllo(0r41 + [|A = Bl|) + 2v2r(0r41 + ||A = Bll). (41)

Proof. Let B = Y. Tiu;v; be the SVD of B with 7 > 75 > ...7,,. Let G = P.(B) &f S, Tiwv; be the
projection of matrix B onto the rank r cone.

1B = Bllr <||B=Gllr+|G = Bllr, 42)
and T
2 _ o 2 _ 2 )
|G = Bll% =l Z T, ||p = Z T < (ggflﬂ)llBll*- (43)
i>r+1 i>r+1

Let 0; > d2 > ... be the singular values of A — B in decreasing order. Then from Weyl’s inequality we know that
max |o; — ;| < maxd; = ||A — B]|. 44)
K2 7
Hence, fori > r + 1,
7. <o+ ||A-B| <o+1(A) +||A - B (45)
This allows us to conclude that max;>,+1 7 < 0,41(4) + ||A — B||. Combined with Equation (43) we get

1G = Bll% < [|Bllx(0r+1(4) + || A - B|). (46)

Next, we shall upper bound the quantity ||f3 — G||F. By construction, both B and G are rank r matrices and hence

B — @ has rank at most 2r matrix. This allows us to control the Frobenius norm of B — G via its spectral norm as
follows

1B —Gllr < vV2r||B-G]| 47)
To bound || B — G| consider the following decomposition
1B =G|l <|IB— Al +|[A-B||+|B -Gl (48)
We have .
1B = Al =1 oiwy || < orya. (49)
@
IB=Gll =1 > muw/ || =741 <orp1 +]|A- B (50)
i>r+1

where to get inequality (a) we used Equation (45). Combining Equations (48), (49), (50) we get

1B =G|l < 01+ [|A = Bl + 041 + [|A = Bl| = 2(011 + [|A — Bl|) (51)
and using Equation (47) we get
1B - Gl|p < 2V2r(0r41 +||A - B (52)
Finally using Equation (46) and Equation (52) we get
1B = Bllr < 2v2r(0r11 +[|A = B|) + V]| Bll(or+1 +[|A = BI)). (53)
O



Let us define matrices A, B, 7 as follows

-1

AY¥ _— XoA 54)
plQ :

BY 7+ (55)

ZEP.(A). (56)

In the rest of the document, unless otherwise stated, the above definitions of A, B, 7 will be applicable. In order to
obtain an upper bound on €5 we shall use Lemma (3) with the above choices for A, B.

1Z = Z*|lr < VIIZ* (o1 + [[A = Z*]]) + 2V 2r (0041 + ||A = Z7])). (57)

Since Z* is of rank r, we have ||Z*||,, < r||Z*||. From triangle inequality || A|| < ||A — Z*|| + ||Z*||. These facts
coupled with the fact that 0,11 < o allows us to obtain

E|Z = Z2*||% < rl|Z*||EI|A — Z*|| + 1| Z*|]) + 8r(4B||A — Z*|* + || Z*|*). (58)

Notice that e, is a scaled version of E||Z — Z*||2. Let,

def

AL =E[A - X|| (59)
B> EJ|A - X|. (60)

Using the above definitions, Equation (58), the triangle inequality ||A — Z*|| < ||A — X|| + || X — Z*||, along with
the elementary fact that (a + b)? < 2a? + 2b?, we obtain

E||Z — Z*||% < rl|Z* 11281 + 2BI|X — Z*|| + || Z*|I) + 8r(882 + 8EI|X — Z*[|* + || Z*||*) ©1)
= rl|Z*|E[IX — Z*[| + |Z*|I) + 8r(S8E|IX — Z*||* + [|Z*||*) + (281 + 64B2).  (62)

Bounding 51, 82. In order to bound (1, 2 we need upper bounds on spectral norm of sums of random matrices.
Towards this, the following Bernstein inequality is useful

Theorem 2 (Bernstein’s inequality). Let S1, . .. Sy be independent, centered random matrices with common dimension
n X m, and assume that each one of them is bounded
[1S;]] < L foreach j > 1. (63)

Let M = Z?:l S;, and let v(M) denote the matrix variance statistic of the sum

k k
v(M) = max{|| Y ES; ST 1L 1| Y ES] 81 (64)
j=1 j=1
Then
1.
B(IM|| > 1) < (m+ n)exp (L2 ©5)
=W ST M) + Lt/3 )
Furthermore
2. )
EZ < +/2v(M)log(m + n) + 3 Llog(m +n). (66)

We shall bound (3 using part (ii) of Bernstein’s inequality, and (35 using part (ii) of Bernstein’s inequality. The next
two lemma’s provide necessary material for bounding 31, .

Proposition 1. Let A be a random mask of size n x m, where a random location is chosen and set to 1, and rest
of the entries are set to 0. Let X be a matrix of size n X m with entries bounded in absolute value by 1. Define
S=L1XoA-X. Letp = L Then,



LIS < IX]1+ 5
2.ESTS=ESST =XoX - XXT
Proof.
1 1 @) 1
151 =7 X 0 & = XIl < [IXI + (17X o All < JIX][ + . (67)

In the above set of inequalities in order to derive (a) we used the fact that X o A is an n X m matrix with a single
non-zero entry bounded in absolute value by 1. Hence the spectral norm of this matrix will be bounded by 1. To derive
the second part of the proposition we proceed as follows

ESST =E(LX0A - X)(1X0A - X)T =E[4 (X0 A)XoA)T — L(XoA)XT — 1X(XoA)T + XXT].
p p p p p

(68)
Via elementary calculations, it is easy to verify that
1
E[pz(XoA)(XoA)T} =XoX (69)
1 1
E [X(X o A)T] =E [(X o A)XT] =XXxT. (70)
p p
These identities allow us to conclude part (ii) of this proposition. O
We are now ready to bound the quantities 31, 82
Lemmad. Let p = —. Then,
1 21 XoX-XXT 1 X 1
5 :EH xodn - < [Reslm e | logm+m@IXI+D
€] €2 3plQ|
Proof.
1 1]
——XoAqg—X XoA, — X (72)
e |- = 2 (Xoh—X)
Here Ay, ..., Aq are random i.i.d. boolean masks with each of them having exactly one non-zero, whose location is
chosen uniformly at random from [r] x [m]. For this reason the matrices S1, ..., S|2| are i.i.d. matrices. It is easy to

see that ES; = 0O for each j > 1. Applying Bernstein’s inequality (Theorem (2)) and using Proposition (1) to bound
the necessary quantities we get that

log(m +n) 1
XoAg—X 2log(m +n)|Q|| X o X — XX T|| + ——(||X]| + = (73)
|| 0 da - x| = g [y/2outm + ol 1+ 2E R x4 )
2log(m +n)||X o X — XXT||  log(m+n)(p||X]||+1)
= - (74)
€2 3pl€Q|
O
Next we bound fs.
Lemma 5. With probability at least 1 — §
2log (2:2) 1 4log(™t")ymn
L Xong- XH <||X| )+ Hlog("5™)mn 75)
p|9| 319 €2
Furthermore, conditioned on X,
1 2 20mnlog(n)\> 10log(n) .
Bo=E|—XoAg—X g1+< ) + IXoX — XX . (76)
pl€| 39| 1€




Proof. The first part of the theorem follows immediately by using part (i) of Bernstein’s inequality. We get that, for
any 6 > 0, with probability at least 1 — 9,

21 m+n 1 21 miInVI X o X — XX T
||AX||s°g(5)<||X|+p)+\/ og(#5)IIX o I .

31€ €]

Now, using the fact that || X o X|| < ||X||? and the fact that each element of X is bounded by 1 in absolute value, it
follows that || X o X — X X T|| < 2mn. Substituting this bound in the above expression allows us to get the first part
of the theorem. In order to derive the second part of the theorem, we proceed as follows. We first derive a worst case
upper bound on || A — X || as follows

1

A—X|=|—XoAg - X (78)
| | HPIQI o — X
1
< —||X o Agl| + || X (79)
Sl e dall+ 11X
1 12|
< — NI X oA +]|X]] (80)
p|Q| = ‘ ]‘ || ‘
1
< —+|IX]|. (81)
p

Using equations (77) and (78) we get
2

2log () ( 1 2log(42)[[ X o X — XX T|| 1 ?
E||[A-X|? < (1-6) [ —=2 2 X+)+ J +6(+ X) 82
I II* < (1-94) 319 [1X1 , Q) 5 X1 (82

Since each element of X is bounded by 1 in magnitude, we get that || X|| < y/mn. Now, replace p = -L- and choose

5= ﬁ Using the inequality (a + b)? < 2a? + 2b? and over-approximating we get the desired result. [

Final bound on ¢>. We are now ready to establish a bound on €5. In the next bound we shall no longer keep track
of explicit constants. Instead in the following calculations we shall use a universal constant C' > 0 whose value can
change from one line to another.

Lemma 6. Let j11 = E||N||, u2 = E||N||%. Then, for some universal constant C > 0 we have

T r||M*—=Z*||2 r r rmn log?(n
62<O(m\r(||M*—Z*||+,u1)+||+M2++g()>

83
n mn mn - m |22 (83)

Proof. From Equation (61) we have
eo < 7| Z*]|(2E[|X — Z*|| + ||Z7]]) + 8r(8E[|X — Z*[|> + (| Z*|*) + r(261 + 645,). (84)
Now, using Lemma (4) and (5) to bound (31, B2, we get

log(n)||X o X —XXT||+

C
€ < 7TE[\|Z*H 1X = Z* + [1X = Z*|* + [12*|]* +

(85)
log(n) m?n?log®(n) log(n)
1Y Q2 9]

In the above expectation the expectation is being taken w.r.t. the randomness in X due to additive noise of our

model. We shall now compute the remaining expectations. For notational convenience, define 1 = E||N||, and
po = E||N|[?. Using the fact that X = M* + N, we get

E|XoX - XX| <E||XoX||+E[|XX"| (86)

(I1X] +mn) + 1+ I1X 0 X = XXT|]].

(@)
< E[| X[ +E[[(M* + N)(M* + N)"|| (87)

(b)
< E[|M*[]? 4+ ||IN||? + 2|[M*|| [|N]| + [|M*(M*)T|| + M*NT + N(M*)" + NN T] (88)
= 2||M*|]? + 22 + 4||M*|| 1 (89)

10



where to obtain inequality (a) we used the fact that ||A o B|| < [|A]||||B]| [6, Problem 1.6.13, page 23]. To obtain
inequality (b) we used sub-additivity of norms, and the fact that spectral norm is sub-multiplicative. By Jensen’s
inequality we get

E\/IX 0 X ~ XXT|| < \/E|X 0 X — XXT|| < V2P + 202 + dr [AL7]] (90)

Finally using the sub-additivity of norms we get that
E[|X — Z*|]? = E||M* + N — Z*|]? < 2[|[M* — Z*||* + 2E[|N|]* = 2||M* — Z*|* + 2p12 ©On
E[|X — Z*[| = E||M* + N — Z*|| < E||M™ — Z*[| + E||N| = E[|M* = Z*|| + (92)

Now, putting together Equations (85), (86), (90), (91), and substituting the worst case bound ||M*|| = C'v/mn, we get
r T r N
2 < C[ 127 (1" = 27 + ) + —— 0 = 272+ (o + 127 )+
mn mn mn

93)

r [log(n) rmnlog®(n)  rlog(n)

wn\| Tl (et myimn ) + =0 mn| Q)]

We can further simplify the above expression, by noting that the entries of /N are bounded by 1, and hence p; =

O(y/mn), ua = O(mn). Note that in reality u, o are much smaller, and one could lose a lot of information by

considering their worst case values. However, in order to simplify the above bound for €5 and make it interpretable,

we shall selectively replace 1, po by v/mn, mn respectively, This allows us to gauge which terms are lower order
terms and drop them. This gets us

(mn+ p2 + \/%)} :

T r|M* = Z*||>  rpy o rmnlog?(n)
<O —=(||M*-Z* -+ — - — 94
2= (m\/ﬁ(” [l pm) + mn +mn+m+ |22 4
O
4 Proof of Theorem (1)
From Lemma (2) we have
- v/mnlog(n) n mn \/
MSE(M) <O | —=——"+ /1o + NG
( o Vi Teps
From Lemma (6) we have
T rl|M*—Z*||? e rmnlog?(n)
<O|(—=(|M*-Z* _t — 4 — 4 ——= 95
2= (m\/ﬁ(H 1+ pm)+ mn ernerJr |22 )
Putting the above two equations together we get
[T \/ 1 V
MSE(NT mn og . mn n T PR
\QI?’/ 9 my/n f
(96)
ra_ (i @\, [rmn log? (n))
my/n Vvn Q2
S Source for datasets
Here is where one can download the real world datasets on which all of our experiments were performed.
1. Paper recommendation dataset:http://www.comp.nus.edu.sg/~sugiyama/

SchPaperRecData.html.
2. Jester dataset: http://goldberg.berkeley.edu/jester—-data/.
3. Movie lens dataset: http://grouplens.org/datasets/movielens/
4. Cameraman dataset: http://www.utdallas.edu/~cxcl123730/mh_bcs_spl.html
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Figure 1: The RMSE of M M C' — ¢ when the probability of sampling each entry in the matrix is p = 0.35. Here we
show the decay of RMSE for different values of ¢, and when the transfer function is ¢*(Z; ;) = W
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6 RMSE of M MC — ¢ with iterations

The RMSE of M M C — ¢ shows a decreasing trend with the number of iterations. For mild non-linearities, we in fact
see linear decay of RMSE, as can be seen in Figure 1
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