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1 Error Analysis of Monotonic Matrix Completion

For our technical results, we shall consider a simpler easier-to-anlyze sampling model. We shall assume that instead
of choosing each entry of the matrix independently with some probability, we instead choose |Ω| number of entries in
the matrix independently with replacement. We shall analyze our algorithm, MMC, for the case of T = 1. When
T = 1, we get

Ẑ = Pr

(
mnXΩ

|Ω|

)
(1)

ĝ = LPAV (ẐΩ, XΩ) (2)

M̂i,j = ĝ(Ẑi,j),∀i = [m], j = [n], (3)

For technical convenience, let p = 1
mn . Note that this p is not the same as p used in the main paper. Here, p = 1

mn ,
is defined keeping in mind that |Ω|mn can be roughly thought of as the probability of sampling an element in the matrix.
Finally, define the mean squared error (MSE) of our estimate M̂ can be defined as

MSE(M̂) = E

 1

mn

n∑
i=1

m∑
j=1

(M̂i,j −Mi,j)
2

 . (4)

We are interested in analyzing theMSE of M̂ output by MMC for T = 1. We shall make the following assumptions

2 MMC model and technical assumptions
A1 ‖Z?‖ = O(

√
n), i.e. the spectral norm of Z? is of the order of

√
n.

A2. σr+1(X) = O(
√
n) with probability at least 1− δ.

The MMC model makes the following assumptions. These assumptions are the same as in the main paper. We
enumerate it here for the sake of clarity.

M1. X = M? +N .
M2. EN = 0.
M3. M?

i,j = g?(Z?i,j) ∀i = [n], j = [m].

M4. Assume that n ≥ m, and rank(Z?) = r � m.
M5. Boundedness assumption: |Z?i,j | ≤ 1, |Xi,j | ≤ 1 for all i ∈ [n], j ∈ [m].
M6. g? : R→ R is monotonic and 1-Lipschitz.
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M7. The set Ω is generated by sampling uniformly at random with replacement from the index set [n]× [m].

We would like to remark that our 1− Lipschitz assumption made in M6, has been done just to simplify our final
expression. The proofs that we present here go though with minor changes for the general L− Lipschitz case.

2.1 Notation

All of our matrices, unless explicitly stated, will be n ×m with n ≥ m. ||A|| is the spectral norm of matrix A, and
||A||? is the nuclear norm of matrix A. We shall denote by σ1(A) ≥ σ2(A) ≥ . . . the singular values of matrix A.
Finally, let G def

= {g | g : [−W,W ]→ [−1, 1] is monotonic and 1-Lipschitz}.

2.2 Main Theorem

Theorem 1. Denote by µ1 = E||N ||, µ2 = E||N ||2. Let α = ||M? − Z?||. Then, under assumptions A1, A2, and
modeling assumptions M1-M7, the MSE of the estimator output by MMC with T = 1 is given by

MSE(M̂) = O
(√ r

m
+

√
mn log(n)

|Ω|
+

mn

|Ω|3/2
+

√
mn

|Ω|
+

√
r

m
√
n

(
µ1 +

µ2√
n

)
+√

rα

m
√
n

(
1 +

α√
n

)
+

√
rmn log2(n)

|Ω|2
) (5)

2.3 Interpretation of our results

In order to obtain best results, we assume that α = O(
√
n). Typically µ1 = O(

√
n), and µ2 = O(n). In these settings

we can simplify the above expression to

MSE(M̂) = O

√mn log(n)

|Ω|
+

mn

|Ω|3/2
+

√
mn

|Ω|
+

√
r

m
+

√
rmn log2(n)

|Ω|2

 . (6)

This result can be converted into a sample complexity bound as follows. If we are given |Ω| = max
(
n4/3

ε , n log(n)
√
r

ε2

)
,

then

MSE(M̂) ≤
√

r

m
+ ε. (7)

3 Towards proof of Theorem (1)

We begin with the following technical lemma that will be used in the proof.

Lemma 1. Let G = {g|g : [−W,W ] → [−1, 1] is monotonic and 1-Lipschitz}. With probability at least 1 − δ over
the sample z1, . . . , zn, the following statement is true for all g ∈ G∣∣∣∣ 1n∑(g(zi)− yi)2 − E(g(z)− y)2

∣∣∣∣ = Õ

(√
W

n

)
(8)

where Õ hides logarithmic dependence on n,W, 1/δ.

Proof. Let R̂n(G) be the empirical Rademacher complexity of function class G, and letN∞(ε,G) be the L∞ covering
number of the function clas G. From [1, Lemma 6] we know that

N∞(ε,G) ≤ 1

ε
2

2W
ε . (9)
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The above covering number allows us to bound the empirical Rademacher complexity of the function class G via
Dudley’s entropy bound. Using [2, Lemma A.3], and the fact that N∞(ε,G) ≥ N2(ε,G, z1, . . . , zn) we get

R̂n(G) ≤ inf
α≥0

4α+ 10

∫ 1

α

√
logN∞(ε,G)

n
dε (10)

≤ 4α+ 10

∫ 1

α

√
2W
ε log( 1

ε )

n
dε (11)

≤ 4α+ 10

√
2W

n

∫ 1

α

1

ε
dε (12)

≤ 10

√
2W

n
log

(
4e

10

√
n

2W

)
. (13)

Using a uniform convergence bound in terms of the Rademacher complexity of the function class [3, Theorem 8] we
get the desired result.

Lemma 2. Let ε2 = E[ 1
mn

∑
i,j(Ẑi,j − Z?i,j)2]. Then, under assumptions A1-A2 and M1-M8, we have

MSE(M̂) ≤ O

(√
mn log(n)

|Ω|
+

√
n

|Ω|
+

mn

|Ω|3/2
+

√
mn

|Ω|
+ ε2 +

√
ε2

)

Proof.

1

mn
E

∑
i,j

(M̂i,j −M?
i,j)

2

 =
1

mn
E

∑
i,j

(ĝ(Ẑi,j)− g?(Z?i,j))2


=

1

mn
E

∑
i,j

(
ĝ(Ẑi,j)− g?(Ẑi,j) + g?(Ẑi,j)− g?(Z?i,j)

)2


≤ 2E

 1

mn

∑
i,j

(
ĝ(Ẑi,j)− g?(Ẑi,j)

)2


︸ ︷︷ ︸

T1

+2E
[

1

mn

(
g?(Ẑi,j)− g?(Z?i,j)

)2
]

︸ ︷︷ ︸
T2

= 2T1 + 2T2.

We shall bound T2 in terms of ε2.

Bounding T2:

T2 =
1

mn
E
∑
i,j

(g?(Ẑi,j)− g?(Z?i,j))2 (14)

(a)
≤ 1

mn
E
∑
i,j

(Ẑi,j − Z?i,j)2 def
= ε2 (15)

where inequality (a) follows from the fact that g? is 1-Lipschitz. Next we shall bound T1 in terms of ε2 and other
terms.
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Bounding T1:

E

 1

mn

∑
i,j

(
ĝ(Ẑi,j)− g?(Ẑi,j)

)2

 = E

[
1

|Ω|
∑
Ω

(
ĝ(Ẑi,j)− g?(Ẑi,j)

)2
]

︸ ︷︷ ︸
T1,1

+

E

 1

mn

∑
i,j

(
ĝ(Ẑi,j)− g?(Ẑi,j)

)2

− E

[
1

|Ω|
∑
Ω

(
ĝ(Ẑi,j)− g?(Ẑi,j)

)2
]

︸ ︷︷ ︸
∆1

(16)

Next we shall bound T1,1 as follows. Since, ĝ, g?, by definition belong to G, and because ĝ is the solution to the
optimization problem

ĝ = arg min
g∈G

∑
Ω

(g(Ẑi,j)−Xi,j)
2, (17)

hence via the generalized Pythagorean inequality [4] we have∑
Ω

(ĝ(Ẑi,j)−Xi,j)
2 +

∑
Ω

(ĝ(Ẑi,j)− g?(Ẑi,j))2 ≤
∑
Ω

(Xi,j − g?(Ẑi,j))2. (18)

Using Equation (18) we can bound T1,1 as follows

T1,1 = E

[
1

|Ω|
∑
Ω

(
ĝ(Ẑi,j)− g?(Ẑi,j)

)2
]

≤ E

[
1

|Ω|
∑
Ω

(Xi,j − g?(Ẑi,j))2 − 1

|Ω|
∑
Ω

(
Xi,j − ĝ(Ẑi,j)

)2
]

= E

[
1

|Ω|
∑
Ω

(Xi,j − g?(Ẑi,j))2

]
− E

[
1

|Ω|
∑
Ω

(Xi,j − g?(Z?i,j))2

]
︸ ︷︷ ︸

I1

+

E

 1

mn

∑
i,j

(Xi,j − g?(Z?i,j))2

− E

 1

mn

∑
i,j

(Xi,j − ĝ(Ẑi,j))
2


︸ ︷︷ ︸

I2

+

E

[
1

|Ω|
∑
Ω

(Xi,j − g?(Z?i,j))2

]
− E

 1

mn

∑
i,j

(Xi,j − g?(Z?i,j))2


︸ ︷︷ ︸

I3

+

E

 1

mn

∑
i,j

(Xi,j − ĝ(Ẑi,j))
2

− E

[
1

|Ω|
∑
Ω

(Xi,j − ĝ(Ẑi,j))
2

]
︸ ︷︷ ︸

I4

(19)

We shall look at the terms I1, I2, I3, I4 and bound them separately. From assumption A1 we know that g?(Z?i,j) is the
best estimator of Xi,j in mean squared. Hence, I2 ≤ 0. We next bound I1, I3, I4. |Z?|∞ ≤ 1, and |X?|∞ ≤ 1, hence
|Xi,j − g?(Z?i,j)| ≤ 2. If we call ∆3 the random variable whose expectation is I3, then ∆3 ≤ 4 surely. Moreover we

can apply lemma (1) to guarantee that ∆3 ≤ O
(√

log(|Ω|/δ)
|Ω|

)
with probability at least 1− δ. Choose δ = 1√

|Ω|
. We

then have

I3 = E∆3 ≤ 4δ + (1− δ)O

(√
log(|Ω|/δ)
|Ω|

)
= O

(√
log(|Ω|)
|Ω|

)
. (20)

4



208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

Next, we bound I4. This needs a slightly careful treatment, since Ẑi,j is random. Let A = 1
p|Ω|X ◦ ∆. Let A =∑

σiuiv
>
i be the SVD of A with σ1 ≥ σ2 ≥ · · ·σm. By definition Ẑ = Pr(A). Hence, A − Z =

∑
i≥r+1 σiuiv

>
i .

This means that

|A− Ẑ|∞ ≤ ||A− Ẑ||

= ||
∑
i≥r+1

σiuiv
>
i ||

= σr+1

≤ σ1(A−X) + σr+1(X), (21)

where we used Weyl’s inequality to get the last line from the penultimate line. We shall now use the above bound on
Ẑ −A to obtain upper bound on |Ẑ|∞ as follows

|Ẑ|∞
(a)
≤ |Ẑ −A|∞ + |A−X|∞ + |X|∞
(b)
≤ ||A−X||+ |X|∞ + ||A−X||+ σr+1(X)

= 2||A−X||+ |X|∞ + σr+1(X)

= 2||A−X||+ 1 + σr+1(X)
(c)
≤ 2||A−X||+ 1 + σr+1(X) (22)

To obtain inequality (a) we used the triangle inequality, and to obtain inequality (b) we used Equation (21). Now,
consider the event

E1 =

||A−X|| ≤ 2mn log
(
m+n
δ

)
3|Ω|

+

√
2 log(m+n

δ )mn

|Ω|

 . (23)

From Lemma 5 we know that conditioned on X , P(E1) ≥ 1 − δ over the randomness in Ω. Using equation (22) we
get that on event E1

|Ẑ|∞ = O

(
σr+1(X) +

mn log(m+n
δ )

|Ω|
+

√
mn log((m+ n)/δ)

3|Ω|

)
def
= b (24)

Now let I ′4 be the argument to the expectation operator in I4. Let us define another event

E11 =

{
I ′4 ≤

√
b log((m+ n)/δ)

|Ω|

}
(25)

By arguments similar to the one used in lemma (1), we get that P(E11) ≥ 1− δ over the random choice of Ω. Notice
that I ′4 ≤ 4 surely. We are now ready to calculate I4 as follows

I4 = EXEΩ|XI
′
4

≤ EXP(E1)EΩ|X,E1I
′
4 + 4P(Ē1)

≤ EXP(E1)(P(E11)I ′4 + 4P(Ē11)) + 4P(Ē1)

≤ 8δ + EX

√
b log((m+ n)/δ)

|Ω|
(26)

Substituting the value of b, and using δ = 1
|Ω| , and using assumption A2, we get that

I4 = EXEΩ|XI
′
4 (27)

≤ 8δ + EX

√√√√ 1

|Ω|
O

(
σr+1(X) +

mn log((m+ n)|Ω|)
|Ω|

+

√
mn log((m+ n)|Ω|)

3|Ω|

)
(28)

= O

(√
mn

|Ω|2
log2 ((m+ n)|Ω|)

)
(29)

5
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Notice that ∆1 uses ĝ − g? which is a 2 Lipchitz function. By perfoming a similar analysis as in I4 it is easy to show
that ∆1 = O(I4).

Bounding I1.

I1 = E

[
1

|Ω|
∑
Ω

(Xi,j − g?(Ẑi,j))2 − 1

|Ω|
∑
Ω

(Xi,j − g?(Z?i,j))2

]
(30)

= E

[
1

|Ω|
∑
Ω

(g?(Z?i,j)− g?(Ẑi,j))(2Xi,j − g?(Ẑi,j)− g?(Z?i,j))

]
(31)

(a)
≤ 4E

1

|Ω|
|g?(Z?i,j)− g?(Ẑi,j)| (32)

(b)
≤ 4E

1

|Ω|
∑
Ω

|Z?i,j − Ẑi,j | (33)

= 4E
1

mn

∑
i,j

|Z?i,j − Ẑi,j |+ 4

E
1

|Ω|
∑
Ω

|Z?i,j − Ẑi,j | − E
1

mn

∑
i,j

|Z?i,j − Ẑi,j |


︸ ︷︷ ︸

∆5

(34)

(c)
≤ 4E

1

mn

∑
i,j

|Z?i,j − Ẑi,j |+ 4∆5 (35)

(d)
≤ 4

√
E

1

mn

∑
i,j

|Z?i,j − Ẑi,j |2 + 4∆5 = 4(
√
ε2 + ∆5) (36)

where, to get inequality (a) we used the fact that |Xi,j | ≤ 1 and |g?| ≤ 1. To get inequality (b) we used the fact that g?
is 1 Lipschitz. To get inequality (c) we used concentration of measure. Finally, to get inequality (d) we used Jensen’s
inequality to bound E|x| ≤

√
Ex2. Our next step is to bound ∆5.

Bounding ∆5: The idea is to consider the event E1 as was done during bounding the term I4. Once again we shall
consider the event

E1 =

||A−X|| ≤ 2mn log
(
m+n
δ

)
3|Ω|

+

√
2 log(m+n

δ )mn

|Ω|

 . (37)

Similar to arguments there, we know from Equation (24) that on event E1

|Ẑ|∞ = O

(
σr+1(X) +

mn log(m+n
|Ω| )

|Ω|
+

√
mn log((m+ n)/δ)

3|Ω|

)
def
= b

Consider the collection of random variables ξ1, . . . , ξ|Ω|, where each ξk takes the value Z?i,j − Ẑi,j , where (i, j) is
chosen u.a.r. with replacement from [n]× [m]. It is easy to see that each of ξk ∈ [0, b+ 1] on E1. Applying Hoeffding
inequality we get on E1 with probability at least 1− δ over the random choice of Ω, and on event E1

1

|Ω|
∑
Ω

|Z?i,j − Ẑi,j | −
∑
i,j

|Z?i,j − Ẑi,j | ≤

√
(b+ 1)2

2|Ω|
log(1/δ) (38)

By arguments similar to the ones used in establishing bounds for I4, we get

∆5 ≤ O
(

log ((m+ n)|Ω|)
(√

n

|Ω|
+

mn

|Ω|3/2
+

√
mn

|Ω|

))
. (39)

This concludes our first set of calculations. With this we have

MSE(M̂) = O

(√
mn log(n)

|Ω|
+

√
n

|Ω|
+

mn

|Ω|3/2
+

√
mn

|Ω|
+ ε2 +

√
ε2

)
(40)
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The rest of the proof establishes upper bounds on ε2.

3.1 Bounding ε2.

In order to establish an upper bound on ε2 we first need the following projection lemma. This lemma is similar in spirit
to a lemma of S.Chatterjee [5, Lemma 3.5]. Before we establish this lemma, we would like to clarify the notation that
we use. Let σ1 ≥ σ2 ≥ σm be the singular values of a matrix A.
Lemma 3. Let A =

∑m
i=1 σixiy

>
i be the SVD of a known, rectangular matrix A ∈ R×m, with the singular values

σ1 ≥ σ2 . . . ≥ σm arranged in decreasing order. Let B be an unknown n × m matrix. Given 1 ≤ r ≤ m, let
B̂

def
= Pr(A)

def
=
∑r
i=1 σixiy

>
i be the projection estimator of B. Then,

||Pr(A)−B||F ≤
√
||B||?(σr+1 + ||A−B||) + 2

√
2r(σr+1 + ||A−B||). (41)

Proof. Let B =
∑m
i=1 τiuiv

>
i be the SVD of B with τ1 ≥ τ2 ≥ . . . τm. Let G = Pr(B)

def
=
∑r
i=1 τiuiv

>
i be the

projection of matrix B onto the rank r cone.

||B̂ −B||F ≤ ||B̂ −G||F + ||G−B||F , (42)

and
||G−B||2F = ||

∑
i≥r+1

τiuiv
>
i ||2F =

∑
i≥r+1

τ2
i ≤ ( max

i≥r+1
τi)||B||?. (43)

Let δ1 ≥ δ2 ≥ . . . be the singular values of A−B in decreasing order. Then from Weyl’s inequality we know that

max
i
|σi − τi| ≤ max

i
δi = ||A−B||. (44)

Hence, for i ≥ r + 1,
τi ≤ σi + ||A−B|| ≤ σr+1(A) + ||A−B||. (45)

This allows us to conclude that maxi≥r+1 τi ≤ σr+1(A) + ||A−B||. Combined with Equation (43) we get

||G−B||2F ≤ ||B||?(σr+1(A) + ||A−B||). (46)

Next, we shall upper bound the quantity ||B̂ − G||F . By construction, both B̂ and G are rank r matrices and hence
B̂ − G has rank at most 2r matrix. This allows us to control the Frobenius norm of B̂ − G via its spectral norm as
follows

||B̂ −G||F ≤
√

2r||B̂ −G|| (47)

To bound ||B̂ −G|| consider the following decomposition

||B̂ −G|| ≤ ||B̂ −A||+ ||A−B||+ ||B −G||. (48)

We have
||B̂ −A|| = ||

∑
i

σixiy
>
i || ≤ σr+1. (49)

||B −G|| = ||
∑
i≥r+1

τiuiv
>
i || = τr+1

(a)
≤ σr+1 + ||A−B|| (50)

where to get inequality (a) we used Equation (45). Combining Equations (48), (49), (50) we get

||B̂ −G|| ≤ σr+1 + ||A−B||+ σr+1 + ||A−B|| = 2(σr+1 + ||A−B||) (51)

and using Equation (47) we get
||B̂ −G||F ≤ 2

√
2r(σr+1 + ||A−B||) (52)

Finally using Equation (46) and Equation (52) we get

||B̂ −B||F ≤ 2
√

2r(σr+1 + ||A−B||) +
√
||B||?(σr+1 + ||A−B||). (53)
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Let us define matrices A,B, Ẑ as follows

A
def
=

1

p|Ω|
X ◦∆Ω (54)

B
def
= Z? (55)

Ẑ
def
= Pr(A). (56)

In the rest of the document, unless otherwise stated, the above definitions of A,B, Ẑ will be applicable. In order to
obtain an upper bound on ε2 we shall use Lemma (3) with the above choices for A,B.

||Ẑ − Z?||F ≤
√
||Z?||?(σr+1 + ||A− Z?||) + 2

√
2r(σr+1 + ||A− Z?||). (57)

Since Z? is of rank r, we have ||Z?||? ≤ r||Z?||. From triangle inequality ||A|| ≤ ||A − Z?|| + ||Z?||. These facts
coupled with the fact that σr+1 ≤ σ1 allows us to obtain

E||Ẑ − Z?||2F ≤ r||Z?||(2E||A− Z?||+ ||Z?||) + 8r(4E||A− Z?||2 + ||Z?||2). (58)

Notice that ε2 is a scaled version of E||Ẑ − Z?||2F . Let,

β1
def
= E||A−X|| (59)

β2
def
= E||A−X||2. (60)

Using the above definitions, Equation (58), the triangle inequality ||A − Z?|| ≤ ||A −X|| + ||X − Z?||, along with
the elementary fact that (a+ b)2 ≤ 2a2 + 2b2, we obtain

E||Ẑ − Z?||2F ≤ r||Z?||(2β1 + 2E||X − Z?||+ ||Z?||) + 8r(8β2 + 8E||X − Z?||2 + ||Z?||2) (61)

= r||Z?||(2E||X − Z?||+ ||Z?||) + 8r(8E||X − Z?||2 + ||Z?||2) + r(2β1 + 64β2). (62)

Bounding β1, β2. In order to bound β1, β2 we need upper bounds on spectral norm of sums of random matrices.
Towards this, the following Bernstein inequality is useful
Theorem 2 (Bernstein’s inequality). Let S1, . . . Sk be independent, centered random matrices with common dimension
n×m, and assume that each one of them is bounded

||Sj || ≤ L for each j ≥ 1. (63)

Let M =
∑k
j=1 Sj , and let ν(M) denote the matrix variance statistic of the sum

ν(M) = max
{
||

k∑
j=1

ESjS>j ||, ||
k∑
j=1

ES>j Sj ||
}
. (64)

Then

1.

P(||M || ≥ t) ≤ (m+ n) exp

(
−t2/2

ν(M) + Lt/3

)
, (65)

Furthermore

2.
EZ ≤

√
2ν(M) log(m+ n) +

1

3
L log(m+ n). (66)

We shall bound β1 using part (ii) of Bernstein’s inequality, and β2 using part (ii) of Bernstein’s inequality. The next
two lemma’s provide necessary material for bounding β1, β2.
Proposition 1. Let ∆ be a random mask of size n × m, where a random location is chosen and set to 1, and rest
of the entries are set to 0. Let X be a matrix of size n × m with entries bounded in absolute value by 1. Define
S = 1

pX ◦∆−X . Let p = 1
mn . Then,
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1. ||S|| ≤ ||X||+ 1
p

2. ES>S = ESS> = X ◦X −XX>

Proof.

||S|| = ||1
p
X ◦∆−X|| ≤ ||X||+ ||1

p
X ◦∆||

(a)
≤ ||X||+ 1

p
. (67)

In the above set of inequalities in order to derive (a) we used the fact that X ◦ ∆ is an n × m matrix with a single
non-zero entry bounded in absolute value by 1. Hence the spectral norm of this matrix will be bounded by 1. To derive
the second part of the proposition we proceed as follows

ESS> = E(
1

p
X ◦∆−X)(

1

p
X ◦∆−X)> = E[

1

p2
(X ◦∆)(X ◦∆)> − 1

p
(X ◦∆)X> − 1

p
X(X ◦∆)> +XX>].

(68)
Via elementary calculations, it is easy to verify that

E
[

1

p2
(X ◦∆)(X ◦∆)>

]
= X ◦X (69)

E
[

1

p
X(X ◦∆)>

]
= E

[
1

p
(X ◦∆)X>

]
= XX>. (70)

These identities allow us to conclude part (ii) of this proposition.

We are now ready to bound the quantities β1, β2

Lemma 4. Let p = 1
mn . Then,

β1 = E
∥∥∥∥ 1

p|Ω|
X ◦∆Ω −X

∥∥∥∥ ≤
√

2 log(m+ n)||X ◦X −XX>||
|Ω|

+
log(m+ n)(p||X||+ 1)

3p|Ω|
. (71)

Proof. ∥∥∥∥ 1

p|Ω|
X ◦∆Ω −X

∥∥∥∥ =
1

|Ω|

∥∥∥∥∥∥∥
|Ω|∑
j=1

(X ◦∆j −X)︸ ︷︷ ︸
Sj

∥∥∥∥∥∥∥ (72)

Here ∆1, . . . ,∆Ω are random i.i.d. boolean masks with each of them having exactly one non-zero, whose location is
chosen uniformly at random from [n]× [m]. For this reason the matrices S1, . . . , S|Ω| are i.i.d. matrices. It is easy to
see that ESj = 0 for each j ≥ 1. Applying Bernstein’s inequality (Theorem (2)) and using Proposition (1) to bound
the necessary quantities we get that

E
∥∥∥∥ 1

p|Ω|
X ◦∆Ω −X

∥∥∥∥ =
1

|Ω|

[√
2 log(m+ n)|Ω|||X ◦X −XX>||+ log(m+ n)

3
(||X||+ 1

p
)

]
(73)

=

√
2 log(m+ n)||X ◦X −XX>||

|Ω|
+

log(m+ n)(p||X||+ 1)

3p|Ω|
(74)

Next we bound β2.
Lemma 5. With probability at least 1− δ∥∥∥∥ 1

p|Ω|
X ◦∆Ω −X

∥∥∥∥ ≤ 2 log
(
m+n
δ

)
3|Ω|

(
||X||+ 1

p

)
+

√
4 log(m+n

δ )mn

|Ω|
. (75)

Furthermore, conditioned on X ,

β2 = E
∥∥∥∥ 1

p|Ω|
X ◦∆Ω −X

∥∥∥∥2

≤ 1 +

(
20mn log(n)

3|Ω|

)2

+
10 log(n)

|Ω|
||X ◦X −XX>||. (76)
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Proof. The first part of the theorem follows immediately by using part (i) of Bernstein’s inequality. We get that, for
any δ > 0, with probability at least 1− δ,

‖A−X‖ ≤
2 log

(
m+n
δ

)
3|Ω|

(
||X||+ 1

p

)
+

√
2 log(m+n

δ )||X ◦X −XX>||
|Ω|

. (77)

Now, using the fact that ||X ◦X|| ≤ ||X||2 and the fact that each element of X is bounded by 1 in absolute value, it
follows that ||X ◦X −XX>|| ≤ 2mn. Substituting this bound in the above expression allows us to get the first part
of the theorem. In order to derive the second part of the theorem, we proceed as follows. We first derive a worst case
upper bound on ‖A−X‖ as follows

‖A−X‖ = || 1

p|Ω|
X ◦∆Ω −X|| (78)

≤ 1

p|Ω|
||X ◦∆Ω||+ ||X|| (79)

≤ 1

p|Ω|

|Ω|∑
j=1

||X ◦∆j ||+ ||X|| (80)

≤ 1

p
+ ||X||. (81)

Using equations (77) and (78) we get

E||A−X||2 ≤ (1−δ)

2 log
(
m+n
δ

)
3|Ω|

(
||X||+ 1

p

)
+

√
2 log(m+n

δ )||X ◦X −XX>||
|Ω|

2

+δ

(
1

p
+ ||X||

)2

(82)

Since each element of X is bounded by 1 in magnitude, we get that ||X|| ≤
√
mn. Now, replace p = 1

mn and choose
δ = 1

(mn+
√
mn)

2 . Using the inequality (a+ b)2 < 2a2 + 2b2 and over-approximating we get the desired result.

Final bound on ε2. We are now ready to establish a bound on ε2. In the next bound we shall no longer keep track
of explicit constants. Instead in the following calculations we shall use a universal constant C > 0 whose value can
change from one line to another.
Lemma 6. Let µ1 = E||N ||, µ2 = E||N ||2. Then, for some universal constant C > 0 we have

ε2 ≤ O
(

r

m
√
n

(||M? − Z?||+ µ1) +
r||M? − Z?||2

mn
+
rµ2

mn
+

r

m
+
rmn log2(n)

|Ω|2

)
(83)

Proof. From Equation (61) we have
ε2 ≤ r||Z?||(2E||X − Z?||+ ||Z?||) + 8r(8E||X − Z?||2 + ||Z?||2) + r(2β1 + 64β2). (84)

Now, using Lemma (4) and (5) to bound β1, β2, we get

ε2 ≤
Cr

mn
E
[
||Z?|| ||X − Z?||+ ||X − Z?||2 + ||Z?||2 +

√
log(n)||X ◦X −XX>||

|Ω|
+

log(n)

3|Ω|
(||X||+mn) + 1 +

m2n2 log2(n)

|Ω|2
+

log(n)

|Ω|
||X ◦X −XX>||

]
.

(85)

In the above expectation the expectation is being taken w.r.t. the randomness in X due to additive noise of our
model. We shall now compute the remaining expectations. For notational convenience, define µ1 = E||N ||, and
µ2 = E||N ||2. Using the fact that X = M? +N , we get

E‖X ◦X −XX>‖ ≤ E||X ◦X‖+ E||XX>|| (86)
(a)
≤ E||X||2 + E||(M? +N)(M? +N)>|| (87)
(b)
≤ E[||M?||2 + ||N ||2 + 2||M?|| ||N ||+ ||M?(M?)>||+M?N> +N(M?)> +NN>] (88)

= 2||M?||2 + 2µ2 + 4||M?||µ1 (89)
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where to obtain inequality (a) we used the fact that ||A ◦ B|| ≤ ||A||||B|| [6, Problem 1.6.13, page 23]. To obtain
inequality (b) we used sub-additivity of norms, and the fact that spectral norm is sub-multiplicative. By Jensen’s
inequality we get

E
√
‖X ◦X −XX>‖ ≤

√
E‖X ◦X −XX>‖ ≤

√
2||M?||2 + 2µ2 + 4µ1||M?|| (90)

Finally using the sub-additivity of norms we get that

E||X − Z?||2 = E||M? +N − Z?||2 ≤ 2||M? − Z?||2 + 2E||N ||2 = 2||M? − Z?||2 + 2µ2 (91)
E||X − Z?|| = E||M? +N − Z?|| ≤ E||M? − Z?||+ E||N || = E||M? − Z?||+ µ1 (92)

Now, putting together Equations (85), (86), (90), (91), and substituting the worst case bound ||M?|| = C
√
mn, we get

ε2 ≤ C
[ r

mn
||Z?|| (||M? − Z?||+ µ1) +

r

mn
||M? − Z?||2 +

r

mn
(µ2 + ||Z?||2)+

r

mn

√
log(n)

|Ω|
(
mn+ µ1

√
mn+ µ2

)
+
rmn log2(n)

|Ω|2
+
r log(n)

mn|Ω|
(mn+ µ2 + µ1

√
mn)

]
.

(93)

We can further simplify the above expression, by noting that the entries of N are bounded by 1, and hence µ1 =
O(
√
mn), µ2 = O(mn). Note that in reality µ1, µ2 are much smaller, and one could lose a lot of information by

considering their worst case values. However, in order to simplify the above bound for ε2 and make it interpretable,
we shall selectively replace µ1, µ2 by

√
mn,mn respectively, This allows us to gauge which terms are lower order

terms and drop them. This gets us

ε2 ≤ O
(

r

m
√
n

(||M? − Z?||+ µ1) +
r||M? − Z?||2

mn
+
rµ2

mn
+

r

m
+
rmn log2(n)

|Ω|2

)
(94)

4 Proof of Theorem (1)

From Lemma (2) we have

MSE(M̂) ≤ O

(√
mn log(n)

|Ω|
+

√
n

|Ω|
+

mn

|Ω|3/2
+

√
mn

|Ω|
+ ε2 +

√
ε2

)
From Lemma (6) we have

ε2 ≤ O
(

r

m
√
n

(||M? − Z?||+ µ1) +
r||M? − Z?||2

mn
+
rµ2

mn
+

r

m
+
rmn log2(n)

|Ω|2

)
(95)

Putting the above two equations together we get

MSE(M̂) = O
(√ r

m
+

√
mn log(n)

|Ω|
+

mn

|Ω|3/2
+

√
mn

|Ω|
+

√
r

m
√
n

(
µ1 +

µ2√
n

)
+√

rα

m
√
n

(
1 +

α√
n

)
+

√
rmn log2(n)

|Ω|2
) (96)

5 Source for datasets

Here is where one can download the real world datasets on which all of our experiments were performed.

1. Paper recommendation dataset:http://www.comp.nus.edu.sg/˜sugiyama/
SchPaperRecData.html.

2. Jester dataset: http://goldberg.berkeley.edu/jester-data/.
3. Movie lens dataset: http://grouplens.org/datasets/movielens/

4. Cameraman dataset: http://www.utdallas.edu/˜cxc123730/mh_bcs_spl.html

11



572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

Figure 1: The RMSE of MMC − c when the probability of sampling each entry in the matrix is p = 0.35. Here we
show the decay of RMSE for different values of c, and when the transfer function is g?(Zi,j) = 1

1+exp(−cZi,j) .
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6 RMSE of MMC − c with iterations

The RMSE of MMC − c shows a decreasing trend with the number of iterations. For mild non-linearities, we in fact
see linear decay of RMSE, as can be seen in Figure 1
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