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Abstract

For structured estimation problems with atomic norms, recent advances in the lit-
erature express sample complexity and estimation error bounds in terms of certain
geometric measures, in particular Gaussian width of the unit norm ball, Gaussian
width of a spherical cap induced by a tangent cone, and a restricted norm com-
patibility constant. However, given an atomic norm, bounding these geometric
measures can be difficult. In this paper, we present general upper bounds for such
geometric measures, which only require simple information of the atomic nor-
m under consideration, and we establish tightness of these bounds by providing
the corresponding lower bounds. We show applications of our analysis to certain
atomic norms, especially k-support norm, for which existing result is incomplete.

1 Introduction

Accurate recovery of structured sparse signal/parameter vectors from noisy linear measurements has
been extensively studied in the field of compressed sensing, statistics, etc. The goal is to recover
a high-dimensional signal (parameter) θ∗ ∈ Rp which is sparse (only has a few nonzero entries),
possibly with additional structure such as group sparsity. Typically one assume linear models, y =
Xθ∗+ω, in which X ∈ Rn×p is the design matrix consisting of n samples, y ∈ Rn is the observed
response vector, and ω ∈ Rn is an unknown noise vector. By leveraging the sparsity of θ∗, previous
work has shown that certain L1-norm based estimators [22, 7, 8] can find a good approximation of
θ∗ using sample size n� p. Recent work has extended the notion of unstructured sparsity to other
structures in θ∗ which can be captured or approximated by some norm R(·) [10, 18, 3, 11, 6, 19]
other than L1, e.g., (non)overlapping group sparsity with L1/L2 norm [24, 15], etc. In general, two
broad classes of estimators are considered in recovery analysis: (i) Lasso-type estimators [22, 18, 3],
which solve the regularized optimization problem

θ̂λn
= argmin

θ∈Rp

1

2n
‖Xθ − y‖22 + λnR(θ) , (1)

and (ii) Dantzig-type estimators [7, 11, 6], which solve the constrained problem

θ̂λn
= argmin

θ∈Rp

R(θ) s.t. R∗(XT (Xθ − y)) ≤ λn , (2)

whereR∗(·) is the dual norm ofR(·). Variants of these estimators exist [10, 19, 23], but the recovery
analysis proceeds along similar lines as these two classes of estimators.

To establish recovery guarantees, [18] focused on Lasso-type estimators and R(·) from the class of
decomposable norm, e.g., L1, non-overlapping L1/L2 norm. The upper bound for the estimation
error ‖θ̂λn

−θ∗‖2 for any decomposable norm is characterized in terms of three geometric measures:
(i) a dual norm bound, as an upper bound forR∗(XTω), (ii) sample complexity, the minimal sample
size needed for a certain restricted eigenvalue (RE) condition to be true [4, 18], and (iii) a restricted
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norm compatibility constant between R(·) and L2 norms [18, 3]. The non-asymptotic estimation
error bound typically has the form ‖θ̂λn

− θ∗||2 ≤ c/
√
n, where c depends on a product of dual

norm bound and restricted norm compatibility, whereas the sample complexity characterizes the
minimum number of samples after which the error bound starts to be valid. In recent work, [3]
extended the analysis of Lasso-type estimator for decomposable norm to any norm, and gave a more
succinct characterization of the dual norm bound for R∗(XTω) and the sample complexity for the
RE condition in terms of Gaussian widths [14, 10, 20, 1] of suitable sets where, for any setA ∈ Rp,
the Gaussian width is defined as

w(A) = E sup
u∈A
〈u,g〉 , (3)

where g is a standard Gaussian random vector. For Dantzig-type estimators, [11, 6] obtained similar
extensions. To be specific, assume entries in X and ω are i.i.d. normal, and define the tangent cone,

TR(θ∗) = cone {u ∈ Rp | R(θ∗ + u) ≤ R(θ∗)} . (4)
Then one can get (high-probability) upper bound forR∗(XTω) asO(

√
nw(ΩR)) where ΩR = {u ∈

Rp|R(u) ≤ 1} is the unit norm ball, and the RE condition is satisfied with O(w2(TR(θ∗) ∩ Sp−1))
samples, in which Sp−1 is the unit sphere. For convenience, we denote by CR(θ∗) the spherical
cap TR(θ∗) ∩ Sp−1 throughout the paper. Further, the restricted norm compatibility is given by
ΨR(θ∗) = supu∈TR(θ∗)

R(u)
‖u‖2 (see Section 2 for details).

Thus, for any given norm, it suffices to get a characterization of (i) w(ΩR), the width of the u-
nit norm ball, (ii) w(CR(θ∗)), the width of the spherical cap induced by the tangent cone TR(θ∗),
and (iii) ΨR(θ∗), the restricted norm compatibility in the tangent cone. For the special case of L1

norm, accurate characterization of all three measures exist [10, 18]. However, for more general
norms, the literature is rather limited. For w(ΩR), the characterization is often reduced to com-
parison with either w(CR(θ∗)) [3] or known results on other norm balls [13]. While w(CR(θ∗))
has been investigated for certain decomposable norms [10, 9, 1], little is known about general non-
decomposable norms. One general approach for upper bounding w(CR(θ∗)) is via the statistical
dimension [10, 19, 1], which computes the expected squared distance between a Gaussian random
vector and the polar cone of TR(θ∗). To specify the polar, one need full information of the sub-
differential ∂R(θ∗), which could be difficult to obtain for non-decomposable norms. A notable
bound for (overlapping) L1/L2 norms is presented in [21], which yields tight bounds for mildly
non-overlapping cases, but is loose for highly overlapping ones. For ΨR(θ∗), the restricted norm
compatibility, results are only available for decomposable norms [18, 3].

In this paper, we present a general set of bounds for the width w(ΩR) of the norm ball, the width
w(CR(θ∗)) of the spherical cap, and the restricted norm compatibility ΨR(θ∗). For the analysis,
we consider the class of atomic norms that are invariant under sign-changes, i.e., the norm of a
vector stays unchanged if any entry changes only by flipping its sign. The class is quite general, and
covers most of the popular norms used in practical applications, e.g., L1 norm, ordered weighted
L1 (OWL) norm [5] and k-support norm [2]. Specifically we show that sharp bounds on w(ΩR)
can be obtained using simple calculation based on a decomposition inequality from [16]. To upper
bound w(CR(θ∗)) and ΨR(θ∗), instead of a full specification of TR(θ∗), we only require some
information regarding the subgradient of R(θ∗), which is often readily accessible. The key insight
is that bounding statistical dimension often ends up computing the expected distance from Gaussian
vector to a single point rather than to the whole polar cone, thus the full information on ∂R(θ∗) is
unnecessary. In addition, we derive the corresponding lower bounds to show the tightness of our
results. As examples, we illustrate the bounds for L1 and OWL norms [5]. Finally, we give sharp
bounds for the recently proposed k-support norm [2], for which existing analysis is incomplete.

The rest of the paper is organized as follows: we first review the relevant background for Dantzig-
type estimator and atomic norm in Section 2. In Section 3, we introduce the general bounds for the
geometric measures. In Section 4, we discuss the tightness of our bounds. Section 5 is dedicated to
the example of k-support norm, and we conclude in Section 6.

2 Background

In this section, we briefly review the recovery guarantee for the generalized Dantzig selector in (2)
and the basics on atomic norms. The following lemma, originally [11, Theorem 1], provides an error
bound for ‖θ̂λn − θ∗‖2. Related results have appeared for other estimators [18, 10, 19, 3, 23].
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Lemma 1 Assume that y = Xθ∗ + ω, where entries of X and ω are i.i.d. copies of standard
Gaussian random variable. If λn ≥ c1

√
nw(ΩR) and n > c2w

2(TR(θ∗) ∩ Sp−1) = w2(CR(θ∗))

for some constant c1, c2 > 1, with high probability, the estimate θ̂λn given by (2) satisfies

‖θ̂λn − θ∗‖2 ≤ O
(

ΨR(θ∗)
w(ΩR)√

n

)
. (5)

In this Lemma, there are three geometric measures—w(ΩR), w(CR(θ∗)) and ΨR(θ∗)—which need
to be determined for specific R(·) and θ∗. In this work, we focus on general atomic norms R(·).
Given a set of atomic vectors A ⊂ Rp, the corresponding atomic norm of any θ ∈ Rp is given by

‖θ‖A = inf

{∑
a∈A

ca : θ =
∑
a∈A

caa, ca ≥ 0 ∀ a ∈ A

}
(6)

In order for ‖ · ‖A to be a valid norm, atomic vectors in A has to span Rp, and a ∈ A iff −a ∈ A.
The unit ball of atomic norm ‖ · ‖A is given by ΩA = conv(A). In addition, we assume that the
atomic setA contains v�a for any v ∈ {±1}p if a belongs toA, where� denotes the elementwise
(Hadamard) product for vectors. This assumption guarantees that both ‖ · ‖A and its dual norm
are invariant under sign-changes, which is satisfied by many widely used norms, such as L1 norm,
OWL norm [5] and k-support norm [2]. For the rest of the paper, we will use ΩA, TA(θ∗), CA(θ∗)
and ΨA(θ∗) with A replaced by appropriate subscript for specific norms. For any vector u and
coordinate set S , we define uS by zeroing out all the coordinates outside S.

3 General Analysis for Atomic Norms

In this section, we present detailed analysis of the general bounds for the geometric measures,
w(ΩA), w(CA(θ∗)) and ΨA(θ∗). In general, knowing the atomic set A is sufficient for bound-
ing w(ΩA). For w(CA(θ∗)) and ΨA(θ∗), we only need a single subgradient of ‖θ∗‖A and some
simple additional calculations.

3.1 Gaussian width of unit norm ball

Although the atomic set A may contain uncountably many vectors, we assume that A can be de-
composed as a union of M “simple” sets, A = A1 ∪ A2 ∪ . . . ∪ AM . By “simple,” we mean the
Gaussian width of each Ai is easy to compute/bound. Such a decomposition assumption is often
satisfied by commonly used atomic norms, e.g., L1, L1/L2, OWL, k-support norm. The Gaussian
width of the unit norm ball of ‖ · ‖A can be easily obtained using the following lemma, which is
essentially the Lemma 2 in [16]. Related results appear in [16].

Lemma 2 Let M > 4, A1, · · · ,AM ⊂ Rp, and A = ∪mAm. The Gaussian width of unit norm
ball of ‖ · ‖A satisfies

w(ΩA) = w(conv(A)) = w(A) ≤ max
1≤m≤M

w(Am) + 2 sup
z∈A
‖z‖2

√
logM (7)

Next we illustrate application of this result to bounding the width of the unit norm ball of L1 and
OWL norm.

Example 1.1 (L1 norm): Recall that the L1 norm can be viewed as the atomic norm induced by the
set AL1

= {±ei : 1 ≤ i ≤ p}, where {ei}pi=1 is the canonical basis of Rp. Since the Gaussian
width of a singleton is 0, if we treat A as the union of individual {+ei} and {−ei}, we have

w(ΩL1) ≤ 0 + 2
√

log 2p = O(
√

log p) . (8)

Example 1.2 (OWL norm): A recent variant of L1 norm is the so-called ordered weighted L1

(OWL) norm [13, 25, 5] defined as ‖θ‖owl =
∑p
i=1 wi|θ|

↓
i , where w1 ≥ w2 ≥ . . . ≥ wp ≥ 0 are

pre-specified ordered weights, and |θ|↓ is the permutation of |θ| with entries sorted in decreasing
order. In [25], the OWL norm is proved to be an atomic norm with atomic set

Aowl =
⋃

1≤i≤p

Ai =
⋃

1≤i≤p

⋃
| supp(S)|=i

{
u ∈ Rp : uSc = 0,uS =

vS∑i
j=1 wj

,v ∈ {±1}p
}
. (9)
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We first apply Lemma 2 to each set Ai, and note that each Ai contains 2i
(
p
i

)
atomic vectors.

w(Ai) ≤ 0 + 2

√
i

(
∑i
j=1 wj)

2

√
log 2i

(
p

i

)
≤ 2i∑i

j=1 wj

√
2 + log

(p
i

)
≤ 2

w̄

√
2 + log

(p
i

)
,

where w̄ is the average of w1, . . . , wp. Then we apply the lemma again to Aowl and obtain

w(Ωowl) = w(Aowl) ≤
2

w̄

√
2 + log p+

2

w̄

√
log p = O

(√
log p

w̄

)
, (10)

which matches the result in [13].

3.2 Gaussian width of the intersection of tangent cone and unit sphere

In this subsection, we consider the computation of general w(CA(θ∗)). Using the definition of dual
norm, we can write ‖θ∗‖A as ‖θ∗‖A = sup‖u‖∗A≤1〈u,θ

∗〉, where ‖ · ‖∗A denotes the dual norm of
‖ · ‖A. The u∗ for which 〈u∗,θ∗〉 = ‖θ∗‖A, is a subgradient of ‖θ∗‖A. One can obtain u∗ by
simply solving the so-called polar operator [26] for the dual norm ‖ · ‖∗A,

u∗ ∈ argmax
‖u‖∗A≤1

〈u,θ∗〉 . (11)

Based on polar operator, we start with the Lemma 3, which plays a key role in our analysis.

Lemma 3 Let u∗ be a solution to the polar operator (11), and define the weighted L1 semi-norm
‖ · ‖u∗ as ‖v‖u∗ =

∑p
i=1 |u∗i | · |vi|. Then the following relation holds

TA(θ∗) ⊆ Tu∗(θ∗) ,
where Tu∗(θ∗) = cone{v ∈ Rp | ‖θ∗ + v‖u∗ ≤ ‖θ∗‖u∗}.

The proof of this lemma is in supplementary material. Note that the solution to (11) may not be
unique. A good criterion for choosing u∗ is to avoid zeros in u∗, as any u∗i = 0 will lead to the
unboundedness of unit ball of ‖ · ‖u∗ , which could potentially increase the size of Tu∗(θ∗). Next we
present the upper bound for w(CA(θ∗)).

Theorem 4 Suppose that u∗ is one of the solutions to (11), and define the following sets,

Q = {i | u∗i = 0}, S = {i | u∗i 6= 0, θ∗i 6= 0}, R = {i | u∗i 6= 0, θ∗i = 0} .
The Gaussian width w(CA(θ∗)) is upper bounded by

w(CA(θ∗)) ≤


√
p , if R is empty√
m+ 3

2s+
2κ2

max

κ2
min

s log
(
p−m
s

)
, if R is nonempty

, (12)

where m = |Q|, s = |S|, κmin = mini∈R |u∗i | and κmax = maxi∈S |u∗i |.

Proof: By Lemma 3, we have w(CA(θ∗)) ≤ w(Tu∗(θ∗) ∩ Sp−1) , w(Cu∗(θ∗)). Hence we can
focus on bounding w(Cu∗(θ∗)). We first analyze the structure of v that satisfies ‖θ∗ + v‖u∗ ≤
‖θ∗‖u∗ . For the coordinatesQ = {i | u∗i = 0}, the corresponding entries vi’s can be arbitrary since
it does not affect the value of ‖θ∗ + v‖u∗ . Thus all possible vQ form a m-dimensional subspace,
where m = |Q|. For S ∪ R = {i | u∗i 6= 0}, we define θ̃ = θ∗S∪R and ṽ = vS∪R, and ṽ needs to
satisfy

‖ṽ + θ̃‖u∗ ≤ ‖θ̃‖u∗ ,
which is similar to theL1-norm tangent cone except that coordinates are weighted by |u∗|. Therefore
we use the techniques for proving the Proposition 3.10 in [10]. Based on the structure of v, The
normal cone at θ∗ for Tu∗(θ∗) is given by

N (θ∗) = {z : 〈z,v〉 ≤ 0 ∀v s.t. ‖v + θ∗‖u∗ ≤ ‖θ∗‖u∗}
= {z : zi = 0 for i ∈ Q, zi = |u∗i |sign(θ̃i)t for i ∈ S, |zi| ≤ |u∗i |t for i ∈ R, for any t ≥ 0} .
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Given a standard Gaussian random vector g, using the relation between Gaussian width and statisti-
cal dimension (Proposition 2.4 and 10.2 in [1]), we have

w2(Cu∗(θ∗)) ≤ E[ inf
z∈N (θ∗)

‖z− g‖22] = E[ inf
z∈N (θ∗)

∑
i∈Q

g2i +
∑
j∈S

(zj − gj)2 +
∑
k∈R

(zk − gk)2]

= |Q|+ E[ inf
zS∪R∈N (θ∗)

∑
j∈S

(|u∗j |sign(θ̃j)t− gj)2 +
∑
k∈R

(zk − gk)2]

≤ |Q|+ t2
∑
j∈S
|u∗j |2 + |S|+ E[

∑
k∈R

inf
|zk|≤|u∗k|t

(zk − gk)2]

≤ |Q|+ t2
∑
j∈S
|u∗j |2 + |S|+

∑
k∈R

2√
2π

(∫ +∞

|u∗k|t
(gk − |u∗k|t)2 exp(

−g2k
2

)dgk

)

≤ |Q|+ t2
∑
j∈S
|u∗j |2 + |S|+

∑
k∈R

2√
2π

1

|u∗k|t
exp

(
−|u

∗
k|2t2

2

)
(∗) .

The details for the derivation above can be found in Appendix C of [10]. If R is empty, by taking
t = 0, we have

(∗) ≤ |Q|+ t2
∑
j∈S
|u∗j |2 + |S| = |Q|+ |S| = p .

If R is nonempty, we denote κmin = mini∈R |u∗i | and κmax = maxi∈S |u∗i |. Taking t =

1
κmin

√
2 log

(
|S∪R|
|S|

)
, we obtain

(∗) ≤ |Q|+ |S|(κ2maxt
2 + 1) +

2|R| exp
(
−κ

2
mint

2

2

)
√

2πκmint
= |Q|+ |S|

(
2κ2max

κ2min

log

(
|S ∪ R|
|S|

)
+ 1

)
+

|R||S|

|S ∪ R|
√
π log

(
|S∪R|
|S|

) ≤ |Q|+ 2κ2max

κ2min

|S| log

(
|S ∪ R|
|S|

)
+

3

2
|S| .

Substituting |Q| = m, |S| = s and |S ∪R| = p−m into the last inequality completes the proof.

Suppose that θ∗ is a s-sparse vector. We illustrate the above bound on the Gaussian width of the
spherical cap using L1 norm and OWL norm as examples.

Example 2.1 (L1 norm): The dual norm of L1 is L∞ norm, and its easy to verify that u∗ =
[1, 1, . . . , 1]T ∈ Rp is a solution to (11). Applying Theorem 4 to u∗, we have

w(CL1
(θ∗)) ≤

√
3

2
s+ 2s log

(p
s

)
= O

(√
s+ s log

(p
s

))
.

Example 2.2 (OWL norm): For OWL, its dual norm is given by ‖u‖∗owl = maxb∈Aowl
〈b,u〉.

W.l.o.g. we assume θ∗ = |θ∗|↓, and a solution to (11) is given by u∗ = [w1, . . . , ws, w̃, w̃, . . . , w̃]T ,
in which w̃ is the average of ws+1, . . . , wp. If all wi’s are nonzero, the Gaussian width satisfies

w(Cowl(θ
∗)) ≤

√
3

2
s+

2w2
1

w̃2
s log

(p
s

)
.

3.3 Restricted norm compatibility

The next theorem gives general upper bounds for the restricted norm compatibility ΨA(θ∗).

Theorem 5 Assume that ‖u‖A ≤ max{β1‖u‖1, β2‖u‖2} for all u ∈ Rp. Under the setting of
Theorem 4, the restricted norm compatibility ΨA(θ∗) is upper bounded by

ΨA(θ∗) ≤

{
Φ , if R is empty
ΦQ + max

{
β2, β1

(
1 + κmax

κmin

)√
s
}
, if R is nonempty , (13)

where Φ = supu∈Rp
‖u‖A
‖u‖2 and ΦQ = supsupp(u)⊆Q

‖u‖A
‖u‖2 .
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Proof: As analyzed in the proof of Theorem 4, vQ for v ∈ Tu∗(θ∗) can be arbitrary, and the
vS∪R = vQc satisfies

‖vQc + θ∗Qc‖u∗ ≤ ‖θ∗Qc‖u∗ =⇒
∑
i∈S
|θ∗i + vi||u∗i |+

∑
j∈R
|vj ||u∗j | ≤

∑
i∈S
|θ∗i ||u∗i |

=⇒
∑
i∈S

(|θ∗i | − |vi|) |u∗i |+
∑
j∈R
|vj ||u∗j | ≤

∑
i∈S
|θ∗i ||u∗i | =⇒ κmin‖vR‖1 ≤ κmax‖vS‖1

IfR is empty, by Lemma 3, we obtain

ΨA(θ∗) ≤ Ψu∗(θ
∗) , sup

v∈Tu∗ (θ∗)

‖v‖A
‖v‖2

≤ sup
v∈Rp

‖v‖A
‖v‖2

= Φ .

IfR is nonempty, we have

ΨA(θ∗) ≤ Ψu∗(θ
∗) ≤ sup

v∈Tu∗ (θ∗)

‖vQ‖A + ‖vQc‖A
‖v‖2

≤ sup
supp(v)⊆Q, supp(v′)⊆Qc

κmin‖v′R‖1≤κmax‖v′S‖1

‖v‖A + ‖v′‖A
‖v + v′‖2

≤ sup
supp(v)⊆Q

‖v‖A
‖v‖2

+ sup
supp(v′)⊆Qc

κmin‖v′R‖1≤κmax‖v′S‖1

max{β1‖v′‖1, β2‖v′‖2}
‖v′‖2

≤ ΦQ + max{β2, sup
supp(v′)⊆S

β(1 + κmax

κmin
)‖v′‖1

‖v′‖2
} ≤ ΦQ + max{β2, β1

(
1 +

κmax

κmin

)√
s} ,

in which the last inequality in the first line uses the property of Tu∗(θ∗).

Remark: We call Φ the unrestricted norm compatibility, and ΦQ the subspace norm compatibility,
both of which are often easier to compute than ΨA(θ∗). The β1 and β2 in the assumption of ‖ · ‖A
can have multiple choices, and one has the flexibility to choose the one that yields the tightest bound.

Example 3.1 (L1 norm): To apply the Theorem 5 to L1 norm, we can choose β1 = 1 and β2 = 0.
We recall the u∗ for L1 norm, whose Q is empty whileR is nonempty. So we have for s-sparse θ∗

ΨL1
(θ∗) ≤ 0 + max

{
0,

(
1 +

1

1

)√
s

}
= 2
√
s .

Example 3.2 (OWL norm): For OWL, note that ‖ · ‖owl ≤ w1‖ · ‖1. Hence we choose β1 = w1

and β2 = 0. As a result, we similarly have for s-sparse θ∗

Ψowl(θ
∗) ≤ 0 + max

{
0, w1

(
1 +

w1

w̃

)√
s
}
≤ 2w2

1

w̃

√
s .

4 Tightness of the General Bounds

So far we have shown that the geometric measures can be upper bounded for general atomic norms.
One might wonder how tight the bounds in Section 3 are for these measures. For w(ΩA), as the
result from [16] depends on the decomposition of A for the ease of computation, it might be tricky
to discuss its tightness in general. Hence we will focus on the other two, w(CA(θ∗)) and ΨA(θ∗).

To characterize the tightness, we need to compare the lower bounds of w(CA(θ∗)) and ΨA(θ∗),
with their upper bounds determined by u∗. While there can be multiple u∗, it is easy to see that any
convex combination of them is also a solution to (11). Therefore we can always find a u∗ that has
the largest support, i.e., supp(u′) ⊆ supp(u∗) for any other solution u′. We will use such u∗ to
generate the lower bounds. First we need the following lemma for the cone TA(θ∗).

Lemma 6 Consider a solution u∗ to (11), which satisfies supp(u′) ⊆ supp(u∗) for any other
solution u′. Under the setting of notations in Theorem 4, we define an additional set of coordinates
P = {i | u∗i = 0, θ∗i = 0}. Then the tangent cone TA(θ∗) satisfies

T1 ⊕ T2 ⊆ cl(TA(θ∗)) , (14)
where ⊕ denotes the direct (Minkowski) sum operation, cl(·) denotes the closure, T1 = {v ∈
Rp | vi = 0 for i /∈ P} is a |P|-dimensional subspace, and T2 = {v ∈ Rp | sign(vi) =
−sign(θ∗i ) for i ∈ supp(θ∗), vi = 0 for i /∈ supp(θ∗)} is a | supp(θ∗)|-dimensional orthant.
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The proof of Lemma 6 is given in supplementary material. The following theorem gives us the lower
bound for w(CA(θ∗)) and ΨA(θ∗).

Theorem 7 Under the setting of Theorem 4 and Lemma 6, the following lower bounds hold,
w(CA(θ∗)) ≥ O(

√
m+ s) , (15)

ΨA(θ∗) ≥ ΦQ∪S . (16)

Proof: To lower bound w(CA(θ∗)), we use Lemma 6 and the relation between Gaussian width and
statistical dimension (Proposition 10.2 in [1]),

w(TA(θ∗)) ≥ w(T1 ⊕ T2 ∩ Sp−1) ≥
√

E[ inf
z∈NT1⊕T2 (θ∗)

‖z− g‖22]− 1 (∗) ,

where the normal cone NT1⊕T2(θ∗) of T1 ⊕ T2 is given by NT1⊕T2(θ∗) = {z : zi = 0 for i ∈
P, sign(zi) = sign(θ∗i ) for i ∈ supp(θ∗)}. Hence we have

(∗) =

√
E[
∑
i∈P

g2i +
∑

j∈supp(θ∗)

g2j I{gjθ∗j<0}]− 1 =

√
|P|+ | supp(θ∗)|

2
− 1 = O(

√
m+ s) ,

where the last equality follows the fact that P ∪ supp(θ∗) = Q ∪ S. This completes proof of (15).
To prove (16), we again use Lemma 6 and the fact P ∪ supp(θ∗) = Q ∪ S . Noting that ‖ · ‖A is
invariant under sign-changes, we get

ΨA(θ∗) = sup
v∈TA(θ∗)

‖v‖A
‖v‖2

≥ sup
v∈T1⊕T2

‖v‖A
‖v‖2

= sup
supp(v)⊆P∪supp(θ∗)

‖v‖A
‖v‖2

= ΦQ∪S .

Remark: We compare the lower bounds (15) (16) with the upper bounds (12) (13). If R is empty,
m + s = p, and the lower bounds actually match the upper bounds up to a constant factor for both
w(CA(θ∗)) and ΨA(θ∗). If R is nonempty, the lower and upper bounds of w(CA(θ∗)) differ by a
multiplicative factor 2κ2

max

κ2
min

log(p−ms ), which can be small in practice. For ΨA(θ∗), as ΦQ∪S ≥ ΦQ,

we usually have at most an additive O(
√
s) term in upper bound, since the assumption on ‖ · ‖A

often holds with a constant β1 and β2 = 0 for most norms.

5 Application to the k-Support Norm

In this section, we apply our general results on geometric measures to a non-trivial example, k-
support norm [2], which has been proved effective for sparse recovery [11, 17, 12]. The k-support
norm can be viewed as an atomic norm, for which A = {a ∈ Rp | ‖a‖0 ≤ k, ‖a‖2 ≤ 1}. The
k-support norm can be explicitly expressed as an infimum convolution given by

‖θ‖spk = inf∑
i ui=θ

{∑
i

‖ui‖2
∣∣∣ ‖ui‖0 ≤ k} , (17)

and its dual norm is the so-called 2-k symmetric gauge norm defined as

‖θ‖sp
∗

k = ‖θ‖(k) = ‖|θ|↓1:k‖2 , (18)

It is straightforward to see that the dual norm is simply the L2 norm of the largest k entries in |θ|.
Suppose that all the sets of coordinates with cardinality k can be listed as S1,S2, . . . ,S(p

k)
. Then A

can be written as A = A1 ∪ . . . ∪ A(p
k)

, where each Ai = {a ∈ Rp | supp(a) ⊆ Si, ‖a‖2 ≤ 1}.
It is not difficult to see that w(Ai) = E

[
supa∈Ai

〈a,g〉
]

= E‖gSi‖2 ≤
√

E‖gSi‖22 ≤
√
k. Using

Lemma 2, we know the Gaussian width of the unit ball of k-support norm

w(Ωspk ) ≤
√
k + 2

√
log

(
p

k

)
≤
√
k + 2

√
k log

(p
k

)
+ k = O

(√
k log

(p
k

)
+ k

)
, (19)

which matches that in [11]. Now we turn to the calculation of w(Cspk (θ∗)) and Ψsp
k (θ∗). As we have

seen in the general analysis, the solution u∗ to the polar operator (11) is important in characterizing
the two quantities. We first present a simple procedure in Algorithm 1 for solving the polar operator
for ‖ · ‖sp

∗

k . The time complexity is only O(p log p+ k). This procedure can be utilized to compute
the k-support norm, or be applied to estimation with ‖ · ‖sp

∗

k using generalized conditional gradient
method [26], which requires solving the polar operator in each iteration.
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Algorithm 1 Solving polar operator for ‖ · ‖sp
∗

k

Input: θ∗ ∈ Rp, positive integer k
Output: solution u∗ to the polar operator (11)

1: z = |θ∗|↓, t = 0
2: for i = 1 to k do
3: γ1 = ‖z1:i−1‖2, γ2 = ‖zi:p‖1, d = k − i+ 1, β = γ2√

γ2
2d+γ

2
1d

2
, α = γ1

2
√

1−β2d
, w = z1:i−1

2α

4: if γ2
1

2α + βγ2 > t and β < wi−1 then
5: t =

γ2
1

2α + βγ2, u∗ = [w, β1]T (1 is (p− i+ 1)-dimensional vector with all ones)
6: end if
7: end for
8: change the sign and order of u∗ to conform with θ∗
9: return u∗

Theorem 8 For a given θ∗, Algorithm 1 returns a solution to polar operator (11) for ‖ · ‖sp
∗

k .

The proof of this theorem is provided in supplementary material. Now we consider w(Cspk (θ∗))
and Ψsp

k (θ∗) for s-sparse θ∗ (here s-sparse θ∗ means | supp(θ∗)| = s) in three scenarios: (i) over-
specified k, where s < k, (ii) exactly specified k, where s = k, and (iii) under-specified k, where
s > k. The bounds are given in Theorem 9, and the proof is also in supplementary material.

Theorem 9 For given s-sparse θ∗ ∈ Rp, the Gaussian width w(Cspk (θ∗)) and the restricted norm
compatibility Ψsp

k (θ∗) for a specified k are given by

w(Cspk (θ∗)) ≤



√
p , if s < k√
3
2s+

2θ∗2max

θ∗
2

min

s log
(
p
s

)
, if s = k

√
3
2s+

2κ2
max

κ2
min

s log
(
p
s

)
, if s > k

, Ψsp
k (θ∗) ≤



√
2p
k , if s < k

√
2(1 +

θ∗max

θ∗min
) , if s = k

(1 + κmax

κmin
)
√

2s
k , if s > k

,

(20)
where θ∗max = maxi∈supp(θ∗) |θ∗i | and θ∗min = mini∈supp(θ∗) |θ∗i |.

Remark: Previously Ψsp
k (θ∗) is unknown and the bound on w(Cspk (θ∗)) given in [11] is loose, as

it used the result in [21]. Based on Theorem 9, we note that the choice of k can affect the recovery
guarantees. Over-specified k leads to a direct dependence on the dimensionality p for w(Cspk (θ∗))
and Ψsp

k (θ∗), resulting in a weak error bound. The bounds are sharp for exactly specified or under-
specified k. Thus, it is better to under-specify k in practice. where the estimation error satifies

‖θ̂λn
− θ∗‖2 ≤ O

(√
s+ s log (p/k)

n

)
(21)

6 Conclusions

In this work, we study the problem of structured estimation with general atomic norms that are
invariant under sign-changes. Based on Dantzig-type estimators, we provide the general bounds
for the geometric measures. In terms of w(ΩA), instead of comparison with other results or direct
calculation, we demonstrate a third way to compute it based on decomposition of atomic set A.
For w(CA(θ∗)) and ΨA(θ∗), we derive general upper bounds, which only require the knowledge
of a single subgradient of ‖θ∗‖A. We also show that these upper bounds are close to the lower
bounds, which makes them practical in general. To illustrate our results, we discuss the application
to k-support norm in details and shed light on the choice of k in practice.
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