
A Proofs
Theorem 1
We will consider the case that all of the random variables are continuous-valued, thus the expecta-
tions can be written as integrals. For discrete random variables, the integrals should be changed to
sums.

Recall that we seek to compute @

@✓

E
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. We will differentiate the expectation of a single cost

term; summing over these terms yields Equation (6).

E
v2S,

v�c

[c] =

Z Y

v2S,

v�c

p(v | DEPS
v

)dv c(DEPS
c

) (7)

@

@✓
E
v2S,

v�c

[c] =
@

@✓

Z Y

v2S,

v�c

p(v | DEPS
v

)dv c(DEPS
c

) (8)

=

Z Y

v2S,

v�c

p(v | DEPS
v

)dv
X

v2S,

v�c

"
@

@✓

p(v | DEPS
v

)

p(v | DEPS
v

)

c(DEPS
c

) +

@

@✓
c(DEPS

c

)

#
(9)

=

Z Y

v2S,

v�c

p(v | DEPS
v

)dv
X

v2S,

v�c

✓
@

@✓
log p(v | DEPS

v

)

◆
c(DEPS

c

) +

@

@✓
c(DEPS

c

)

�

(10)

= E
v2S,

v�c


@

@✓
log p(v | DEPS

v

)ĉ+
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Equation (9) requires that the integrand is differentiable, which is satisfied if all of the PDFs and
c(DEPS

c

) are differentiable. Equation (6) follows by summing over all costs c 2 C. Equation (5)
follows from rearrangement of the terms in this equation.

Theorem 2
It suffices to show that for a particular node v 2 S , the following expectation (taken over all vari-
ables) vanishes
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Analogously to NONINFLUENCED(v), define INFLUENCED(v) :

= {w | w � v}. Note that the
nodes can be ordered so that NONINFLUENCED(v) all come before v in the ordering. Thus, we can
write
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= 0 (16)

where we used EINFLUENCED(v)
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B Surrogate as an Upper Bound, and MM Algorithms
L has additional significance besides allowing us to estimate the gradient of the expected sum of
costs. Under certain conditions, L is a upper bound on on the true objective (plus a constant).

We shall make two restrictions on the stochastic computation graph: (1) first, that all costs c 2 C
are negative. (2) the the costs are not deterministically influenced by the parameters ⇥. First, let
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us use importance sampling to write down the expectation of a given cost node, when the sampling
distribution is different from the distribution we are evaluating: for parameter ✓ 2 ⇥, ✓ = ✓
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used for sampling, but we are evaluating at ✓ = ✓
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where the second line used the inequality x � log x+1, and the sign is reversed since ĉ is negative.
Summing over c 2 C and rearranging we get
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Equation (20) allows for majorization-minimization algorithms (like the EM algorithm) to be used
to optimize with respect to ✓. In fact, similar equations have been derived by interpreting rewards
(negative costs) as probabilities, and then taking the variational lower bound on log-probability (e.g.,
[24]).

C Examples
C.1 Generalized EM Algorithm and Variational Inference.

The generalized EM algorithm maximizes likelihood in a probabilistic model with latent variables
[18]. Suppose the probabilistic model defines a probability distribution p(x, z; ✓) where x is ob-
served, z is a latent variable, and ✓ is a parameter of the distribution. The generalized EM algorithm
maximizes the variational lower bound, which is defined by an expectation over q:
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The generalized EM algorithm can take many different forms, leading to different gradient estima-
tion problems.
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Neural variational inference. [14] propose a general-
ized EM algorithm for multi-layered latent variable mod-
els such as sigmoidal belief networks that employs an in-
ference network, an explicit parameterization of q as a
function of the observed data x, to allow for fast approx-
imate inference. The generative model and inference net-
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Given a sample h ⇠ q
�

an unbiased estimate of the gradient is obtained
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. Eq. (22) uses the PD estimator to estimate
the gradientwith respect to the model parameters ✓; eq. (23) is an application of the SF estimator to
the gradient with respect to the parameters � of the inference network; b
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Variational Autoencoder, Deep Latent Gaussian Mod-
els and Reparameterization. [10, 21] consider a sim-
ilar formulation to [14] but have continuous latent vari-
ables and can thus re-parameterize their inference net-
work to enable the use of the PD estimator:
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where the second term, the entropy of q
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can be com-
puted analytically for the parametric forms of q consid-
ered in the paper (Gaussians). For q
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Given ✏ ⇠ ⇢ an estimate of the gradient is obtained as
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C.2 Policy Gradients in Reinforcement Learning.

In reinforcement learning, an agent interacts with an environment according to its policy ⇡ and
receives a reward. The goal is to maximize the expected sum of rewards, the return, under the
trajectory distribution that is specified jointly by the environment dynamics and the policy. Policy
gradient methods seek to directly estimate the gradient of expected return with respect to the policy
parameters [26, 1, 23]. The RL case is especially interesting as we typically assume that the envi-
ronment dynamics are not available analytically and can only be sampled, which has implication for
gradient estimation. Below we distinguish two important cases: Markov decision processes (MDP)
and partially observable Markov decision processes (POMDP).
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MDPs: In the MDP case, the expectation is taken with
respect to the distribution over state (s) and action (a) se-
quences
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the paper). The classic REINFORCE [26] estimate of the
gradient is given by
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i.e. the well-known state-value function. (Equation (29)) corresponds to an application of the SF
estimator at the stochastic nodes a

t

. It is worth noting that a Monte Carlo estimate of (Equation (29))
only requires simulating from the environment by running trajectories forward according to the cur-
rent policy. This is due to the property of the SF estimator which only requires evaluation (sampling
in the stochastic case) of the nodes downstream of the stochastic node a

t

POMDPs.
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POMDPs differ from MDPs in that the state s
t

of the envi-
ronment is not observed directly but, as in latent-variable
time series models, only through stochastic observations
o
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, which depend on the latent states s
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policy therefore has to be a function of the history of past
observations ⇡
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). For instance it can take the
form of a recurrent neural network (RNN) [25, 15]. A
REINFORCE gradient estimate is then given by
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Note that, at each time step t, the gradient @

@✓

log ⇡
✓

at
the stochastic node a

t

is estimated using the SF estimator,
and then backpropagated in the RNN via chain-rule in the
usual manner. As before, b

t

is a baseline, which is written
here as a function of the observation history up to time t
and, as the policy, which can be parameterized through
another RNN.
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