A Recovering the Transition Probabilities and Initial Probabilities

Algorithm 2 recovers the transition and initial probabilities, given estimates of observation matrices.
Theorem 2 provides finite sample guarantees on Algorithm 1 in conjunction with Algorithm 2.

Algorithm 2 Recovering the Transition Probabilities and Initial Probabilities

1: Input: N samples of the first three observations (xl,xg,xg)f\il generated by a tree HMM,
Estimates of observation matrices O".

2: foru c Vdo

3:  ifuisrootr them

4: Compute W" = (O*)TPy.

5: Compute Q" = (O")TPy{ (O")TT.

6: Normalize over the z§ coordinate to get T,
7. else . . A

8: Compute W* = (O“)TPfff(“)(O”(“))TT.
9 Compute Q" = P (0T, (O")TT, (0)).
10: Normalize over the 2§ coordinate to get T,
11:  endif
12: end for

B Additional Notations

For anode u € V, when it is clear from context, we sometimes use H to denote H,, and d to denote
dy.

Define O to be a n? x m? matrix whose rows are indexed by elements in [n]? and columns are

indexed by elements in [m]?. In particular, (O3, i) Groju) = Plah =iy, ..., 2% =igl2} =
Jis---,2% = jq). Similarly we define O whose entries are (O) i, i) (1.ju) = Plah =
i1y, 8 = ig|zh = j1,...,2% = ja), and Off whose its entries are (OfF) (i, i) (ivra) =
Pz} = i1,..., 0% = iglzh = ji,...,2% = jq). We define OY to be a n x m? matrix, whose

rows are indexed by elements in [n], and columns are indexed by elements in [m]<. Its entries are
(0%)i,GG1yrja) = Pt = |25 = j1,...,28 = ja).

Define 7! to be a vector representing the marginal probability of (25, ..., z%). In particular, its rows
are indexed by elements in [m]?, and ng i) = P25 =1, 28 = iq). Define 7" to be a vector

representing the marginal probability of z¥. In particular, its rows are indexed by elements in [m],
and ¢ = P(z% = 4). Define 7%,  as min; 7%. Define p’? as the m? dimensional vector representing
the marginal probability of (27, . .., 2%) whose entries are indexed by elements in [m]<. In particular,
pgl,...,id) = P(z} = i1,...,2¢ = ig). TH is defined as the m? x m? matrix representing the

conditional probability of z& given 2, and its rows and columns are indexed by elements in [m],

in particular, T(;, . i.),(i1,ja) = P(25 = i1,..., 28 =idq|2] = j1,..., 2} = ja).

Let u be a node in V. Define U" to be a matrix whose columns form an orthonormal basis of O".
One way to get U" is to take its columns to be the top m singular vectors of O*. The specific choice
of U* does not affect our analysis, as we will be only looking at the projection matrix U*(U%)T
throughout. Define U to be ®@,cU".

For a matrix M, define || M|| to be its operator norm, that is, max,|—1,js|=1 || Mul||. Define
the Frobenius norm of M, || M ||z to be square root of the sum of the square of its entries, that is,

\/2_i; M7;. By standard results in linear algebra, |[M| < |[M||p. Similarly, for a third order

tensor 7', define ||T| to be its operator norm, that is max,|—1,|jv|=1,|jw|=1 T (¢, v, w). Define
the Frobenius norm of 7', ||T’||r to be square root of the sum of the square of its entries, that is,

T < Tl

\/ ik Tf] - By standard results of linear algebra,
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C Main Lemmas

C.1 Partitioning Lemmas

Lemma 1 (Path Partitioning). Suppose observations and states {x}, 2} }yev,ten are drawn from
a THS-HMM represented by H = (G,T,0,W), where G = (V,E), T = {T,,v € V}, O =
{O0p,v e V}, W = {W,,v € V}. Letw € V, and let H, denote nodes inside the unique path
fmm root v to u. Then {x}, z} }ue H, teN are generated by a THS-HMM represented by a tuple

H = (G, T,0,W), where G = (V, E) is the induced subgraph on H,. In particular, V = H,,
E={(v,7(0)}ven,h T ={Tp,v € Hy}, O ={0y,v € H,}, W = {W,,v € H,}.

Proof of Lemma 1. To show this lemma, we will calculate the marginal distribution of the variables
{@}, 2 Yven, te[-)- Observe that the full joint distribution of {7}, 2} },eq,ie[r) is equal to:

T—1
[T Pez) TT T Pretaler, 208 H I1 Pr(aplzp)

veG t=1veH, t=1veqG

To calculate the marginal over {x}, 2}’ },¢ H, te[r]» We eliminate the rest of the variables one by one.
Observe that we can eliminate any observation variable z{ for v ¢ H,, without introducing any extra

edges, as xy is only connected to z;. Moreover, marginalizing =} gives: ) Pr(z} = z|z{ = z) =
1.

Let G be the current tree; initially G = G. We next eliminate the nodes {z¢,t = 7,...,1} for
v ¢ H, one by one where v ¢ H, is a leaf node in G. We do this in the order 2%, 2% _,,...,27;

once we have eliminated these nodes, we delete v from G’, and we continue until only the nodes in
H, are left. To eliminate a z;’ when {27, s > ¢} have been eliminated, we sum over: ) Pr(z; =

z|zp_q, zf(v)) which also sums to 1.

We repeat this process until only the nodes {x}, 2} },c i, te[r] are left. Since we get 1 from elimi-
nating each variable, the marginal we are left with is:

T-1
H Pr(z7) H H PY(ZZJ+1‘ZZJ:'ZZT+1 H H Pr(z{]2}), (1)
vEH, t=1 veH, t=1veH,

which is the marginal distribution of an HMM with tree-structured hidden states described by the
tuple (G, T,O, W). The lemma follows. O

The following is a Corollary of Lemma 1.

Corollary 1. If observations and states {z}, z} }ve 1, ten are drawn from a THS-HMM represented

by (G, T,0,W), then the sequence of coalesced observations and states {1, z['*},en are drawn
from an HMM.

Proof. The proof is a simple extension of Lemma 1. (1) gives us the marginal distribution of
{z}, 2} }ven, ten. Observe that for any ¢, conditioned on th“, :ch is d-separated from all the
other nodes of the graph — this is because for any node x in the graphical model, xf v, th “ and x
either form a chain or or a fork structure whose middle node is th *, Moreover, conditioned on zf w,
zf;‘l is d-separated from the set of nodes {25« }'_]. This is because 27, th“ and zfﬁ form a

chain structure whose middle node is z,{{ *. The lemma thus follows. O

C.2 Skeletensor Lemmas

In this subsection, we justify our construction of a skeletensor. Let « be any node in the tree G and
let H be the path from the root of G to u.
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Recall that we define Of' to be the n x m? matrix, whose entries are (Of7) (i, i) (j11ju) =
P(a} =iy,..., 2% = ig25 = j1,...,2% = ja). Similarly, Of is a n? x m? matrix, with entries
(037 (i1 eosia) (1 eod) = P@5 = i1, 28 = dalzh = Jr, .., 25 = Ja).

We begin by showing that under Assumptions 1 and 2, the matrices O and O for the three-view
mixture model induced by the HMM have full column rank.

Lemma 2. Let u be a node in V. Recall that H = H,, is the set of nodes along the path from root r
to u. Then:

(1) The matrices diag(p™)(TH) " diag(7w™)~ and TH are of full rank.

(2) The matrices O and OL are of full column rank.

Proof. By Lemma 1, ¥, x| x¥ are conditionally independent given hZ'. Thus,

PG = Of diag(n™)(04")"

Since by Assumption 2, P is of rank m¢, this implies that the matrix O’ must be of rank m¢ as
well. By Proposition 4.2 of [2],

O = 0" diag(p")(T") " ding(r")~"
This implies that diag(p™ ) (TH) " diag(7#)~! is of rank m<, which is of full rank. Hence T is of
full rank. By Proposition 4.2 of [2],
off =ofrH
This shows O is of full column rank. O

Second, we discuss the infinite sample version of our symmetrization matrix. This will be extended
in Lemma 8 in our detailed finite sample analysis.

Lemma 3. Let u be a node in V. Recall that H,, is the set of nodes along the path from root r to u.

Z\ssume P;’BH, PféH, P;’lH are given (where P;Ii'H = (PféH)T). Let the symmetrization matrices
e:
u _ pu,H H,H\+t
ST =Py (P1,3 )

w,H pH,H
Sé‘ = P2,1 (P3,1 )T
and the ground truth symmetrized pair-wise and triple-wise co-occurence tensors be:
H,u T
M2u :P1,2 (S? aI)
u _ pH,u,H/ cuT uT
Mg = P55 (S17,1,557)

Then,
My = 370" 0 (0",

Mg = ZW?(O“%‘ ® (0"); ® (0");

Proof. By Lemma 1, z¥, 2%, 2 are conditionally independent given 22, thus
Py = Oydiag(r™ )04
PIHSH = Of'diag(r™) O™

Lemma 2 implies that OF is of full column rank, and diag(7*)OX is of full row rank. Therefore
by standard properties of pseudoinverse,

(P = (diag(=™")OF ™) (O
Therefore,

St = 03(01")!
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Likewise,
Sy = 03(04)f

Then,
u Hu U
My = P172 (SlT»I)
= Z Fil_ll,...,iD(Og)ihm,iD ®(012L)i17~~>iD
U1 yeesiD
- HRCOEICR)
Trllv'w;'LD tD 1D
U1yeestD
= ) 70" ®(0")
7
u H,u,H ; cu U
M3y = Pl,é,s (S1T;I; SgT)
= Z ﬂ—g,...,ip (Og)ih-uﬂb ® (05)117---72'D ® (OQU)il,m,iD
DL yeeey iD
= Z ﬂ{l[,...,iD (Ou)iD ® (Ou)iD ® (Ou)iD
Ul yeeey iD

= > (0" ®(0"); & (0");

C.3 Product Projections Lemmas

C.3.1 Application 1: HMM with more general hidden states

Consider an HMM with a hidden state represented by a general graphical model G = (V, E) with
an observation variable x}* corresponding to each v € V. z} is independent of all other hidden
state and observation nodes, conditioned on its corresponding hidden state variable z;*. In this case,
OVl = ®,eyO". Similar graphical models have been used in biology to model gene expression
time courses [12].

Lemma 4. O, the observation matrix of the HMM that generates the meta-states and meta-
observations {z{, x{' }1en, equals @,y O°.

Proof. We consider the observation matrix of the HMM that generates the meta-states and meta-
observations {2,z };cy. The number of possible meta-hidden states z/? is m?, indexed by
(2¥)ven and the number of possible meta-observations 7 is n¢, indexed by (2¥),cx. Thus, the

observation matrix O is of dimension n? x m¢. Entrywise,

H.
(O ) (irosia) (G seomrda)

= Pz} =d1,...,2¢ =i4lz{ =J1,---, 2 = ja)
= O - 0iyju
= (® OU)(il,...,id),(jl ..... Ja)
vEH
Where the second equality uses conditional independence. Therefore, OF = Rper O O

C.3.2 Application 2: HMM with rank-deficient observation matrix.

Consider an HMM whose observation matrix O is rank-deficient. In this case, [3] suggests
compressing sequences of successive observations of size s for s = 2,3,... until the matrices
O£ = P(x4, %441, ..., Trys—1]2¢) and Og = P(x¢,Z¢—1,...,Ti—s+1]2) have rank m. A version
of [18] is then run using observation sequence pairs P.s s11:25 and triples Pi. 541, +2:264+1. In
this case, we can show that both range(O/) and range(O?) are contained in range(O®*); we can
therefore use Product Projections to improve the (n*) running time to O(m°(®)).
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We first define forward and backward observation matrices Of and O’ formally. For a fixed s, Of
is a n® X m matrix, with rows indexed by a s-tuple (j1,...,7s) € [n]°, and columns indexed by
i € [m]. Entrywise,

(Og)(il,...,is),j = P(xy =11, Teq1 =92, ., Tpps—1 = is]|2t = J)

Similarly we define backward observation matrices Oi’ = P(x¢,%4—1,...,T1—s+1|2¢). Entrywise,
~b . . . .
(O (ir,sin)g = Plwe = i1, w1 = o, ..., g1 = |2t = )

The claim is the range of the forward(backward) observation matrices is contained in the range of
the s-wise Kronecker product of the original observation matrices.

Lemma 5. B
range(Of) C range(0O®*)

range(0%) C range(O®?)

Proof. We prove the first relationship, since the proof of the second is almost identical.
Note that by the law of total probability,

(O:Sf)(il,i%“-vis)aj

= P(xy =11, 41 =02, , Teps—1 = bs|2t = J)

= E P(zt =01, T4l =12, Tits—1 = is\Zt =J, %641 = J2, -y Rtgs—1 = js)
J25e5ds
XP(2i41 =J2 - Zt4s—1 = Js|2t = J)

= Y 040s - Oi i Plziss = jo- o 2ers 1 = Jsl2 = J)
J255Js

Y (O Gisori) PEt41 = Jo ooy 2evs—1 = Jslze = J)
J25-5Js

Thus, each column of Og is a linear combination of the columns of O®*, thus completing the proof.

O

D Finite Sample Guarantees

Theorem 2 (Accuracy of Initial Distribution and Transition Probabilities). There exists a universal
constant C such that the following hold. Suppose Algorithm 1 is given as input N iid observation
triples (z1, T2, 7;3)v., generated by a THS-HMM, and outputs estimates of observaton matrices
o, for each node u in the tree. Then Algorithm 2 is run on the same sample and has {O“}uev as
input. If the size of sample N is greater than:

c ( D? 1 D m 1 D m? 1 D m D m? 1 D)
max n— n— n— n— n—
O’%O’% §’ o203 ¢’ O’?Jgﬂ?nin 5 o308 57 0'30'%47T;4nin€2 0
. . . Ho H
where o1 = minyey 0,(0"), 02 = mingey 0, (P)'y"), 03 = mingey opa(Py 377 ") and Tmin =

)

min,, ; 7}, then with probability > 1 — § over the training examples, with probbbility 0.9 over the
random initializations in Algorithm 1, there exist permutation matrices {II"},cv such that for all
ueV, R
[0 = (O"II")|| < e
if u is the root node, then,
W — (@) TWe| < e
Q" — @I, ") < e

Otherwise, A
[ — W (I, T )| < e

Q" — Qu(IT¥, II*, TI"W)|| < ¢
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We emphasize that our algorithm recovers the initial probability and transition probability tensors
up to permutations of hidden states in a globally consistent manner. In contrast to [20] where some
hidden nodes do not have observations directly associated with them, in our setting, each hidden
state has an associated observation, which makes recovery of permutations easier. How to perform
parameter recovery in a THS-HMM with internal hidden states where each hidden tree node does
not have an associated observation is an interesting question for future work.

E Proofs

Throughout this section, we first assume a technical condition on the sample size. This will result in
concentration of the projection and the symmetrization matrices.

Assumption 3. Recall that D = |V|. The sample size N is large enough that
e(N,9)
mingey om(Py'y) min,ey 0y, (Pﬁ;H)
16D ’
ming, ey Jm(Pff’zu) mingey 0, (O%) mingey 0,4 (]—71H$H)d ming, ey 0., (OY)
4v/m ’ 1536¢c1m
0203 02071 an/iia%ag)
16D 4y/m’ 1536¢c1m

Where c1 > 0 is a constant given in Lemma 11, and 01, 02, 03 and T, are defined in Theorem 2.

IN

min (

3 3/2
sﬂ/

min

2)

= min(

E.1 Raw Moments Concentration

We start with standard concentration of raw moments, which uses the fact that all the (vectorized)
raw moments can be viewed as a probability vector. Let u be a node in V, recall that H is the set of
nodes along the path from root r to u.

Lete(N,d) = 4/ %OD/‘S). Define event

E= { forallue V : [P — Pi3'||r < e(N,6)
1P5" — Pl5"|r < e(N,6)
1Py5" = Py5" | F < e(N,9)
125" = P e < e(N,6)
1255 = P55 || e < e(N,6)
I1P — Pl r < (N, )
1P — Piy'lle < (N, 6)
1P =PI g < (N, 6)
1235 = P e < (N, 0)}

Lemma 6 (Concentration of Raw Moments). P(FE) > 1 — .

Proof. Applying Proposition 19 in [18] along with union bound. O

E.2 Subspace Concentration

Next we state a useful lemma that says that conditioned on the event E, performing an SVD on the
empirical version of 1“ 5 = E[z} ® %] gives us a good approximation to the range of O". Recall

that U“ is a matrix whose columns form an orthonormal basis of O%, and define U* is RuergU™.
Also, recall for a matrix U with orthonormal columns, the projection matrix onto range(U ) is UU .
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Lemma 7 (Subspace Concentration). Supposes N is large enough such that Assumption 3 holds.

U" is the output of line 3 of Algorithm 1. Let u be a node in V, recall that H is the set of nodes

along the path from root r to u. Then conditioned on event E, we have:
(DT @)T =T @I < 2.

In particular,

min,cy O’m(PféH) ming ey 0y, (OY)

u u\ T N )
JU )T = G| < min( o iy 2n0)
(2)
|[UH(UH)T —UHOH)T| < mingey o-m(Pf;,Hu)
a 8
(3) u
Um((Uu)TOu) > Um(QO )

Proof. (1) ®“, the matrix of principal angles between range(U*) and range(U"), is such that

|| sin &“||

< e(N, 9)

N o'm(Plu,éu) —€(N,9)
2¢(N, 0)

< — —wan 3
Um(PLé )

where the first inequality is by Theorem 4, by taking A = P;"," and A= ]51" »'; the second inequality
from Assumption 3, which implies that ¢(N,§) < o, (P)%3")/2.

Thus, by Equation (2) in Assumption 3,

mingcy am(Pfg“H“') ming,ey o (0OY)

8D ’ 2y/m
The result follows from the fact that
[sin®“|| = |U*(U*)" —U“(U")T||

|| sin @*|| < min(

)

(2) First we enumerate the nodes in H,, : H, = {v1,...,v}.
[UH @) —oH o)

< )T - @) e e U+ OO ) @ (U))@))
< U@t =)+ + U@ T = 0@ T
2¢(N, 0)
< — vy
oell UM(P1,2)
mingey o (Prs")
= 8

where the first inequality is by triangle inequality, the second inequality uses standard facts about
Kronecker product (|4 @ B| = ||Al|||B]|), the third inequality is from Equation (3), the fourth
inequality is from Equation (2).
(3) By item (1) we know that
U @) " = U0 < om(0")/(2v/m)

Hence

lwrwtor —vHu)To| < |utw)" = U 0" < 0m(0%)/2
where the second inequality is from the fact that O is a column stochastic matrix, which implies
that 0| < [|0" || < v/m.
Therefore by Theorem 3,

o (U")TO") = 0, (U*(U™)TO") > 0,,(0™)/2
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E.3 Symmetrized Moment Concentration

Lemma 8. Suppose we are given a set of matrices U “ u €V such that (U YT O is invertible for
all w € V. Moreover, assume the expected second order moments qu, ’3H7 Pf ?;H, P; ’IH, and third

order moments Pf éfg’H are given. Consider the symmetrization matrices:

St = (U TR U () RO

S5 = (@) RO (@) RO
and the ground truth symmetrized second order and third order cooccurence matrices be:

My = Pl UH(SH)T,U)
Mg = P1H21§’>H(UH(Su) ) Uu7 UHS«;:T)
Then,
MY = Zw# (U To"); @ (U*)TO™);

My —ZW @ ((U")T0")i @ ((U*)"0");

Proof. Recall that by Lemma 2
O = O diag(p™)(T") " diag(r)~*
where diag(p)(T*) " diag(7*)~1 is invertible. Thus,
(O TOH = (U)T O diag(p™)(T") " diag(x") "
This shows that (U7)T O is invertible.
On the other hand,
of =o"TH
where T is invertible. Thus,

This shows that (U7 )T O is invertible.

Therefore,
Sh
= ((U")TOzdiag(x™") 05" U (UM TOf diag(=™) O TM)
= (UmTonHwmTon ™
Likewise,
3
= ((U")Tozdiag(x™") O UM)(UM) T O diag(=™") O UM) ™
= (U TopwMToiH !
Then,

My P (UM(SH)T,0Y)

Z 7T ..,iD U—u)TOg)“ ----- iD®((Uu)TOg)i1 ,,,,, iD

D
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R U GUC Oy
= Z 7T’L-I;I,H.,Z‘D((U-u)—rog)ilwuyiD ® ((Uu)—rog)ilg"wiD ® ((Uu)TOg)il,m,iD

11, 58D
= Y w0, @ (U0, @ (T*)T0"),
B1yeesiD

= Mm@ oM @ (U0 @ (U)o,
O

We next establish a result that shows that the symmetrization matrices S’% and S’g obtained in Line
7 of Algorithm 1 concentrate to S and S§ defined in Lemma 8. Recall from Algorithm 1 that:

St = ()T Pyt Ot ) (@) TR T8y = ()T Pyt U (O ) B e

Lemma 9. Suppose N is large enough that Assumption 3 holds. Recall S’% and 5'; are the outputs

of line 7 in Algorithm 1, and 5’{‘ and 5‘}; are defined in Lemma 8. Conditioned on event E, the
following hold for all uw € V.

. . N . 10e(N, 6)

St — S, ISy — S¥|| € ———F——
I5¢ =S¥ 185 - 851 <
Gu 7 Svu ’ Su , Svu L
ST ST 1S5 1531 ot (PT5)

Proof (1) We first show that o, ((UF)TPLTUH) > 30,.(P[5")/4, and
0 (UF) TP UM > 010 (PIGT) /2.
Under Assumption 3, by Item (2) of Lemma 7, we know that

|UH @)t —oH o) < gggam(Pf%;H)/?S 4)
As aresult,

H[A]H(UH)TPH HUH(UH)T . P1H3H||
= |UH@TPETT )T ot ot TR U ()T (5)
< @@t —ut@h T PETTH @) T

+||UH(UH>TPHH( vHt@")T -t
< @Ht@™mT -t @hHHNeET oo

+HUH @ TN PET I CH @) T - uH @)
< Um(P{{3H)/8+Um(P13H)/
< om(P5T)/4 (6)

where the first inequality is by triangle inequality, in the second inequality we use the fact that
|A - B|| < ||A|||B|. the third inequality is from the fact that |[P5"| < [|P/5"|r < 1,
|TH(@H)T|| = 1, [ UH(UH)T || = 1 and Equation (4).

Therefore,

T (U T PR OH)

Tpa (UH (O T PIREOH (0T

O (PLET) — [UH (O T PETTH (0T - P

30,4 (P5™) /4 (7)

vl

\%
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where the first inequality is by Theorem 3, the second inequality is by Equation 6.
In the meantime,

[T PEHETH - (@) TR

HH pHH
1P — Pl

IN

< €(N,5) < ot (P /4 ®)

where in the first inequality we use the fact that ||[/¥ || = 1, the second inequality is by the fact that

PH a }31H 4| < €(N, 6), the third inequality follows from Assumption 3.
Therefore
Umd((UH)TPféHUH)
> e (O TP OM) — (0TRSO — ()T PO

> om(Pi5")/2
where the first inequality is from Theorem 3, the second inequality is from Equation (8).
We now have
153 — S¢
S w, H 7 3 H,H {7 H\— ST Hu,H A SH,H 7 H Y —
(@) " Py UM (O™ T PO ™ = (U) T Py U((UT) TP U7

< (@ T (PR~ PG ()T PG

T PO R0 (0T
< |Om(py P;;’)UHH||<<UH>TPH’HUH>-1||

O BETOH ()T PR D) ()T PG|
_ 2N 8N.Y)
S e o P

10¢(N, 9)

< —0 9
= (P ®

In the derivation above, the first inequality uses triangle inequality and the second inequality repeat-
edly uses the fact that ||A - B|| < ||A]|||B]||- The third inequality is obtained by bounding each term
individually as follows:

IO T (Pyy" = Py UM | < 1Pys” = Pyl < I1Py5" — Py | < e(N, 6)
I TPETT) M = 1/0,a (UM TPISTOT) < 2/0,0 (P
1T T UH N < 1557 < 1535 e < 1
I(@H TP — (@) TRETT)
< 2@ TEGT = AT max(|(TT) TRETT L (@) T PO )
8e(N, )

PHH

Si
Om (13)

where the last inequality follows from Theorem 5.
The bound of ||S¥ — S¥|| is handled similarly.

(2) First,
2
HH
O e (P, 1,3 )
where the first inequality is by the fact that ||A - B|| < ||Al|||B]|, the second inequality is by Equa-
tion (7).

IS¢ < N0 TR T IN@ ) TR UM | <
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Meanwhile, Assumption 3 implies €(N, J) < o,,q (PlH 41 /5, therefore from Equation (9),

u Qu 2
ST = STl < W
Hence by triangle inequality,
-
Omd (Pl,é )
The bounds of ||S%|| and ||5¥|| are handled similarly. O

Built upon the previous two lemmas, we next provide a result regarding the concentration of sym-
metrized moments.

Lemma 10. Suppose N is large enough that Assumption 3 holds. Let u be a node in V. Then on
the event E, the following hold.

v 14€e(N, 6)
M3 — My < T pH,H\o
Umd(Pl,?; )
- 96¢(N, §)
M5! — My|| < — 57—
de(Pl,?; )

Proof. (1) Define P* = Pllé’u(l'jH, U*) and P* = ]51H2"(UH, U*). Then,
1M — M|
IP((S1) T, 1) = P((S1) T, D

< (P =PHSHT DI+ I1P“((S9)T = (51T, )|
< [P = PUYISTEI + [PUIST = ST
4e(N 1 14¢(N
< e(N,9) 0e(N, §) < e(N,9) (10)

H.H HHy\g = .0
Umd(PLé ) Umd(P1,3 )2 Umd(PLs )?

where the first inequality is by triangle inequality, the second inequality is by the fact that
IM(A,B)|| < |IM]||IA|l|IB]|, the third inequality is from the fact that | P* — P¥|| < ||Pfé“ -
P3| < |P5" = PSY||r < e(N,8) and | P < || P/5"]| < | P{5"]|F < 1 and Lemma 9.

As a result,

105 — M|
= [I(P(SH) T DT + PSS T D)/2 = (PU(SE. DT + P(S. 1)) /2|
< IPSHTDT = PGS T D TI/2+ 1P (SE) T ) = PH((ST) T DI/
< 14¢(N, )
T 0P

where the first inequality follows from triangle inequality, the second inequality is from Equa-
tion (10).

(2) Define T = P55 " (UH, U, U) and T = P5%™ (UH, U, U). Then,
My — M|
IT((S1) T, 1,(S$)T) = T*((S1) ", 1, (S$) 1|

< T = THNSENNSY A+ N HISE — SESH N + (1TS54 — Sy
__16¢(N,9) 10¢(N, §) 4 4 10¢(N, 6)
T 0P 0 (P2 00 (P 0 (P 0,0 (PG
96¢(N, )
amd(Pfg’HP
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where the first inequality is from triangle inequality, and the fact that | T(A4,B,C)| <
IT||[|AI[|B|||C. the second inequality is by the fact that |7 — 7| < ||P/5%" — PI5%Y| <
P — PSS | p < e(N,6), 1T < | P%5%™ ]| < 1,and Lemma 9, the third inequality is by
algebra.

E.4 Accucary of Tensor Decomposition

Algorithm 3 A Procedure That Finds Symmetric Decomposition based on Second and Third Order
Moments

1: Input: number of components m, perturbed version M, and M3 of matrix Ms and tensor Mj
satisfying My = > 1" | mi0; @ 0;, M5 = >" | w6, ® 0; @ 0;

2: Output: {#;}™,, estimate of {0;}7,

3: Whiten. Perform an SVD on Mg =UDU T, and let W = (Afmﬁ;ll/ 2(Whe:re Um is matrix that
contains the first m columns of U/ s ﬁm is the diagonal matrix with D’s first m diagonal entries),
let G = NI (W, W7, ).

4: Decompose Tensor. Apply robust tensor power iteration algorithm in [1] with input G to get

{01, ., Om}
5: fori=1,2,...,mdo
. /\. — 71
6: Let Z; = T(03,03,0:)
N T,
Recover §; = (WZ¢
8: end for

In this section, we introduce a lemma that is implicit in [1] regarding using orthogonal decomposi-
tion as a subprocedure for full rank symmetric tensor decomposition. (See Theorem 5.1 of [1].) For
completeness, we include the proof here.

Lemma 11. There are universal constants c1, co such that the following holds. Suppose a matrix
M5 and a tensor Ms has the following structure:

m

i=1

M;s = Zm:ﬂﬁz'@@i@@i

i=1
where T; > 0 for all i. And we are given their perturbed version Mo and Ms, such that

|Mz — M| < Ep

M5 — Ms|| < Er

where
EP < o-m((a)ZTrmin/2 (1])
Er Ep 1 1
< = 12
T T E R (o) e ()

where © = (01, . ..0,,) and Tyin = min; m;. Then the outputs {0;}7, of Algorithm 3 on input M,
and M3 satisfies the following. With appropriate setting of parameters (with respect to parameter
n), with probability 1 — 1, there is a permutation o : [m| — [m] such that

. 01(8), Ep Er
<
10; — Oo(i) || < ca = (o'm(@)2 am(@)3)
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Proof. 1. We first put O into canonical forms by appropriate scaling of its columns. Let 6 =
(64,...,0,,) = Odiag(w) 2, we have

M2:Z§Z®§Z
i=1
M —i L 526,00
3_1.:1\/7?1'1 [ [

Recall that W is defined as Um[);ﬁ, where Mg = UDUT. Hence WTMQW = I,,. Suppose that
W T M, W has the following eigendecomposition:

WT MW = ANAT
Then let W = WAA~2 AT, W is one of the matrices such that W T MyW = I,,,. Define M =
wTte,M =wTe.
2. If Equation (11) holds, then E}, < 6,,,(0)?mmin/2 < 0, (Ma)/2, then we have the following:

A 2
WL W < —=
om(0©)
WL W < 301(6)
Wt —wi| < &L@Ep
om(0©)?
41F
lee’ —wwi| < —=
m(©)
(M|, [[M]] <2
. Ep
s — s < 2
om(O)

3. Define G = Mz(W, W, W) =>". \/%Ml ® M; ® M;, and recall that G = Ms(W, W, W). We
have the following perturbation bound for G. Define R to be diagnoal tensor ), ﬁei ®e; ® e;.

Note that ||R|| < \/ﬂlmﬁ Therefore,

fee]l

< [(My — V) (W, W, W)l + | My (W = W, W, W) | + [ Ma(W, W — W, W) + | M (W, W, W — W)
— |[(Ms — Ng)(W, W, W) + || ROM — NI, M, M) || + [ RO, M — NI, M) + || ROV, N1, M — 3|

< 1M — NGI|W[P + | RIIM — MM + | RINSEIIM M — 811 + || RI| 5721 — 5]

< 8ET 12Ep

om(©)3  /Tmimom(©)2

where the first inequality is by triangle inequality, the second inequality is by the fact that
IT(A, B,C)|| < [ITIIIIAINBINIC]|, the third inequality is from results of our step 2 and the fact
that ||M3 — M3|| S ET.

in; m 1/2 . .
4. If Equation (12) holds, then E < <1 < O™ 7i— for Cy required by Theorem 5.1 in [1].
Thus, applying robust tensor power algorithm in [1], with probability at least 1 — 7, there exist a
permutation ¢ : [m] — [m] such that

1M =05 )| < 8v/mE (14)

5. We conclude by providing the reconstruction error bound. For notational simplicity, assume o/(-)
is identity mapping. Define
1 1
Z4 = = = i
Y Ms(WM;, WM;, WM;) — G(M;, M;, M) v
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and recall that

i = = = = = =

Ms(Wog, Wiy, Woy) Gy, 05, 0;)

N 1 1
Z,

The recovery formula is
(Wt
i = Tz
First, |Z% - —| can be bounded as follows:

1 1

Zi Zz'
\G(M;, My, M;) — G4, 9i, ;)|

< (G = G) (@4, 05, 85)| + |G(M; = b3, 83, 03)| + |G(My, My — 85, 83)| + |G(M, M, M; — ;)]
< HG—GMWMF+H@WM%—%WWW+H@WMr—WW%WMN+HQmMMwNQ—%H
< E+3——E<4——F

Tmin Tmin

where the first inequality is by triangle inequality, the second inequality is by the fact that || A - B|| <
[|A]|]|B]|, the third inequality is by Equation (13) in step 3 and Equation (14) in step 4, the fourth
inequality is by algebra.

Then the reconstruction error can be bounded as follows:

WhHTo;
jo, - L0,
whHTay, o WL -6 (VT =T, LR GNP
< ; — - — = ;
< [l6; 7 R e e R R M vl
wi R wt—wi|, 1 R
< oot —wwtied + L7ar -+ B2 o+ 2 - Zir
W*H Wt — Wi
- i noa® I i
< oot —wwi| 2= — + IM; = il + = |ZZ z'”W [
4Ep 01(©) - 601(0) 12 -
< = + 2401(O)FE + ——FEp\/m; + E\/mio.(O
o O'm(("'))2 A/ TTmin 1( ) O'm(@)2 P\/i A/ TTmin \/7 1( )
< 460’1((':)) 8ET + 12Ep )
T VAmim om(0)?  \/Tmmom(0)?
O’l(@) EP ET
I (€ A T E

Wher the first inequality is by triangle inequality, the second inequality we use the fact that#\A B| <
||A||||B|| and the fact that M; = W T6; VTis Zi = \/Ti, 009, = 0, Wwt = (WHTWT, the

third inequality uses the fact that [|0;]| = [|Oe;||//Tmmn < 01(0)/\/Tmm and ||3;|| = 1, in the
fourth inequality we use results in item 2 and item 4, the fifth inequality is from the definiton of

E and algebra, in the sixth inequality we use the fact that 0,,,(©) < Um((:))w_-l/ % and letting

min
c2 = Hd2. O
Now we apply the above lemma into our symmetrized cooccurence matrices My and Ms.

Corollary 2. Suppose N is large enough such that Assumption 3 holds. Then, on event E, with
probablllty 0.9 over the randomization of D calls of Algorithm 3, for all w € V, the matrices

O = oy, ... 9 " ) obtained at the end of line 9 are such that there exists a permutation matrix IT%,
€(N, 0)

(Mhin)? 0na (P15 )P0 (04)?

[(T*)TO* — OUITY|| < 2¢,
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Proof. By Assumption 3, we first see that conditioned on event F, by Lemma 9, om(U “Tou) >

0m(O")/2. Thus the conditions of Lemma 11 hold, by taking © = (U*)TO%, © = 7. We thus
get that with probability greater than 1 — 0.1/D over the randomness of Algorithm 1, there is a

permutation matrix IT* such that foralli = 1,2,...,m,
(@) T oy — (0 T1)4]
. o (U™ T o) e(N,9) e(N, ) )
T ) e(PET200(0M2 T 0e (PGP0 (0
N
< 2 vm €(NV,9)

(Thin)? 0 (PL5T)30,, (0%)3

where the second inequality we use the fact that oy (U*)TO%) = ||(T*)TO¥|| < |O*| < /m,
since O" is a column stochastic matrix. Therefore,

I To — (e )|

< @0 To - (@ 1)||r
N,o
< 20— AN 9) (15)
(ﬂ-min) O—md (P1,3’ )So-m(Ou)3
We conclude the proof by applying union bound over all v € V. O

F Putting Everything Together — Proof of Theorem 2

Proof. (Of Theorem 2) (1) We first give the recovery accuracy of observation matri-

ces. The final step of recovery is o = U“ov Note that if N is at least
Cmax(%jgln 2 %ln 2 ﬁln L), then Assumption 3 holds, hence conditioned on
event I/, we have
jo@)ro* - o"|
< oH@)T oo
2 N
< 2/mdv9) (16)
Um(P1,2 )

where the first inequality is by the fact that ||A - B|| < || A||||B||, the second inequality follows from
the fact that ||O"|| < y/m and item (1) of Lemma 7.

Meanwhile, by Corollary 2, we have
I(TTo* — e |
m e(N, )

(Thin)? 0 (PL5T)30,, (013

IN

< 262

The above two facts let us conclude that provided the size of sample N is at least

D m?

Cmax( 5t In = n %) (where we choose C' large enough),
271 in

lov — O 11|
< U@ To" - oM+ |UHT) ot - Urerr||

2 /me(N, 6 N5
< \/EE(M )+2C2 m_ ;(H : )

om(Pry) (T in) Oma(Pr 3 )30m(0v)3

< : v\4
< {)rél‘l/lam(O )*e/32 (17)
< €
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where the first inequality is by triangle inequality, the second inequality is by Equations (15)
and (16), the third inequality follows from the choice of N, in the last inequality we use the fact
that o.,,,(O") < 1. Therefore by Equation (17) and Theorem 3,

om(OVIIY) > 0, (O%) — ngg om(0%)*€/32 > 0,,(0%) /2 (18)

(2) We now provide guarantees on the accuracy of transition probabilities and initial probabilities.
In particular, we prove ||Q* — Q*(IT%, TI%, TI™("))|| < e, the other three inequalities can be handled
similarly. As we have already seen from Equation (17), forallu € V,

()" = ()T A
2max([(0")1 2, | (0T (0)) B0 — 11|

: V)2
{}I.lel‘r/lom(O )“€/16

IA A

where the first inequality is by Theorem 5, the second inequality uses the fact that ||(O%)T| =
1/, (0%), [[(O*I*)|| = 1/0,,(O“IT*) and Equation (18).

‘n'(u) u

Conditioned on event E, by the choice of [V, it is also true that the cooccurence tensor Py 5, 7" is

such that

|By55"" = Pygi || < ming,, (07)e/32 (19)
Therefore,
Q" — Qv (I, I, Ir*)||
1Py (0™ (0™ )TH (0)T) — Pyt (O ) ™ (O™ tomr )T (Oma1) ™|

< NPy = By o) (om0t )|
Py (0T — (0T (0T TE (o) TH||
HIBE (O )T (07T — (0TI T (O
+BE (O, (0TI (0T — (01|
S S el e [0V 4+ [Py - (10T = (0T (mae O +
max | 01| max O] + max | O°F[1%)
< €

where the first inequality is by triangle inequality, the second inequality is by the fact that
IT(A, B,C)|| < ITINAIIBIIC|, the third inequality is by Equations (19) and (17).

]
G Matrix Perturbation Lemmas
Theorem 3 (Weyl’s Theorem). If A, E are matrices in R™*"™ with m > n. Then,

loi(A+ E) —oi(A)| < [|E]

Theorem 4 (Wedin’s Theorem). If A, E are matrices in R™*"™ with m > n. Let A have singular
value decomposition:

U’ ¥ 0

ul JAacvi )= ( 0 % )

Uy 0 0
Let A = A+ E have the singular value decomposition:

ory o B0

Ul |A(Vi Va)=1{ 0 %

U; 0 0
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If there is 6 > 0, a > 0 such that min; ai(il) > a+ 6, max; 0;(X2) < o, then

. I E|
Pl < —=
[|sin®|| < 3

where ® is the matrix of principal angles between range(U,) and range(Uy ).

Theorem 5. If A, E are matrices in R™*™ with m > n, let A=A+ E. Then,
AT — AT|| < 2max(||AT|)%, | AT||?)| E|

H Compressed observation matrices produced by Spectacle-Tree for eight
ENCODE cell types

H3K27ac}0.46 0.0 0.050.02 0.0 0.02 H3K27ac; .07.0.05 0.0 0.01 0.0 H3K27ac}
H3K27me3: 0.0 .0,11 0.0 0.0 0.0{ H3K27me3/0.110.170.01 0.0 0.0 H3K27me3{0.0 0.0 0.0 0.0 0.0 0.36
H3K36me3 0.0 0.0 0.0 . 0.0 0.0{ H3K36me3/0.010.010.41 0.0 0.0 H3K36me3f0.0 0.020.02 .01 0. H3K36me3{0.03 0.01- 0.0 0.050.0%

0.10.02 0.0 . 0.0-

H3K4me10.110.080.510.01 0.0 0.49 H3K4mef| 0.070.01 0.0 0.0 H3K4me10.16|

o.oe. 00 00005  H3K4me2
0.0 0.27 0.0 0.0 0.0 H3K4me3!

0.0 0.0 0.24 0.0-

0.26 0.0 0.0 0.27
0.150.02 0.0 0.0 0.16 . 0.0 0.010.04 0.0-

0.060.01 0.0 0.0 H3K4me?2)
0.0 0.0 0.0 0.0 H3K4me3|
0.02 0.0 0.0 0.0 H3K9ac| 0.290.010.01 0.0 0.03

10.38]
0.020.180.03 0.010.06( H3K9aci0.22]

H4K20me10.070.040.030.08 0.0 0.06  H4K20me10.040.04| 0.030.04 0.0 H4K20me10.010.010.010.04 0.0 0.05
172 3 4 5 6 12 3 4 5 6 12 3 4 5 6

(a) HI-hESC (b) HepG2 (c) HMEC

H3K27acw H3K27ad] 0.020.05 0.0 0.1 H3K27acF0.09 00100]  H3K27ac/il0.06 0.0 0.010.36 0.0
H3K27me3{0.0 0.0 0.0 0.0 .0.0 H3K27me3(0.05 0.0 0.21 0.0 0.01 0.0 H3K27me3| 0.0 0.0 0.0 0.0 0.0 H3K27me3: 0.0 0.01; 0.0 0.0 0.0
Hak36meafIB0.010.040.06 00 004  HIK36me30.150.010.02f840010.08  H3K36me30.0 0.010.010.030.29 00f  H3K36me3 0.0 0.0 0.0 FBY0.03 0.0

0.010.050.04 0.0 H3K4me10.020. 00200{  H3K4me10.070.190.010.03051 0.0

H3K4mef|
0.0 0.0 0.0 0.0 0.020.010.46 0.0
0.44 0.0 0.010.02 0.0

H3K4me'
H3K4me2| H3K4me2| 0.3 0.0 0.0 H3K4me2)|
H3K4me3| 0.010.02 0.0 0.0!

H3K9ac]| 0.0 0.01 0.0 0.0f

H3K4me2
H3K4me30. 0.530.02 0.0 0.0 H3K4me3|

H3K9ac|0. 0.03 0.0 0.0 H3K9ac|

H3K4me30.

H3K9aci0.
H4K20me 10.01 0.0 0.010.040.01 0.0 H4K20me 10.060.160.180.07 0.0 0.0 H4K20me 10.010.01 0.0 0.010.04 0.0 H4K20me10.0 0.0 0.010.020.01 0.0
12 3 4 5 6 12 3 4 5 6 12 3 4 5 6 12 3 4 5 6

(e) HUVEC (f) K562 (2) NHEK (h) NHLF

0.03 0.0 0.0 0.03 0.0

Figure 3: The compressed observation matrices estimated by Spectacle-Tree for all eight ENCODE
cell types studied, other than GM 12878 which is presented in the main manuscript.
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