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Abstract

Interactive submodular set cover is an interactive variant of submodular set cover
over a hypothesis class of submodular functions, where the goal is to satisfy
all sufficiently plausible submodular functions to a target threshold using as few
(cost-weighted) actions as possible. It models settings where there is uncertainty
regarding which submodular function to optimize. In this paper, we propose a new
extension, which we call smooth interactive submodular set cover, that allows the
target threshold to vary depending on the plausibility of each hypothesis. We
present the first algorithm for this more general setting with theoretical guarantees
on optimality. We further show how to extend our approach to deal with real-
valued functions, which yields new theoretical results for real-valued submodular
set cover for both the interactive and non-interactive settings.

1 Introduction

In interactive submodular set cover (ISSC) [10, 11, 9], the goal is to interactively satisfy all plausible
submodular functions in as few actions as possible. ISSC is a wide-encompassing framework that
generalizes both submodular set cover [24] by virtue of being interactive, as well as some instances
of active learning by virtue of many active learning criteria being submodular [12, 9].

A key characteristic of ISSC is the a priori uncertainty regarding the correct submodular function to
optimize. For example, in personalized recommender systems, the system does not know the user’s
preferences a priori, but can learn them interactively via user feedback. Thus, any algorithm must
choose actions in order to disambiguate between competing hypotheses as well as optimize for the
most plausible ones – this issue is also known as the exploration-exploitation tradeoff.

In this paper, we propose the smooth interactive submodular set cover problem, which addresses
two important limitations of previous work. The first limitation is that conventional ISSC [10, 11, 9]
only allows for a single threshold to satisfy, and this “all or nothing” nature can be inflexible for
settings where the covering goal should vary smoothly (e.g., based on plausibility). In smooth ISSC,
one can smoothly vary the target threshold of the candidate submodular functions according to their
plausibility. In other words, the less plausible a hypothesis is, the less we emphasize maximizing
its associated utility function. We present a simple greedy algorithm for smooth ISSC with prov-
able guarantees on optimality. We also show that our smooth ISSC framework and algorithm fully
generalize previous instances of and algorithms for ISSC by reducing back to just one threshold.

One consequence of smooth ISSC is the need to optimize for real-valued functions, which leads
to the second limitation of previous work. Many natural classes of submodular functions are real-
valued (cf. [25, 5, 17, 21]). However, submodular set cover (both interactive and non-interactive)
has only been rigorously studied for integral or rational functions with fixed denominator, which
highlights a significant gap between theory and practice. We propose a relaxed version of smooth
ISSC using an approximation tolerance ε, such that one needs only to satisfy the set cover criterion to
within ε. We extend our greedy algorithm to provably optimize for real-valued submodular functions
within this ε tolerance. To the best of our knowledge, this yields the first theoretically rigorous
algorithm for real-valued submodular set cover (both interactive and non-interactive).
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Problem 1 Smooth Interactive Submodular Set Cover
1: Given:

1. Hypothesis class H (does not necessarily contain h∗)
2. Query setQ and response setR with known q(h) ⊆ R for q ∈ Q, h ∈ H
3. Modular query cost function c defined overQ
4. Monotone submodular objective functions Fh : 2Q×R → R≥0 for h ∈ H
5. Monotone submodular distance functionsGh : 2Q×R → R≥0 for h ∈ H , withGh(S⊕(q, r))−
Gh(S) = 0 for any S if r ∈ q(h)

6. Threshold function α : R≥0 → R≥0 mapping a distance to required objective function value
2: Protocol: For i = 1, . . . ,∞: ask a question q̂i ∈ Q and receive a response r̂i ∈ q̂i(h∗).
3: Goal: Using minimal cost

∑
i c(q̂i), terminate when Fh(Ŝ) ≥ α(Gh(S∗)) for all h ∈ H , where Ŝ =

{(q̂i, r̂i)}i and S∗
4
=
⋃
q∈Q,r∈q(h∗){(q, r)}.

2 Background

Submodular Set Cover. In the basic submodular set cover problem [24], we are given an action
set Q and a monotone submodular set function F : 2Q → R≥0 that maps subsets A ⊆ Q to
non-negative scalar values. A set function F is monotone and submodular if and only if:

∀A ⊆ B ⊆ Q, q ∈ Q : F (A⊕ q) ≥ F (A) and F (A⊕ q)− F (A) ≥ F (B ⊕ q)− F (B),

respectively, where ⊕ denotes set addition (i.e., A ⊕ q ≡ A ∪ {q}). In other words, monotonicity
implies that adding a set always yields non-negative gain, and submodularity implies that adding to
a smaller set A results in a larger gain than adding to a larger set B. We also assume that F (∅) = 0.

Each q ∈ Q is associated with a modular or additive cost c(q). Given a target threshold α, the goal is
to select a setA that satisfies F (A) ≥ α with minimal cost c(A) =

∑
q∈A c(q). This problem is NP-

hard; but for integer-valued F , simple greedy forward selection can provably achieve near-optimal
cost of at most (1 + ln(maxa∈Q F ({a}))OPT [24], and is typically very effective in practice.

One motivating application is content recommendation [5, 4, 25, 11, 21], where Q are items to
recommend, F (A) captures the utility of A ⊆ Q, and α is the satisfaction goal. Monotonicity
of F captures the property that total utility never decreases as one recommends more items, and
submodularity captures the the diminishing returns property when recommending redundant items.

Interactive Submodular Set Cover. In the basic interactive setting [10], the decision maker must
optimize over a hypothesis class H of submodular functions Fh. The setting is interactive, whereby
the decision maker chooses an action (or query) q ∈ Q, and the environment provides a response r ∈
R. Each query q is now a function mapping hypotheses H to responses R (i.e., q(h) ∈ R), and the
environment provides responses according to an unknown true hypothesis h∗ ∈ H (i.e., r ≡ q(h∗)).
This process iterates until Fh∗(S) ≥ α, where S denotes the set of observed question/response pairs:
S = {(q, r)} ⊆ Q×R. The goal is to satisfy Fh∗(S) ≥ αwith minimal cost c(S) =

∑
(q,r)∈S c(q).

For example, when recommending movies to a new user with unknown interests (cf. [10, 11]), H
can be a set of user types or movie genres (e.g., H = {Action,Drama,Horror, . . .}). ThenQ would
contain individual movies that can be recommended, and R would be a “yes” or “no” response or
an integer rating representing how interested the user (modeled as h∗) is in a given movie.

The interactive setting is both a learning and covering problem, as opposed to just a covering prob-
lem. The decision maker must balance between disambiguating between hypotheses in H (i.e.,
identifying which is the true h∗) and satisfying the covering goal Fh∗(S) ≥ α; this issue is also
known as the exploration-exploitation tradeoff. Noisy ISSC [11] extends basic ISSC by no longer
assuming the true h∗ is in H , and uses a distance function Gh and tolerance κ such that the goal is
to satisfy Fh(S) ≥ α for all sufficiently plausible h, where plausibility is defined as Gh(S) ≤ κ.

3 Problem Statement

We now present the smooth interactive submodular set cover problem, which generalizes basic
and noisy ISSC [10, 11] (described in Section 2). Like basic ISSC, each hypothesis h ∈ H is
associated with a utility function Fh : 2Q×R → R≥0 that maps sets of query/response pairs to
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Figure 1: Examples of (a) multiple thresholds, (b) approximate multiple thresholds, (c) a continuous
convex threshold, and (d) an approximate continuous convex threshold. For the approximate setting,
we essentially allow for satisfying any threshold function that resides in the yellow region.

non-negative scalars. Like noisy ISSC, the hypothesis class H does not necessarily contain the true
h∗ (i.e., the agnostic setting). Each h ∈ H is associated with a distance or disagreement function
Gh : 2Q×R → R≥0 which maps sets of question/response pairs to a disagreement score (i.e., the
larger Gh(S) is, the more h disagrees with S). We further require that Fh(∅) = 0 and Gh(∅) = 0.

Problem 1 describes the general problem setting. Let S∗
4
=
⋃
q∈Q,r∈q(h∗){(q, r)} denote the set of

all possible question/responses pairs given by h∗. The goal is to construct a question/response set
Ŝ with minimal cost such that, for every h ∈ H we have Fh(Ŝ) ≥ α(Gh(S∗)), where α(·) maps
disagreement values to desired utilities. In general, α(·) is a non-increasing function, since the goal
is to optimize more the most plausible hypotheses in H . We describe two versions of α(·) below.

Version 1: Step Function (Multiple Thresholds). The first version uses a decreasing step function
(see Figure 1(a)). Given a pair of sequences α1 > . . . > αN > 0 and 0 < κ1 < . . . < κN ,
the threshold function is α(v) = αnκ(v) where nκ(v) = min{n ∈ {0, . . . , N + 1}|v < κn}, and

α0
4
= ∞, αN+1

4
= 0, κ0

4
= 0, κN+1

4
= ∞. The goal in Problem 1 is equivalently: “ ∀h ∈ H and

n = 1, . . . , N : satisfy Fh(Ŝ) ≥ αn whenever Gh(S∗) < κn.” This version is a strict generalization
of noisy ISSC, which uses only a single α and κ.

Version 2: Convex Threshold Curve. The second version uses a convex α(·) that decreases con-
tinuously as Gh(S∗) increases (see Figure 1(c)), and is not a strict generalization of noisy ISSC.

Approximate Thresholds. Finally, we also consider a relaxed version of smooth ISSC, whereby
we only require that the objectives Fh be satisfied to within some tolerance ε ≥ 0. More formally,
we say that we approximately solve Problem 1 with tolerance ε if its goal is redefined as: “using
minimal cost,

∑
i c(q̂i), guarantee Fh(Ŝ) ≥ α(Gh(S∗))− ε for all h ∈ H .” See Figure 1(b) & 1(d)

for the approximate versions of the multiple tresholds and convex versions, respectively.

ISSC has only been rigorously studied when the utility functions are Fh are rational-valued with
a fixed denominator. We show in Section 4.3 how to efficiently solve the approximate version of
smooth ISSC when Fh are real-valued, which also yields a new approach for approximately solving
the classical non-interactive submodular set cover problem with real-valued objective functions.

4 Algorithm & Main Results

A key question in the study of interactive optimization is how to balance the exploration-exploitation
tradeoff. On the one hand, one should exploit current knowledge to efficiently satisfy the plausible
submodular functions. However, hypotheses that seem plausible might actually not be due to imper-
fections in the algorithm’s knowledge. One should thus explore by playing actions that disambiguate
the plausibility of competing hypotheses. Our setting is further complicated due to also solving a
combinatorial optimization problem (submodular set cover), which is in general intractable.

4.1 Approach Outline

We present a general greedy algorithm, described in Algorithm 1 below, for solving smooth ISSC
with provably near-optimal cost. Algorithm 1 requires as input a submodular meta-objective F̄
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Algorithm 1 Worst Case Greedy Algorithm for Smooth Interactive Submodular Set Cover
1: input: F̄ // Submodular Meta-Objective
2: input: F̄max // Termination Threshold for F̄
3: input: Q // Query or Action Set
4: input: R // Response Set
5: S ← ∅
6: while F̄ (S) < F̄max do
7: q̂ ← argmaxq∈Qminr∈R

(
F̄ (S ⊕ (q, r))− F̄ (S)

)
/c(q)

8: Play q̂, observe r̂
9: S ← S ⊕ (q̂, r̂)

10: end while

Variable Definition
H Set of hypotheses
Q Set of actions or queries
R Set of responses
Fh Monotone non-decreasing submodular utility function
Gh Monotone non-decreasing submodular distance function
F̄ Monotone non-decreasing submodular function unifying Fh, Gh and the thresholds

F̄max Maximum value held by F̄
DF Denominator for Fh (when rational)
DG Denominator for Gh (when rational)
α(·) Continuous convex threshold
αi Thresholds for F (α1 is largest)
κi Thresholds for G (κ1 is smallest)
N Number of thresholds
ε Approximation tolerance for the real-valued case
F ′h Surrogate utility function for the approximate version
α′n Surrogate thresholds for the approximate version

Figure 2: Summary of notation used. The top portion is used in all settings. The middle portion is
used for the multiple thresholds setting. The bottom portion is used for real-valued functions.

that quantifies the exploration-exploitation trade-off, and the specific instantiation of F̄ depends on
which version of smooth ISSC is being solved. Algorithm 1 greedily optimizes for the worst case
outcome at each iteration (Line 7) until a termination condition F̄ ≥ F̄max has been met (Line 6).

The construction of F̄ is essentially a reduction of smooth ISSC to a simpler submodular set cover
problem, and generalizes the reduction approach in [11]. In particular, we first lift the analysis of
[11] to deal with multiple thresholds (Section 4.2). We then show how to deal with approximate
thresholds in the real-valued setting (Section 4.3), which finally allows us to address the continuous
threshold setting (Section 4.4). Our cost guarantees are stated relative to the general cover cost
(GCC), which lower bounds the optimal cost, as stated in Definition 4.1 and Lemma 4.2 below. Via
this reduction, we can show that our approach achieves cost bounded by (1 + ln F̄max)GCC ≤
(1 + ln F̄max)OPT . For clarity of exposition, all proofs are deferred to the supplementary material.

Definition 4.1 (General Cover Cost (GCC)). Define oracles T ∈ RQ to be functions mapping
questions to responses and T (Q̂)

∆
=
⋃
q̂i∈Q̂{(q̂i, T (q̂i))}. T (Q̂) is the set of question-response pairs

given by T for the set of questions Q̂. Define the General Cover Cost as:

GCC
∆
= max
T∈RQ

(
min

Q̂:F̄ (T (Q̂))≥F̄max
c(Q̂)

)
.

Lemma 4.2 (Lemma 3 from [11]). If there is a question asking strategy for satisfying F̄ (Ŝ) ≥ F̄max
with worst case cost C∗, then GCC ≤ C∗. Thus GCC ≤ OPT .

4.2 Multiple Thresholds Version

We begin with the multiple thresholds version. In this section, we assume that each Fh and Gh
are rational-valued with fixed denominators DF and DG, respectively.1 We first define a doubly

1When each Fh and/or Gh are integer-valued, then DF = 1 and/or DG = 1, respectively.
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Figure 2: This figure shows the relationship between the terms defined in Definition 4.3. (A) For
F̄hi,n � F̄hi,nmax

= (↵n � ↵n+1)(n � n�1), either Fhi
� ↵n or Ghi

� n. This generates the
tradeoff between satisfying the either of the two thresholds. (B) For F̄hi

� F̄hmax
, F̄hi,n � F̄hi,nmax

for all i 2 {1, . . . , N}. This creates the requirement that all of the thresholds must be satisfied. (C)
For F̄ � F̄max, F̄h � F̄hmax

for all h 2 H . This creates the requirement that all of the hypotheses
must be satisfied.

Using (1) and (2), we define the general forms of F̄ and F̄max used in Sections 4.2, 4.3, and 4.4.
Each of these sections will apply this definition to different choices of Fh, Gh, N , ↵1, . . . ,↵N , and
1, . . . ,N to solve their variants of the problem. In this definition, X is a constant to make F̄h

to be integer-valued, Y is the contribution to the maximum value from Fh and ↵n, and Z is the
contribution to the maximum value from Gh and n.
Definition 4.3 (General F̄ and F̄max).

F̄h,n(Ŝ)
4
=
⇣
(n � n�1) � Gh,n,n�1(Ŝ)

⌘
Fh,↵n,↵n+1(Ŝ) + Gh,n,n�1(Ŝ)(↵n � ↵n+1),

F̄h(Ŝ)
4
= X

NX

n=1

2
4
0
@Y

j 6=n

(j � j�1)

1
A F̄h,n(Ŝ)

3
5 ,

F̄ (Ŝ)
4
=
X

h2H

F̄h(Ŝ), F̄max
4
= |H|Y Z

Definition 4.4 (Multiple Thresholds). To solve the multiple thresholds version of the problem, Fh,
Gh, N , ↵1, . . . ,↵N , and 1, . . . ,N are used without modification. The constants are set as the
following:

X = DF DN
G , Y = DF↵1, Z = DN

G

NY

n=1

(n � n�1)

This definition of F̄ trades off between exploitation (maximizing the most plausible Fh) and ex-
ploration (distinguishing between more and less plausible Fh) by allowing each F̄i to reach its
maximum value either by having Fh reach ↵i or having Gh reach i. In other words, each of the
thresholds can be satisfied with either a sufficiently large utility Fh or a sufficiently large distance
Gh. Figure 2 shows the logical relationships between these components.

We prove in Appendix A that F̄ is monotone submodular, and that finding a S such that F̄ (S) �
F̄max is equivalent to solving Problem 1. For Definition 4.4, we also require that ↵n and n thresh-
olds satisfy Condition 4.5 for F̄ to be submodular.

Condition 4.5. The sequence h ↵i�↵n+1

n�n�1
iNi=1 is non-increasing.

Theorem 4.6. Let Fh and Gh be monotone submodular and rational-valued with fixed denominator
DF and DG, respectively. Then, if Condition 4.5 holds, then applying Algorithm 1 using F̄ and
F̄max from Definition 4.4 solves the multiple thresholds version of Problem 1 with cost at most⇣
1 + ln

⇣
|H|DF DN

G↵1

QN
n=1(n � n�1)

⌘⌘
GCC.

5

Figure 3: Depicting the relationship between the terms defined in Definition 4.3. (A) If F̄hi,n ≥
F̄hi,nmax = (αn−αn+1)(κn−κn−1), then either Fhi ≥ αn orGhi ≥ κn; this generates the tradeoff
between satisfying the either of the two thresholds. (B) If F̄hi ≥ F̄hmax , then F̄hi,n ≥ F̄hi,nmax∀i ∈ {1, . . . , N}; this enforces that all i, at least one of the thresholds αi or κi must be satisfied. (C)
If F̄ ≥ F̄max, then F̄h ≥ F̄hmax ∀h ∈ H; this enforces that all hypotheses must be satisfied.

truncated version of each hypothesis submodular utility and distance function:

Fh,αn,αj (Ŝ)
4
= max(min(Fh(Ŝ), αn), αj)− αj , (1)

Gh,κn,κj (Ŝ)
4
= max(min(Gh(Ŝ), κn), κj)− κj . (2)

In other words, Fh,αn,αj is truncated from below at αj and from above at αn (it is assumed that
αn > αj), and is offset by −αj so that Fh,αn,αj (∅) = 0. Gh,κn,κj is constructed analogously.
Using (1) and (2), we can define the general forms of F̄ and F̄max, which can be instantiated to
address different versions of smooth ISSC.
Definition 4.3 (General form of F̄ and F̄max).

F̄h,n(Ŝ)
4
=
(

(κn − κn−1)−Gh,κn,κn−1(Ŝ)
)
Fh,αn,αn+1(Ŝ) +Gh,κn,κn−1(Ŝ)(αn − αn+1),

F̄h(Ŝ)
4
= CF̄

N∑
n=1

∏
j 6=n

(κj − κj−1)

 F̄h,n(Ŝ)

 ,
F̄ (Ŝ)

4
=
∑
h∈H

F̄h(Ŝ), F̄max
4
= |H|CFCG.

The coefficient CF̄ converts each F̄h to be integer-valued, CF is the contribution to F̄max from Fh
and αn, and CG is the contribution to F̄max from Gh and κn.
Definition 4.4 (Multiple Thresholds Version of ISSC). Given α1, . . . , αN and κ1, . . . , κN , we in-
stantiate F̄ and F̄max in Definition 4.3 via:

CF̄ = DFD
N
G , CF = DFα1, CG = DN

G

N∏
n=1

(κn − κn−1).

F̄ in Definition 4.4 trades off between exploitation (maximizing the plausible Fh’s) and exploration
(disambiguating plausibility in Fh’s) by allowing each F̄h to reach its maximum by either Fh reach-
ing αi or Gh reaching κi. In other words, each F̄h can be satisfied with either a sufficiently large
utility Fh or large distance Gh. Figure 3 shows the logical relationships between these components.

We prove in Appendix A that F̄ is monotone submodular, and that finding an S such that F̄ (S) ≥
F̄max is equivalent to solving Problem 1. For F̄ to be submodular, we also require Condition 4.5,
which is essentially a discrete analogue to the condition that a continuous α(·) should be convex.

Condition 4.5. The sequence 〈αn−αn+1

κn−κn−1
〉Nn=1 is non-increasing.

Theorem 4.6. Given Condition 4.5, Algorithm 1 using Definition 4.4 solves the multiple thresholds
version of Problem 1 using cost at most

(
1 + ln

(
|H|DFD

N
Gα1

∏N
n=1(κn − κn−1)

))
GCC.

If each Gh is integral and κn = κn−1 + 1, then the bound simplifies to (1 + ln (|H|DFα1))GCC.
We present an alternative formulation in Appendix D.2 that has better bounds when DG is large, but
is less flexible and cannot be easily extended to the real-valued and convex threshold curve settings.
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4.3 Approximate Thresholds for Real-Valued Functions

Solving even non-interactive submodular set cover is extremely challenging when the utility func-
tions Fh are real-valued. For example, Appendix B.1 describes a setting where the greedy algorithm
performs arbitrarily poorly. We now extend the results from Section 4.2 to real-valued Fh and
α1, . . . , αN .

Rather than trying to solve the problem exactly, we instead solve a relaxed or approximate version,
which will be useful for the convex threshold curve setting. Let ε > 0 denote a pre-specified
approximation tolerance for Fh, d·eγ denote rounding up to the nearest multiple of γ, and b·cγ
denote rounding down to the nearest multiple of γ. We define a surrogate problem:
Definition 4.7 (Approximate Thresholds for Real-Valued Functions). Define the following approx-
imations to Fh and αn:

F ′h(Ŝ)
4
=
D

ε

Fh(Ŝ) +
ε

D

|Ŝ|∑
i=1

(|Q|+ 1− i)


ε
D

,

α′n
4
=
D

ε

⌊
αn −

ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]⌋
ε
D

D
4
=

 |Q|∑
i=1

(|Q|+ 1− i) +

N∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]
+ 2


Instantiate F̄ and F̄max in Definition 4.3 using F ′h, α′n above, Gh, κn and:

CF̄ = DN
G , CF = α′1, CG = DN

G

N∏
n=1

(κn − κn−1).

We prove in Appendix B that Definition 4.7 is an instance of a smooth ISSC problem, and that
solving Definition 4.7 will approximately solve the original real-valued smooth ISSC problem.

Theorem 4.8. Given Condition 4.5, Algorithm 1 using Definition 4.7 will approximately solve
the real-valued multiple thresholds version of Problem 1 with tolerance ε using cost at most(

1 + ln
(
|H|α′1DN

G

∏N
n=1(κn − κn−1)

))
GCC.

We show in Appendix B.2 how to apply this result to approximately solve the basic submodular set
cover problem with real-valued objectives. Note that if ε is selected as the smallest distinct difference
between values in Fh, then the approximation will be exact.

4.4 Convex Threshold Curve Version

We now address the setting where the threshold curve α(·) is continuous and convex. We again
solve the approximate version, since the threshold curve α(·) is necessarily real-valued. Let ε > 0
be the pre-specified tolerance for F ′h. Let N be defined so that NDG is the maximal value of Gh.
We convert the continuous version α(·) to a multiple threshold version (with N thresholds) that is
within an ε-approximation of the former, as shown below.

Definition 4.9 (Equivalent Multiple Thresholds for Continuous Convex Curve). Instantiate F̄ and
F̄max in Definition 4.3 using Gh without modification, and a sequence of thresholds:

F ′h(Ŝ)
4
=
D

ε

Fh(Ŝ) +
ε

D

|Ŝ|∑
i=1

(|Q|+ 1− i)


ε
D

,

α′n
4
=
D

ε

⌊
α(n)− ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]⌋
ε
D

κn
4
= DGn

6



with constants set as:

CF̄ = 1, CF = α′1, CG = DN
G

N∏
n=1

(κn − κn−1) = DN
G .

Note that the F ′h are not too expensive to compute. We prove in Appendix C that satisfying this set of
thresholds is equivalent to satisfying the original curve α(·) within ε-error. Note also that Definition
4.9 uses the same form as Definition 4.7 to handle the approximation of real-valued functions.
Theorem 4.10. Applying Algorithm 1 using Definition 4.9 approximately solves the convex thresh-
old version of Problem 1 with tolerance ε using cost at most:

(
1 + ln

(
|H|α′1DN

G

))
GCC.

Note that if ε is sufficiently large, then N could in principle be smaller, which can lead to less
conservative approximations. There may also be more precise approximations by reducing to other
formulations for the multi-threshold setting (e.g., Appendix D.2).

5 Simulation Experiments

Comparison of Methods to Solve Multiple Thresholds. We compared our multiple threshold
method against multiple baselines (see Appendix D for more details) in a range of simulation settings
(see Appendix E.1). Figure 4 shows the results. We see that our approach is consistently amongst the
best performing methods. The primary competitor is the circuit of constraints approach from [11]
(see Appendix D.3 for a comparison of the theoretical guarantees). We also note that all approaches
dramatically outperform their worst-case guarantees.
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Figure 4: Comparison against baselines in three simulation settings.

Validating Approximation Tolerances. We also validated the efficacy of our approximate thresh-
olds relaxation (see Appendix E.2 for more details of the setup). Figure 5 shows the results. We see
that the actual deviation from the original smooth ISSC problem is much smaller than the specified
ε, which suggests that our guarantees are rather conservative. For instance, at ε = 15, the algorithm
is allowed to terminate immediately. We also see that the cost to completion steadily decreases as ε
increases, which agrees with our theoretical results.
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Figure 5: Comparing cost and deviation from the exact function for varying ε.

6 Summary of Results & Discussion

Figure 6 summarizes the size of F̄max (or F̄ ′max for real-valued functions) for the various settings.
Recall that our cost guarantees take the form (1 + ln F̄max)OPT . When Fh are real-valued, then
we instead solve the smooth ISSC problem approximately with cost guarantee (1 + ln F̄ ′max)OPT .

Our results are well developed for many different versions of the utility functions Fh, but are less
flexible for the distance functions Gh. For example, even for rational-valued Gh, F̄max scales as
DN
G , which is not desirable. The restriction of Gh to be rational (or integral) leads to a relatively

straightforward reduction of the continuous convex version of α(·) to a multiple thresholds version.
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In fact, our formulation can be extended to deal with real-valued Gh and κn in the multiple thresh-
olds version; however the resulting F̄ is no longer guaranteed to be submodular. It is possible that a
different assumption than the one imposed in Condition 4.5 is required to prove more general results.

F G Multiple Thresholds Convex Threshold Curve

Rational Rational |H|α1DFD
N
G

∏N
i=1(κi − κi−1) |H|α1DFD

N
G

Real Rational |H|α′1DN
G

∏N
i=1 (κi − κi−1) |H|α′1DN

G

Figure 6: Summarizing F̄max. When Fh are real-valued, we show F̄ ′max instead.

Our analysis appears to be overly conservative for many settings. For instance, all the approaches we
evaluated empirically achieved much better performance than their worst-case guarantees. It would
be interesting to identify ways to constrain the problem and develop tighter theoretical guarantees.

7 Other Related Work
Submodular optimization is an important problem that arises across many settings, including sensor
placements [16, 15], summarization [26, 17, 23], inferring latent influence networks [8], diversified
recommender systems [5, 4, 25, 21], and multiple solution prediction [1, 3, 22, 19]. However, the
majority of previous work has focused on offline submodular optimization whereby the submodular
function to be optimized is fixed a priori (i.e., does not vary depending on feedback).

There are two typical ways that a submodular optimization problem can be made interactive. The
first is in online submodular optimization, where an unknown submodular function must be re-
optimized repeatedly over many sessions in an online or repeated-games fashion [20, 25, 21]. In
this setting, feedback is typically provided only at the conclusion of a session, and so adapting from
feedback is performed between sessions. In other words, each session consists of a non-interactive
submodular optimization problem, and the technical challenge stems from the fact that the submod-
ular function is unknown a priori and must be learned from feedback provided post optimization in
each session – this setting is often referred to as inter-session interactive optimization.

The other way to make submodular optimization interactive, which we consider in this paper, is to
make feedback available immediately after each action taken. In this way, one can simultaneously
learn about and optimize for the unknown submodular function within a single optimization session
– this setting is often referred to as intra-session interactive optimization. One can also consider
settings that allow for both intra-session and inter-session interactive optimization.

Perhaps the most well-studied application of intra-session interactive submodular optimization is
active learning [10, 7, 11, 9, 2, 14, 13], where the goal is to quickly reduce the hypothesis class
to some target residual uncertainty for planning or decision making. Many instances of noisy and
approximate active learning can be formulated as an interactive submodular set cover problem [9].

A related setting is adaptive submodularity [7, 2, 6, 13], which is a probabilistic setting that essen-
tially requires that the conditional expectation over the hypothesis set of submodular functions is
itself a submodular function. In contrast, we require that the hypothesis class be pointwise submod-
ular (i.e., each hypothesis corresponds to a different submodular utility function). Although neither
adaptive submodularity nor pointwise submodularity is a strict generalization of the other (cf. [7, 9]),
in practice it can often be easier to model application settings using pointwise submodularity.

The “flipped” problem is to maximize utility with a bounded budget, which is commonly known as
the budgeted submodular maximization problem [18]. Interactive budgeted maximization has been
analyzed rigorously for adaptive submodular problems [7], but it remains a challenge to develop
provably near-optimal interactive algorithms for pointwise submodular utility functions.

8 Conclusions
We introduced smooth interactive submodular set cover, a smoothed generalization of previous ISSC
frameworks. Smooth ISSC allows for the target threshold to vary based on the plausibility of the
hypothesis. Smooth ISSC also introduces an approximate threshold solution concept that can be
applied to real-valued functions, which also applies to basic submodular set cover with real-valued
objectives. We developed the first provably near-optimal algorithm for this setting.
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Supplementary Material

A Analysis of Multiple Thresholds Version

The following lemmas will be used to show that Definition 4.4 of F̄ solves the equivalent problem
as smooth ISSC with multiple thresholds. Furthermore, since converting smooth ISSC to F̄ is
effectively a reduction to a non-interactive submodular set cover problem, then we can prove near-
optimal cost guarantees for the standard greedy algorithm.

Lemma A.1. For an algorithm to ensure that Fh(Ŝ) ≥ α(Gh(S∗)) for all h∗, it is both necessary
and sufficient to ensure that Fh(Ŝ) ≥ α(Gh(Ŝ)), where Ŝ is the action set chosen by the algorithm.

Proof. To show that this condition is sufficient, notice that Ŝ ⊆ S∗, so Gh(Ŝ) ≤ Gh(S∗). Because
α(·) is a non-increasing function, α(Gh(Ŝ)) ≥ α(Gh(S∗)). Thus, if Fh(Ŝ) ≥ α(Gh(Ŝ)), then
Fh(Ŝ) ≥ α(Gh(S∗)).

To show that this condition is necessary, suppose there is a hypothesis h∗ which agrees with h on all
queries in S∗\Ŝ. For this h∗,Gh(Ŝ) = Gh(S∗). Thus, any hypothesis hwhere Fh(Ŝ) < α(Gh(Ŝ))

cannot be considered satisfied because there exists an h∗ where Fh(Ŝ) < α(Gh(S∗)). Thus, this
condition is also necessary.

Lemma A.2. F̄ (Ŝ) ≥ F̄max if and only if Fh(Ŝ) ≥ αn for all h such that Gh(S∗) < κn for
n ∈ {1, . . . , N}.

Proof. Due to Lemma A.1, it is equivalent to show that F̄ (Ŝ) ≥ F̄max if and only if Fh(Ŝ) ≥ αn
for all h such that Gh(Ŝ) < κn for n ∈ {1, . . . , N}.
First, suppose that F̄ (Ŝ) ≥ F̄max. F̄ (Ŝ) may not exceed its maximum value, so

F̄ (Ŝ) = F̄max = |H|DFα1D
N
G

N∏

n=1

(κn − κn−1).

Note that for all h ∈ H , when F̄hmax is defined as the maximum value of F̄h,

0 ≤ F̄h(Ŝ) ≤ F̄hmax = DFα1D
N
G

N∏

n=1

(κn − κn−1).

Then, if F̄ (Ŝ) = F̄max, then F̄h(Ŝ) = F̄hmax for all h ∈ H .

Next, when F̄h,nmax is defined as the maximum value of F̄h,n,

0 ≤ F̄h,n(Ŝ) ≤ F̄h,nmax = (αn − αn+1)(κn − κn−1).

Then, if F̄h(Ŝ) = F̄hmax , then F̄h,n(Ŝ) = F̄h,nmax for all h ∈ H and all n ∈ {1, 2, . . . , N}.
Finally, if F̄h,n(Ŝ) = F̄h,nmax , then Fh,αn,αn+1

(Ŝ) = αn −αn+1 or Gh,κn,κn−1
(Ŝ) = κn − κn−1.

If Fh,αn,αn+1
(Ŝ) = αn − αn+1, then Fh(Ŝ) ≥ αn, and if Gh,κn,κn−1

(Ŝ) = κn − κn−1, then
Gh(Ŝ) ≥ κn. This implies that Fh(Ŝ) ≥ αn for all h such that Gh(Ŝ) < κn for n ∈ {1, . . . , N}.
For the opposite direction, suppose that Fh(Ŝ) ≥ αn for all h such that Gh(Ŝ) < κn for
n ∈ {1, . . . , N}. This means that for all h ∈ H and all n ∈ {1, . . . , N}, Fh(Ŝ) ≥ αn
or Gh(Ŝ) ≥ κn. Then, Fh,αn,αn+1

(Ŝ) = (αn − αn+1) or Gh,κn,κn−1
(Ŝ) = (κn − κn−1).

Then, F̄h,n(Ŝ) = (αn − αn+1)(κn − κn−1), F̄h(Ŝ) = DFα1D
N
G

∏N
n=1(κn − κn−1), and

F̄ (Ŝ) = |H|DFα1D
N
G

∏N
n=1(κn − κn−1) = F̄max.

Lemma A.3. Let Fh(Ŝ) and Gh(Ŝ) be monotone non-decreasing submodular functions, and let
the sequence αn−αn+1

κn−κn−1
for n ∈ {1, . . . , N} be non-increasing [Condition 4.5]. Then, F̄ (Ŝ) from

Definition 4.4 is a monotone non-decreasing submodular function.
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Proof. Define δS(F, x)
4
= F (S ⊕ x)− F (S). First, we show that δA(F̄ , x) ≥ 0 for all A and x:

δA(F̄ , x) =
∑
h∈H

CF̄

N∑
n=1

[(∏
j 6=n

(κj − κj−1)

)
δA(F̄h,n, x)

]

=
∑
h∈H

CF̄

N∑
n=1

[(∏
j 6=n

(κj − κj−1)

)(
(κn − κn−1)δA(Fh,αn,αn+1 , x)

+ δA(Gh,κn,κn−1 , x)(αn − αn+1)

+ Fh,αn,αn+1(A)Gh,κn,κn−1(A)

− Fh,αn,αn+1(A⊕ x)Gh,κn,κn−1(A⊕ x)

)]

=
∑
h∈H

CF̄

N∑
n=1

[(∏
j 6=n

(κj − κj−1)

)(
((κn − κn−1)−Gh,κn,κn−1(A))δA(Fh,αn,αn+1 , x)

+ δA(Gh,κn,κn−1 , x)((αn − αn+1)− Fh,αn,αn+1(A⊕ x))

)]

Note that (κn−κn−1)−Gh,κn,κn−1(A), δA(Fh,αn,αn+1 , x), δA(Gh,κn,κn−1 , x), and (αn−αn+1)−
Fh,αn,αn+1(A⊕ x) are all non-negative. Thus, δA(Fh, x) ≥ 0, and Fh(S) is non-decreasing.

Next, consider any B such that A ⊆ B. Similarly,

δB(F̄ , x)
4
=
∑
h∈H

CF̄

N∑
n=1

[(∏
j 6=n

(κj − κj−1)

)(
((κn − κn−1)−Gh,κn,κn−1(B))δB(Fh,αn,αn+1 , x)

+ δB(Gh,κn,κn−1 , x)((αn − αn+1)− Fh,αn,αn+1(B ⊕ x))

)]

Then, we show that for all A ⊆ B, δB(F̄ , x)− δA(F̄ , x) ≥ 0.

δB(F̄ , x)− δA(F̄ , x)
4
=
∑
h∈H

CF̄

N∑
n=1

[(∏
j 6=n

(κj − κj−1)

)
(

(κn − κn−1)(δB(Fh,αn,αn+1 , x)− δA(Fh,αn,αn+1 , x))

−Gh,κn,κn−1(B)δB(Fh,αn,αn+1 , x)

+Gh,κn,κn−1(A)δA(Fh,αn,αn+1 , x)

+ (αn − αn+1)(δB(Gh,κn,κn−1 , x)− δA(Gh,κn,κn−1 , x))

− δB(Gh,κn,κn−1 , x)Fh,αn,αn+1(B ⊕ x)

+ δA(Gh,κn,κn−1 , x)Fh,αn,αn+1(A⊕ x)

)]

Note that Gh,κn,κn+1(A) ≤ Gh,κn,κn+1(B) and Fh,αn,αn+1(A ⊕ x) ≤ Fh,αn,αn+1(B ⊕ x). Then,
δB(F̄ , x)− δA(F̄ , x) ≤∑h∈H CF̄Lh, where,

Lh =
N∑
n=1

[(∏
j 6=n

(κj − κj−1)

)
(

(κn − κn−1)(δB(Fh,αn,αn+1 , x)− δA(Fh,αn,αn+1 , x))

−Gh,κn,κn−1(B)δB(Fh,αn,αn+1 , x) +Gh,κn,κn−1(B)δA(Fh,αn,αn+1 , x)

+ (αn − αn+1)(δB(Gh,κn,κn−1 , x)− δA(Gh,κn,κn−1 , x))

− δB(Gh,κn,κn−1 , x)Fh,αn,αn+1(B ⊕ x) + δA(Gh,κn,κn−1 , x)Fh,αn,αn+1(B ⊕ x)

)]
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=

N∑
n=1

[(∏
j 6=n

(κj − κj−1)

)
(

((κn − κn−1)−Gh,κn,κn−1(B))(δB(Fh,αn,αn+1 , x)− δA(Fh,αn,αn+1 , x))

+ ((αn − αn+1)− Fh,αn,αn+1(B ⊕ x))(δB(Gh,κn,κn−1 , x)− δA(Gh,κn,κn−1 , x))

)]

=

(
N∏
j=1

(κj − κj−1)

)
[

N∑
n=1

(κn − κn−1)−Gh,κn,κn−1(B)

κn − κn−1
(δB(Fh,αn,αn+1 , x)− δA(Fh,αn,αn+1 , x))

+

N∑
n=1

(αn − αn+1)− Fh,αn,αn+1(B ⊕ x)

κn − κn−1
(δB(Gh,κn,κn−1 , x)− δA(Gh,κn,κn−1 , x))

]
.

Note that the sequence
(κn−κn−1)−Gh,κn,κn−1

(B)

κn−κn−1
must take the form 〈0, . . . , 0, a, 1, . . . , 1〉 where

a ∈ [0, 1]. In addition,
∑N
n=j δA(Fh,αn,αn+1

, x) ≥∑j
n=1 δB(Fh,αn,αn+1

, x) for all positive integer

j ≤ N . Thus,
∑N
n=1

(κn−κn−1)−Gh,κn,κn−1
(B)

κn−κn−1
(δB(Fh,αn,αn+1 , x) − δA(Fh,αn,αn+1 , x)) is non-

positive.

Note also that the sequence
(αn−αn+1)−Fh,αn,αn+1

(B⊕x)

κn−κn−1
must take the form

〈α1−α2

κ1−κ0
, . . . , αn−1−αn

κn−1−κn−2
, a, 0, . . . , 0〉 where a ∈ [0, αn−αn+1

κn−κn−1
]. Because of the restriction

on the values of αn−αn+1

κn−κn−1
(Condition 4.5), this sequence is non-increasing. In addition,

∑j
n=1 δA(Gh,κn,κn−1

, x) ≥ ∑j
n=1 δB(Gh,κn,κn−1

, x) for all positive integer j ≤ N . Thus,
∑N
n=1

(αn−αn+1)−Fh,αn,αn+1
(B⊕x)

κn−κn−1
(δB(Gh,κn,κn−1 , x)− δA(Gh,κn,κn−1 , x)) is non-positive.

These two statements imply that δB(F, x)− δA(F, x) ≤ 0, which means that F is submodular.

Lemma A.4 (Lemma 3 from [10]). For any initial set of questions-response pairs Ŝ, there must be
a question q ∈ Q such that

min
r∈R

(
F̄ (Ŝ ⊕ (q, r))− F̄ (Ŝ)

)
≥ c(q)(F̄max − F̄ (Ŝ))/GCC

Proof. Assume that the lemma is false and for every question q, there is some r ∈ R such that

F̄ (Ŝ ⊕ (q, r))− F̄ (Ŝ) < c(q)(F̄max − F̄ (Ŝ))/GCC

Define an oracle T ′ which answers every question with a response satisfying this inequality. For
example, one such T ′ is

T ′(q)
4
= argminr

(
F̄ (Ŝ ⊕ (q, r))− F̄ (Ŝ)

)

By the definition of GCC,

min
Q̂:F̄ (T ′(Q̂))≥F̄max

c(Q̂) ≤ max
T∈RQ

(
min

Q̂:F̄ (T (Q̂))≥F̄max
c(Q̂)

)
= GCC

so there must be a sequence of questions Q̂ with c(Q̂) ≤ GCC such that F̄ (T ′(Q̂)) ≥ F̄max.
Because F̄ is monotone non-decreasing, we also know that F̄ (T ′(Q̂) ∪ Ŝ) ≥ F̄max. Using the
submodularity of F̄ ,

F̄ (T ′(Q̂) ∪ Ŝ) ≤ F̄ (Ŝ) +
∑

q∈Q̂

(F̄ (Ŝ ∪ {(q, T (q))})− F̄ (Ŝ))
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< F̄ (Ŝ) +
∑

q∈Q̂

c(q)(F̄max − F̄ (Ŝ))/GCC ≤ F̄max

which is a contradiction.

Theorem A.5 (Theorem 1 from [10]). Assume that F̄ is an integral monotone non-decreasing sub-
modular function. Algorithm 1 incurs at most GCC(1 + ln(F̄max)) cost.

Proof. Let q̂i be the question asked on the ith iteration, Ŝi be the set of question-response pairs after
asking q̂i and Ci be

∑
j≤i c(q̂j). By Lemma A.4,

F̄ (Ŝi)− F̄ (Ŝi−1) ≥ c(q̂i)(F̄max − F̄ (Ŝi−1))/GCC

After some algebra we get

F̄max − F̄ (Ŝi) ≤ (F̄max − F̄ (Ŝi−1))(1− c(q̂i)/GCC)

Now using 1− x < e−x

F̄max − F̄ (Ŝi) ≤ (F̄max − F̄ (Ŝi−1))e−c(q̂i)/GCC ≤ F̄maxe−Ci/GCC

We have shown that the gap F̄max−F̄ (Ŝi) decreases exponentially fast with the cost of the questions
asked. The remainder of the proof proceeds by showing that (1) we can decrease the gap to 1 using
questions with at most GCC ln(F̄max) cost and (2) we can decrease the gap from 1 to 0 with one
question with cost at most GCC.

Let j be the largest integer such that F̄max − F̄ (Ŝj) ≥ 1 holds. Then

1 ≤ F̄maxe−Cj/GCC

Solving for Cj we get Cj ≤ GCC ln(F̄max). This completes (1).

By Lemma A.4, F̄ (Ŝi) < F̄ (Ŝi+1) (we strictly increase the objective on each iteration). Because
F̄max is an integer and F̄ is an integral function, we can conclude that F̄ (Ŝi) ≤ F̄ (Ŝi+1 + 1. Then
qj+1 will be the final question asked. By Lemma A.4, qj+1 can have cost no greater than GCC.
This completes (2). We can finally conclude the cost incurred by the greedy algorithm is at most
GCC(1 + ln(F̄max)).

Proof of Theorem 4.6. Lemma A.2 implies that satisfying the condition F̄ ≥ F̄max is equivalent to
satisfying the goal of smooth ISSC with multiple thresholds. Next, Lemma A.3 implies that F̄ may
be used with Algorithm 1 and have guaranteed performance bounds. Finally, Theorem A.5 shows
that the upper bound of Algorithm 1 is

(
1 + ln(F̄max)

)
GCC. Plugging in the value of F̄max, the

upper bound in the multiple threshold case of smooth ISSC is then:

(
1 + ln(F̄max)

)
GCC =

(
1 + ln

(
|H|DFD

N
Gα1

N∏

n=1

(κn − κn−1)

))
GCC,

giving Theorem 4.6.

B Analysis of Approximate Thresholds for Real-Valued Functions

In this section, we show that the surrogate problem in Definition 4.7 is an instance of a smooth ISSC
problem, in particular one with approximate thresholds compared to the original problem.

Lemma B.1. F ′h(Ŝ) ≥ α′n implies that Fh(Ŝ) ≥ αn − ε.

Proof. Suppose that F ′h(Ŝ) ≥ α′n. Then,

F ′h(Ŝ) ≥ α′n,

D

ε

Fh(Ŝ) +
ε

D

|Ŝ|∑
i=1

(|Q|+ 1− i)


ε
D

≥ D

ε

⌊
αn −

ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]⌋
ε
D

,
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Fh(Ŝ) +
ε

D

|Ŝ|∑
i=1

(|Q|+ 1− i)


ε
D

≥

⌊
αn −

ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]⌋
ε
D

,

Fh(Ŝ) +
ε

D

|Ŝ|∑
i=1

(|Q|+ 1− i) +
ε

D
≥

⌊
αn −

ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]⌋
ε
D

,

Fh(Ŝ) +
ε

D

|Ŝ|∑
i=1

(|Q|+ 1− i) +
ε

D
≥ αn −

ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]
− ε

D
,

Fh(Ŝ) ≥ αn −
ε

D

 |Ŝ|∑
i=1

(|Q|+ 1− i) +

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]
+ 2

 ,
Fh(Ŝ) ≥ αn − ε.

Lemma B.2. F ′h(Ŝ) < α′i implies that Fh(Ŝ) < αi.

Proof. Suppose that F ′h(Ŝ) < α′n. Then,

F ′h(Ŝ) < α′n,

D

ε

Fh(Ŝ) +
ε

D

|Ŝ|∑
i=1

(|Q|+ 1− i)


ε
D

<
D

ε

⌊
αn −

ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]⌋
ε
D

,

Fh(Ŝ) +
ε

D

|Ŝ|∑
i=1

(|Q|+ 1− i)


ε
D

<

⌊
αn −

ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]⌋
ε
D

,

Fh(Ŝ) +
ε

D

|Ŝ|∑
i=1

(|Q|+ 1− i) < αn −
ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]
,

Fh(Ŝ) < αn −
ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]
,

Fh(Ŝ) < αn.

Lemma B.3. F ′h preserves monotonicity and submodularity of Fh.

Proof. Define δS(F, x) = F (S ⊕ x)− F (S).

First, assume that Fh is monotone non-decreasing, which implies that δS(Fh, x) ≥ 0. Then,

δS(F ′h, x) =
D

ε

Fh(S ⊕ x) +
ε

D

|S|+{x}∑
i=1

(|Q|+ 1− i)


ε
D

− D

ε

Fh(S) +
ε

D

|S|∑
i=1

(|Q|+ 1− i)


ε
D

=
D

ε


Fh(S ⊕ x) +

ε

D

|S|+{x}∑
i=1

(|Q|+ 1− i)


ε
D

−

Fh(S) +
ε

D

|S|∑
i=1

(|Q|+ 1− i)


ε
D


=
D

ε

dFh(S ⊕ x)e ε
D

+
ε

D

|S|+{x}∑
i=1

(|Q|+ 1− i)− dFh(S)e ε
D
− ε

D

|S|∑
i=1

(|Q|+ 1− i)


=
D

ε

dFh(S ⊕ x)e ε
D
− dFh(S)e ε

D
+

ε

D

|S|+{x}∑
i=1

(|Q|+ 1− i)− ε

D

|S|∑
i=1

(|Q|+ 1− i)


=
D

ε

[
dFh(S ⊕ x)e ε

D
− dFh(S)e ε

D
+

ε

D
(|Q| − |S|)

]
,
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because δS(Fh, x) ≥ 0, Fh(S ⊕ x) ≥ Fh(S), and dFh(S ⊕ x)e ≥ dFh(S)e. In addition, |Q| ≥ |S|.
Thus, δS(F ′h, x) ≥ 0, and F ′h is non-decreasing.

Next, Fh being submodular implies that for A ⊆ B, δA(Fh, x) = Fh(A + {x}) − Fh(A) ≥
Fh(B + {x})− Fh(B) = δB(Fh, x). Then,

dFh(A+ {x})e ε
D
− dFh(A)e ε

D
+

ε

D
≥ dFh(B + {x})e ε

D
− dFh(B)e ε

D
,

dFh(A+ {x})e ε
D
− dFh(A)e ε

D
+

ε

D
(|Q| − |A|) ≥ dFh(B + {x})e ε

D
− dFh(B)e ε

D
+

ε

D
(|Q| − |B|),

D

ε

[
dFh(A+ {x})e ε

D
− dFh(A)e ε

D
+

ε

D
(|Q| − |A|)

]
≥ D

ε

[
dFh(B + {x})e ε

D
− dFh(B)e ε

D
+

ε

D
(|Q| − |B|)

]
,

δA(F ′h, x) ≥ δB(F ′h, x).

Lemma B.4. If 〈αn〉Nn=1 is decreasing, then 〈α′n〉Nn=1 is decreasing.

Proof.

α′n
4
=
D

ε

⌊
αn −

ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]⌋
ε
D

≥ D

ε

⌊
αn+1 −

ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]⌋
ε
D

>
D

ε

⌊
αn+1 −

ε

D

n+1∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]⌋
ε
D

= α′n+1

Lemma B.5. If 〈αn−αn+1

κn−κn−1
〉Nn=1 is non-increasing, then 〈α

′
n−α′n+1

κn−κn−1
〉Nn=1 is also non-increasing.

Proof.

α′n − α′n+1 =
D

ε

⌊
αn −

ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]⌋
ε
D

− D

ε

⌊
αn+1 −

ε

D

n+1∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]⌋
ε
D

=
D

ε

[⌊
αn −

ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]⌋
ε
D

−

⌊
αn+1 −

ε

D

n+1∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]⌋
ε
D

]

=
D

ε

[
bαnc ε

D
− bαn+1c ε

D

− ε

D

n∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]

+
ε

D

n+1∑
i=1

[
(2N − 2i)DN−i+1

G

N∏
j=i

(κj − κj−1)

]]

=
D

ε

[
bαnc ε

D
− bαn+1c ε

D
+

ε

D

[
(2N − 2(n+ 1))D

N−(n+1)+1
G

N∏
j=n+1

(κj − κj−1)

]]
.
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Similarly,

α′n+1 − α′n+2 =
D

ε

[
bαn+1c ε

D
− bαn+2c ε

D
+

ε

D

[
(2N − 2(n+ 2))D

N−(n+2)+1
G

N∏
j=n+2

(κj − κj−1)

]]
.

Then,

α′n − α′n+1

κn − κn−1
=

D
ε

[
bαnc ε

D
− bαn+1c ε

D
+ ε

D

[
(2N − 2(n+ 1))D

N−(n+1)+1
G

∏N
j=n+1(κj − κj−1)

] ]
κn − κn−1

≥

D
ε

[
αn − αn+1 − ε

D
+ ε

D

[
(2N − 2(n+ 1))D

N−(n+1)+1
G

∏N
j=n+1(κj − κj−1)

] ]
κn − κn−1

≥

D
ε

[
αn − αn+1 + ε

D

[
(2N − 2(n+ 1)− 1)D

N−(n+1)+1
G

∏N
j=n+1(κj − κj−1)

] ]
κn − κn−1

≥

D
ε

[
αn+1 − αn+2 + ε

D

[
(2N − 2(n+ 1)− 1)D

N−(n+1)+1
G (κn+1 − κn)

∏N
j=n+2(κj − κj−1)

] ]
κn+1 − κn

≥

D
ε

[
αn+1 − αn+2 + ε

D

[
(2N − 2(n+ 1)− 1)D

N−(n+2)+1
G

∏N
j=n+2(κj − κj−1)

] ]
κn+1 − κn

≥

D
ε

[
bαn+1c ε

D
− bαn+2c ε

D
− ε

D
+ ε

D

[
(2N − 2(n+ 1)− 1)D

N−(n+2)+1
G

∏N
j=n+2(κj − κj−1)

] ]
κn+1 − κn

≥

D
ε

[
bαn+1c ε

D
− bαn+2c ε

D
+ ε

D

[
(2N − 2(n+ 2))D

N−(n+2)+1
G

∏N
j=n+2(κj − κj−1)

] ]
κn+1 − κn

=
α′n+1 − α′n+2

κn+1 − κn

As such, solving the surrogate smooth ISSC problem in Definition 4.7 will lead to approximately
solving the original real-valued smooth ISSC problem, provided Condition 4.5 holds.

Proof of Theorem 4.8. Lemma B.1 guarantees that solving the surrogate problem also solves the
original problem to within ε tolerance. Lemma B.2 guarantees that the surrogate problem will be
solved as long as the original problem is solved. Lemmas B.3, B.4, and B.5 show that if the original
problem results in a submodular F̄ , then the surrogate problem also results in a submodular F̄ .

As discussed in the proof of Theorem 4.6, the upper bound of Algorithm 1 derived in [10] is(
1 + ln(F̄max)

)
GCC. Notice that Lemma B.2 means that the surrogate problem is no harder to

solve than the original problem. The upper bound in the approximate thresholds case is then no
larger than (

1 + ln(F̄max)
)
GCC = (1 + ln(|H|CFCG))GCC

=

(
1 + ln

(
|H|α′1DN

Gα1

N∏
n=1

(κn − κn−1)

))
GCC,

giving Theorem 4.8.
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B.1 Pathological Case for Real-Valued Submodular Set Cover

There are N + 3 items with uniform cost which are denoted x1, . . . , xN , y1, y2, y3. Define F (S) =

1 −
(

1− |y|3
) (

1
2

)|x|
, where |x| is the number of x terms in S, and |y| is the number of y terms

in S. First, adding an extra element will only increase the value of F , so F is increasing. Next,
consider adding an extra x. The original value is 1 −

(
1− |y|3

) (
1
2

)|x|
and the new value is 1 −

(
1− |y|3

) (
1
2

)|x|+1
. The difference is

(
1− |y|3

) (
1
2

)|x|+1
. Note that this is always positive and

decreases when there are more elements originally in the set. Finally, consider adding an extra
y. The new value is 1 −

(
1− |y|+1

3

) (
1
2

)|x|
. The difference is 1

3

(
1
2

)|x|
. Again, this is always

positive and decreases when there are more elements originally in the set. Thus, F is a monotone
non-decreasing submodular function.

Next, notice the smallest set S such that F (S) ≥ 1 is S = {y1, y2, y3}. However, the greedy
algorithm will take all of the xi before taking any of the yi due to the fact that taking a xi term will
increase F by 1

2 of the remaining value, whereas taking a yi term will increase F by only 1
3 of the

remaining value.

B.2 Reduction to Basic Submodular Set Cover with Real-Valued Objective Functions

In the basic submodular set cover problem, we have a single submodular function F that we need
to satisfy a threshold α with minimum cost. To apply the solution to the approximate multiple
thresholds version of smooth ISSC to basic submodular set cover, the following definition is used.
Definition B.6 (Reduction to Basic Submodular Set Cover). Definition 4.7 is instantiated with the
following choices of parameters to solve the equivalent basic submodular set cover problem.

|H| = 1, N = 1,

Fh(Ŝ) = F (Ŝ), Gh(Ŝ) = 0,

α1 = α, κ1 = 1, DG = 1

Lemma B.7. Solving the basic submodular set cover problem is equivalent to solving the instanti-
ation of smooth ISSC in Defnition B.6.

Proof. If the basic problem is solved, then F (Ŝ) ≥ α. This implies that Fh(Ŝ) ≥ α1, so the smooth
ISSC problem is also solved.

Next, if the smooth ISSC problem is solved, then Fh(Ŝ) ≥ α1 or Gh(Ŝ) ≥ κ1. However, Gh(Ŝ) =

0 < 1 = κ1, so it must be that Fh(Ŝ) ≥ α1. This implies that F (Ŝ) ≥ α, so the basic submodular
set cover problem is also solved.

Thus, Definition B.6 is equivalent to the basic submodular set cover problem, and once applied to
Definition 4.7 solves the approximate submodular set cover problem.

Notice that ε can be selected as the smallest distinct difference between values in F , and this solves
the basic submodular set cover problem exactly.
Theorem B.8. Algorithm 1 using Definition B.6 will approximately solve the non-interactive real-
valued submodular set cover with tolerance ε using cost at most (1 + ln (α′1))GCC.

Proof. Lemma B.7 shows that Definition B.6 can be used to approximately solve the non-interactive
real-valued submodular set cover problem.

As discussed in the proof of Theorem 4.6, the upper bound of Algorithm 1 derived in [10] is(
1 + ln(F̄max)

)
GCC. The upper bound in the non-interactive real-valued submodular set cover

problem is then:(
1 + ln(F̄max)

)
GCC = (1 + ln(|H|CFCG))GCC

=

(
1 + ln

(
|H|α′1DN

G

N∏
n=1

(κn − κn−1)

))
GCC
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=
(
1 + ln

(
α′1
))
GCC,

giving Theorem B.8.

C Analysis of Continous Threshold Curve Version

Lemma C.1. Fh(Ŝ) ≥ α(Gh(Ŝ)) iff Fh(Ŝ) ≥ α(κn) or Gh(Ŝ) ≥ κn for all n.

Proof. Suppose thatFh(Ŝ) ≥ α(Gh(Ŝ)). First for all nwhere κn ≤ Gh(Ŝ), the condition is already
satisfied. For the remaining κn > Gh(Ŝ), notice that α is non-increasing. Then, α(Gh(Ŝ)) ≥
α(κn), and Fh(Ŝ) ≥ α(κn).

Next, suppose that Fh(Ŝ) ≥ α(κn) or Gh(Ŝ) ≥ κn for all n. Note that the κn thresholds take on
all possible values of Gh, so Fh(Ŝ) ≥ α(Gh(Ŝ)).

Proof of Theorem 4.10. Lemma C.1 implies that solving solving smooth ISSC instantiated with
Definition 4.9 is equivalent to solving smooth ISSC with a convex threshold curve.

Theorem A.5 shows that the upper bound of Algorithm 1 is
(
1 + ln(F̄max)

)
GCC. Plugging in the

value of F̄max, the upper bound in the continuous threshold curve version is then:(
1 + ln(F̄max)

)
GCC = (1 + ln(|H|CFCG))GCC =

(
1 + ln

(
|H|α′1DN

G

))
GCC

giving Theorem 4.10.

D Alternative Methods of Solving Multiple Thresholds

This section introduces some alternative methods of smooth ISSC and compares the performance of
the methods.

D.1 Satisfy Thresholds One-by-One

Noisy ISSC [11] can be used to satisfy one threshold at a time. This can be extended to solve smooth
ISSC by applying the method N times - once for each threshold. The thresholds can be run in any
order, but we will consider running the thresholds forward and backwards in this experiment.

D.2 Alternative Definition

An alternative form of Definition 4.3 can be made, which results in different performance guarantees.

Definition D.1 (Alternative form of F̄ and F̄max).

F̄h,n(Ŝ)
4
=
(

(κn − κn−1)−Gh,κn,κn−1(Ŝ)
)
Fh,αn,αn+1(Ŝ) +Gh,κn,κn−1(Ŝ)(αn − αn+1),

F̄h(Ŝ)
4
= CF̄

N∑
n=1

[
F̄h,n(Ŝ)

]
, where CF̄ = DFDG,

F̄ (Ŝ)
4
=
∑
h∈H

F̄h(Ŝ), F̄max
4
= |H|DFDG

N∑
n=1

[(αn − αn+1)(κn − κn−1)] .

For F̄ to be submodular, we also require Condition D.2.

Condition D.2. The sequences 〈αn − αn+1〉Nn=1 and 〈κn − κn−1〉Nn=1 are non-increasing.

Lemmas A.1 and A.4 and Theorem A.5 hold without modification.

Lemma D.3 (Alternative form of Lemma A.2). F̄ (Ŝ) ≥ F̄max if and only if Fh(Ŝ) ≥ αn for all h
such that Gh(S∗) < κn for n ∈ {1, . . . , N}.
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Proof. Due to Lemma A.1, it is equivalent to show that F̄ (Ŝ) ≥ F̄max if and only if Fh(Ŝ) ≥ αn
for all h such that Gh(Ŝ) < κn for n ∈ {1, . . . , N}.
First, suppose that F̄ (Ŝ) ≥ F̄max. F̄ (Ŝ) may not exceed its maximum value, so

F̄ (Ŝ) = F̄max = |H|DFDG

N∑

n=1

[(αn − αn+1)(κn − κn−1)] .

Note that for all h ∈ H , when F̄hmax is defined as the maximum value of F̄h,

0 ≤ F̄h(Ŝ) ≤ F̄hmax = DFDG

N∑

n=1

[(αn − αn+1)(κn − κn−1)] .

Then, if F̄ (Ŝ) = F̄max, then F̄h(Ŝ) = F̄hmax for all h ∈ H .

Next, when F̄h,nmax is defined as the maximum value of F̄h,n,

0 ≤ F̄h,n(Ŝ) ≤ F̄h,nmax = (αn − αn+1)(κn − κn−1).

Then, if F̄h(Ŝ) = F̄hmax , then F̄h,n(Ŝ) = F̄h,nmax for all h ∈ H and all n ∈ {1, 2, . . . , N}.
Finally, if F̄h,n(Ŝ) = F̄h,nmax , then Fh,αn,αn+1(Ŝ) = αn −αn+1 or Gh,κn,κn−1(Ŝ) = κn − κn−1.
If Fh,αn,αn+1(Ŝ) = αn − αn+1, then Fh(Ŝ) ≥ αn, and if Gh,κn,κn−1(Ŝ) = κn − κn−1, then
Gh(Ŝ) ≥ κn. This implies that Fh(Ŝ) ≥ αn for all h such that Gh(Ŝ) < κn for n ∈ {1, . . . , N}.
For the opposite direction, suppose that Fh(Ŝ) ≥ αn for all h such that Gh(Ŝ) < κn for
n ∈ {1, . . . , N}. This means that for all h ∈ H and all n ∈ {1, . . . , N}, Fh(Ŝ) ≥ αn or
Gh(Ŝ) ≥ κn. Then, Fh,αn,αn+1

(Ŝ) = (αn − αn+1) or Gh,κn,κn−1
(Ŝ) = (κn − κn−1). Then,

F̄h,n(Ŝ) = (αn − αn+1)(κn − κn−1), F̄h(Ŝ) = DFDG

∑N
n=1 [(αn − αn+1)(κn − κn−1)], and

F̄ (Ŝ) = |H|DFDG

∑N
n=1 [(αn − αn+1)(κn − κn−1)] = F̄max.

Lemma D.4 (Alternative form of Lemma A.3). Let Fh(Ŝ) andGh(Ŝ) be monotone non-decreasing
submodular functions, and let the sequences 〈αi−αn+1〉Ni=1 and 〈κn−κn−1〉Ni=1 for n ∈ {1, . . . , N}
be non-increasing [Condition D.2]. Then, F̄ (Ŝ) from Definition D.1 is a monotone non-decreasing
submodular function.

Proof. Define δS(F, x)
4
= F (S ⊕ x)− F (S). First, we show that δA(F̄ , x) ≥ 0 for all A and x:

δA(F̄ , x) =
∑
h∈H

CF̄

N∑
n=1

[
δA(F̄h,n, x)

]
=
∑
h∈H

CF̄

N∑
n=1

[
(κn − κn−1)δA(Fh,αn,αn+1 , x)

+ δA(Gh,κn,κn−1 , x)(αn − αn+1)

+ Fh,αn,αn+1(A)Gh,κn,κn−1(A)

− Fh,αn,αn+1(A⊕ x)Gh,κn,κn−1(A⊕ x)

]
=
∑
h∈H

CF̄

N∑
n=1

[
((κn − κn−1)−Gh,κn,κn−1(A))δA(Fh,αn,αn+1 , x)

+ δA(Gh,κn,κn−1 , x)((αn − αn+1)− Fh,αn,αn+1(A⊕ x))

]

Note that (κn−κn−1)−Gh,κn,κn−1(A), δA(Fh,αn,αn+1 , x), δA(Gh,κn,κn−1 , x), and (αn−αn+1)−
Fh,αn,αn+1(A⊕ x) are all non-negative. Thus, δA(Fh, x) ≥ 0, and Fh(S) is non-decreasing.

19



Next, consider any B such that A ⊆ B. Similarly,

δB(F̄ , x)
4
=
∑
h∈H

CF̄

N∑
n=1

[
((κn − κn−1)−Gh,κn,κn−1(B))δB(Fh,αn,αn+1 , x)

+ δB(Gh,κn,κn−1 , x)((αn − αn+1)− Fh,αn,αn+1(B ⊕ x))

]
Then, we show that for all A ⊆ B, δB(F̄ , x)− δA(F̄ , x) ≥ 0.

δB(F̄ , x)− δA(F̄ , x)
4
=
∑
h∈H

CF̄

N∑
n=1

[
(κn − κn−1)(δB(Fh,αn,αn+1 , x)− δA(Fh,αn,αn+1 , x))

−Gh,κn,κn−1(B)δB(Fh,αn,αn+1 , x)

+Gh,κn,κn−1(A)δA(Fh,αn,αn+1 , x)

+ (αn − αn+1)(δB(Gh,κn,κn−1 , x)− δA(Gh,κn,κn−1 , x))

− δB(Gh,κn,κn−1 , x)Fh,αn,αn+1(B ⊕ x)

+ δA(Gh,κn,κn−1 , x)Fh,αn,αn+1(A⊕ x)

]
Note that Gh,κn,κn+1

(A) ≤ Gh,κn,κn+1
(B) and Fh,αn,αn+1

(A⊕ x) ≤ Fh,αn,αn+1
(B ⊕ x). Then,

δB(F̄ , x)− δA(F̄ , x) ≤∑h∈H CF̄Lh, where,

Lh =

N∑
n=1

[
(κn − κn−1)(δB(Fh,αn,αn+1 , x)− δA(Fh,αn,αn+1 , x))

−Gh,κn,κn−1(B)δB(Fh,αn,αn+1 , x) +Gh,κn,κn−1(B)δA(Fh,αn,αn+1 , x)

+ (αn − αn+1)(δB(Gh,κn,κn−1 , x)− δA(Gh,κn,κn−1 , x))

− δB(Gh,κn,κn−1 , x)Fh,αn,αn+1(B ⊕ x) + δA(Gh,κn,κn−1 , x)Fh,αn,αn+1(B ⊕ x)

]
=

N∑
n=1

[
((κn − κn−1)−Gh,κn,κn−1(B))(δB(Fh,αn,αn+1 , x)− δA(Fh,αn,αn+1 , x))

+ ((αn − αn+1)− Fh,αn,αn+1(B ⊕ x))(δB(Gh,κn,κn−1 , x)− δA(Gh,κn,κn−1 , x))

]
=

[ N∑
n=1

((κn − κn−1)−Gh,κn,κn−1(B))(δB(Fh,αn,αn+1 , x)− δA(Fh,αn,αn+1 , x))

+

N∑
n=1

((αn − αn+1)− Fh,αn,αn+1(B ⊕ x))(δB(Gh,κn,κn−1 , x)− δA(Gh,κn,κn−1 , x))

]
.

Note that the sequence (κn − κn−1) − Gh,κn,κn−1(B) must take the form 〈0, . . . , 0, a, κn+1 −
κn, . . . , κN − κN−1〉 where a ∈ [0, κn − κn−1]. Because of the restriction on the
values of κn − κn−1 (Condition D.2), this sequence is non-increasing. In addition,∑N
n=j δA(Fh,αn,αn+1

, x) ≥ ∑j
n=1 δB(Fh,αn,αn+1

, x) for all positive integer j ≤ N . Thus,∑N
n=1

(
(κn − κn−1)−Gh,κn,κn−1(B)

)
(δB(Fh,αn,αn+1 , x)− δA(Fh,αn,αn+1 , x)) is non-positive.

Note also that the sequence (αn − αn+1) − Fh,αn,αn+1(B ⊕ x) must take the form 〈α1 −
α2, . . . , αn−1 − αn, a, 0, . . . , 0〉 where a ∈ [0, αn − αn+1]. Because of the restriction
on the values of αn − αn+1 (Condition D.2), this sequence is non-increasing. In addi-
tion,

∑j
n=1 δA(Gh,κn,κn−1

, x) ≥ ∑j
n=1 δB(Gh,κn,κn−1

, x) for all positive integer j ≤ N .
Thus,

∑N
n=1

(
(αn − αn+1)− Fh,αn,αn+1(B ⊕ x)

)
(δB(Gh,κn,κn−1 , x) − δA(Gh,κn,κn−1 , x)) is

non-positive.

These two statements imply that δB(F, x)− δA(F, x) ≤ 0, which means that F is submodular.

Theorem D.5 (Alternative form of Theorem 4.6). Given Condition 4.5, Algorithm 1 us-
ing Definition 4.4 solves the multiple thresholds version of Problem 1 using cost at most(

1 + ln
(
|H|DFDG

∑N
n=1 [(αn − αn+1)(κn − κn−1)]

))
GCC.
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Proof. Lemma A.2 implies that satisfying the condition F̄ ≥ F̄max is equivalent to satisfying the
goal of smooth ISSC with multiple thresholds. Next, Lemma D.4 implies that F̄ may be used with
Algorithm 1 and have guaranteed performance bounds. Finally, Theorem A.5 shows that the upper
bound of Algorithm 1 is

(
1 + ln(F̄max)

)
GCC. Plugging in the value of F̄max, the upper bound in

the multiple threshold case of smooth ISSC is then:

(
1 + ln(F̄max)

)
GCC =

(
1 + ln

(
|H|DFDG

N∑

n=1

[(αn − αn+1)(κn − κn−1)]

))
GCC,

giving Theorem D.5.

D.3 Multi-Threshold with Monotone Circuits of Constraints

A simple method of reducing any monotone boolean circuit of constraints to a single con-
straint is introduced in [11]. To do so, they show that the OR of two constraints (F̂i(S) ≥
αi) ∨ (F̂j(S) ≥ αj) can be reduced to a single constraint F̄ (S) = ᾱ with F̄ (S)

4
= (αi −

min(F̂i(S), αi)) min(F̂j(S), αj) + min(F̂i(S), αi)αj and ᾱ = αiαj , and they show that the AND
of two constraints (F̂i(S) ≥ αi) ∧ (F̂j(S) ≥ αj) can be reduced to a single constraint F̄ (S) = ᾱ

with F̄ (S)
4
= min(F̂i(S), αi) + min(F̂j(S), αj) and ᾱ = αi + αj .

Note that Figure 3 expresses smooth ISSC as a monotone boolean circuit of constraints. Thus, the
reduction method from [11] is directly applicable to smooth ISSC. The application of this reduction
method results in Definition D.6.
Definition D.6 (F̄ and F̄max from Direct Reduction of a Monotone Boolean Circuit of Constraints).

F̄h,n(Ŝ)
4
=
(
κn −min(Gh(Ŝ), κn)

)
min(Fh(Ŝ), αn) + min(Gh(Ŝ), κn)αn,

F̄h(Ŝ)
4
= CF̄

N∑
n=1

F̄h,n(Ŝ), CF̄ = DFDG,

F̄ (Ŝ)
4
=
∑
h∈H

F̄h(Ŝ), F̄max
4
= |H|DFDG

N∑
n=1

αnκn

This definition no longer has to satisfy Condition 4.5 or Condition D.2.
Theorem D.7. Algorithm 1 using Definition D.6 solves the multiple thresholds version of Problem
1 using cost at most

(
1 + ln

(
|H|DFDG

∑N
n=1 αnκn

))
GCC.

Proof. Definition D.6 is equivalent to the original problem because it is reducing a ciruit of AND and
OR constraints. Theorem A.5 shows that the upper bound of Algorithm 1 is

(
1 + ln(F̄max)

)
GCC.

Plugging in the value of F̄max, the upper bound in the multiple threshold case of smooth ISSC is
then:

(
1 + ln(F̄max)

)
GCC =

(
1 + ln

(
|H|DFDG

N∑

n=1

αnκn

))
GCC,

giving Theorem D.5.

Notice that the approximation bound in this formulation is not strictly better or worse than the
approximation bound from Definition 4.4. Depending on the choice of thresholds, either formulation
can have a better approximation bound. In contrast, the approximation bound in this formulation is
never better than the approximation bound from Definition D.1.

E Details of Empirical Validation

E.1 Comparison of Methods to Solve Multiple Thresholds

This section describes the three settings from Section 5 used to compare the performance of our
method from Section 4.2 with the methods from Section D.
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In setting A, we constructed 100 hypotheses and 1000 queries. Each hypothesis is given a 50%
probability of responding “yes” when given a query, and a 50% chance of responding “no” when
given a query. In addition, each hypothesis-query pair given random utility of 0 or 1 and a random
distance of 0 or 1. The utility function Fh for each hypothesis is then defined as the sum of the
utilities for queries that it responded “yes” to, and the distance function Gh for each hypothesis is
defined as the sum of the distances for queries where it’s response does not match the response of the
target hypothesis. The thresholds used were αi = {15, 14, . . . , 2, 1} and κi = {1, 2, . . . , 14, 15}.
In setting B, we use a non-interactive setting where only one possible response is available. We
constructed 30 hypotheses and 400 queries divided into two groups of 200 denoted asX queries and
Y queries. Each query is assigned to 3 random hypotheses. The presence of an X queries assigned
to a hypothesis will set Fh to 10, but extra X queries will not increase Fh further. In addition, Fh
is increased by 6 for each Y query assigned to the corresponding hypothesis. Gh is not affected by
X queries, and is increased by 6 for each Y query assigned to the corresponding hypothesis. The
thresholds used where αi = {20, 10} and κi = {10, 20}.
Setting C is identical to setting B, except that Fh and Gh are swapped.

In Figure 4, we compare the costs of several different methods. In this figure, the costs from different
random instantiations of the experiment described above are sorted and then plotted in increasing
order.

Method Setting A Settings B and C
Multiple Threshold (Definition 4.4) 1500 60000

Alternative (Definition D.1) 1500 6000
Circuit of Constraints (Definition D.6) 68000 12000

Table 1: F̄max for the methods tested in Section 5.

Table E.1 shows F̄max for the different methods. Notice that the approximation guarantee is worst
for the circuit of constraints method in setting A, where it had the best performance, and the ap-
proximation guarantee is worst for the multiple thresholds method in Settings B and C, where it was
tied for the best performing method. This indicates that the worst-case guarantee is not a reliable
estimate of the actual performance.

E.2 Validating Approximation Tolerances

This section describes the experimental setup from Section 5. The hypotheses are denoted H =
{h1, h2, . . . , h50}. The queries are denoted Q = {qi,j |i ∈ {1, 2, . . . , 50}, j ∈ {1, 2, . . . , 10}}. The
responses are “yes” and “no”, representing interest in the query by the hypothesis. Each cluster was
assigned 25 random hypotheses that are interested in it, and the target hypothesis was assigned 25
random clusters to be interested in. Let chi be the set of clusters that hypothesis hi is interested in.

Let ci(Ŝ) = {qi,j |qi,j ∈ Ŝ, j ∈ {1, 2, . . . , 10}}. This is the set of queries that has been recom-
mended and is in cluster i. The utility functions are defined as the following:

Fhi(Ŝ) =
∑
j=chi

√
|cj(Ŝ)|

This definition of utility increases the hypothesis gets more queries it is interested in. How-
ever, redundant queries from the same cluster are given diminished weight. The distance func-
tions Gh are defined as the number of responses obtained that are different for the hypothesis be-
ing considered and the target hypothesis. The thresholds used were αi = {15, 14, . . . , 2, 1} and
κi = {1, 2, . . . , 14, 15}.
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