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Abstract

Given a directed acyclic graphG, and a set of values y on the vertices, the Isotonic
Regression of y is a vector x that respects the partial order described by G, and
minimizes ‖x− y‖ , for a specified norm. This paper gives improved algorithms
for computing the Isotonic Regression for all weighted `p-norms with rigorous
performance guarantees. Our algorithms are quite practical, and variants of them
can be implemented to run fast in practice.

1 Introduction

A directed acyclic graph (DAG) G(V,E) defines a partial order on V where u precedes v if there
is a directed path from u to v. We say that a vector x ∈ RV is isotonic (with respect to G) if it is a
weakly order-preserving mapping of V into R. Let IG denote the set of all x that are isotonic with
respect to G. It is immediate that IG can be equivalently defined as follows:

IG = {x ∈ RV | xu ≤ xv for all (u, v) ∈ E}. (1)
Given a DAG G, and a norm ‖·‖ on RV , the Isotonic Regression of observations y ∈ RV , is given
by x ∈ IG that minimizes ‖x− y‖ .
Such monotonic relationships are fairly common in data. They allow one to impose only weak
assumptions on the data, e.g. the typical height of a young girl child is an increasing function of her
age, and the heights of her parents, rather than a more constrained parametric model.

Isotonic Regression is an important shape-constrained nonparametric regression method that has
been studied since the 1950’s [1, 2, 3]. It has applications in diverse fields such as Operations Re-
search [4, 5] and Signal Processing [6]. In Statistics, it has several applications (e.g. [7, 8]), and the
statistical properties of Isotonic Regression under the `2-norm have been well studied, particularly
over linear orderings (see [9] and references therein). More recently, Isotonic regression has found
several applications in Learning [10, 11, 12, 13, 14]. It was used by Kalai and Sastry [10] to provably
learn Generalized Linear Models and Single Index Models; and by Zadrozny and Elkan [13], and
Narasimhan and Agarwal [14] towards constructing binary Class Probability Estimation models.

The most common norms of interest are weighted `p-norms, defined as

‖z‖w,p =

{(∑
v∈V w

p
v · |zv|p

)1/p
, p ∈ [1,∞),

maxv∈V wv · |zv|, p =∞,
where wv > 0 is the weight of a vertex v ∈ V. In this paper, we focus on algorithms for Isotonic
Regression under weighted `p-norms. Such algorithms have been applied to large data-sets from
Microarrays [15], and from the web [16, 17].
∗Code from this work is available at https://github.com/sachdevasushant/Isotonic
†Part of this work was done when this author was a graduate student at Yale University.
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Given a DAGG, and observations y ∈ RV , our regression problem can be expressed as the following
convex program:

min ‖x− y‖w,p such that xu ≤ xv for all (u, v) ∈ E. (2)

1.1 Our Results

Let |V | = n, and |E| = m. We’ll assume that G is connected, and hence m ≥ n− 1.

`p-norms, p < ∞. We give a unified, optimization-based framework for algorithms that provably
solve the Isotonic Regression problem for p ∈ [1,∞). The following is an informal statement of our
main theorem (Theorem 3.1) in this regard (assuming wv are bounded by poly(n)).
Theorem 1.1 (Informal). There is an algorithm that, given a DAG G, observations y, and δ > 0,
runs in time O(m1.5 log2 n log n/δ), and computes an isotonic xALG ∈ IG such that

‖xALG − y‖pw,p ≤ min
x∈IG

‖x− y‖pw,p + δ.

The previous best time bounds were O(nm log n2

m ) for p ∈ (1,∞) [18] and O(nm + n2 log n) for
p = 1 [19].

`∞-norms. For `∞-norms, unlike `p-norms for p ∈ (1,∞), the Isotonic Regression problem need
not have a unique solution. There are several specific solutions that have been studied in the literature
(see [20] for a detailed discussion). In this paper, we show that some of them (MAX, MIN, and AVG
to be precise) can be computed in time linear in the size of G.
Theorem 1.2. There is an algorithm that, given a DAG G(V,E), a set of observations y ∈ RV , and
weights w, runs in expected time O(m), and computes an isotonic xINF ∈ IG such that

‖xINF − y‖w,∞ = min
x∈IG

‖x− y‖w,∞ .

Our algorithm achieves the best possible running time. This was not known even for linear or tree
orders. The previous best running time was O(m log n) [20].

Strict Isotonic Regression. We also give improved algorithms for Strict Isotonic Regression. Given
observations y, and weights w, its Strict Isotonic Regression xSTRICT is defined to be the limit of x̂p
as p goes to ∞, where x̂p is the Isotonic Regression for y under the norm ‖·‖w,p . It is immediate
that xStrict is an `∞ Isotonic Regression for y. In addition, it is unique and satisfies several desirable
properties (see [21]).
Theorem 1.3. There is an algorithm that, given a DAG G(V,E), a set of observation y ∈ RV , and
weights w, runs in expected time O(mn), and computes xSTRICT, the strict Isotonic Regression of y.

The previous best running time was O(min(mn, nω) + n2 log n) [21].

1.2 Detailed Comparison to Previous Results

`p-norms, p <∞. There has been a lot of work for fast algorithms for special graph families, mostly
for p = 1, 2 (see [22] for references). For some cases where G is very simple, e.g. a directed path
(corresponding to linear orders), or a rooted, directed tree (corresponding to tree orders), several
works give algorithms with running times of O(n) or O(n log n) (see [22] for references).

Theorem 1.1 not only improves on the previously best known algorithms for general DAGs, but also
on several algorithms for special graph families (see Table 1). One such setting is where V is a point
set in d-dimensions, and (u, v) ∈ E whenever ui ≤ vi for all i ∈ [d]. This setting has applications
to data analysis, as in the example given earlier, and has been studied extensively (see [23] for
references). For this case, it was proved by Stout (see Prop. 2, [23]) that these partial orders can be
embedded in a DAG with O(n logd−1 n) vertices and edges, and that this DAG can be computed in
time linear in its size. The bounds then follow by combining this result with our theorem above.

We obtain improved running times for all `p norms for DAGs with m = o(n2/ log6 n), and for
d-dim point sets for d ≥ 3. For d = 2, Stout [19] gives an O(n log2 n) time algorithm.
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Table 1: Comparison to previous best results for `p-norms, p 6=∞

Previous best This paper
`1 `p, 1 < p <∞ `p, p <∞

d-dim vertex set, d ≥ 3 n2 logd n [19] n2 logd+1 n [19] n1.5 log1.5(d+1) n

arbitrary DAG nm+ n2 log n [15] nm log n2

m [18] m1.5 log3 n

For sake of brevity, we have ignored the O(·) notation implicit in the bounds, and o(logn) terms. The results
are reported assuming an error parameter δ = n−Ω(1), and that wv are bounded by poly(n).

`∞-norms. For weighted `∞-norms on arbitrary DAGs, the previous best result was O(m log n +
n log2 n) due to Kaufman and Tamir [24]. A manuscript by Stout [20] improves it to O(m log n).
These algorithms are based on parametric search, and are impractical. Our algorithm is simple,
achieves the best possible running time, and only requires random sampling and topological sort.

In a parallel independent work, Stout [25] gives O(n)-time algorithms for linear order, trees, and
d-grids, and an O(n logd−1 n) algorithm for point sets in d-dimensions. Theorem 1.2 implies the
linear-time algorithms immediately. The result for d-dimensional point sets follows after embedding
the point sets into DAGs of size O(n logd−1 n), as for `p-norms.

Strict Isotonic Regression. Strict Isotonic regression was introduced and studied in [21]. It also
gave the only previous algorithm for computing it, that runs in time O(min(mn, nω) + n2 log n).
Theorem 1.3 is an improvement when m = o(n log n).

1.3 Overview of the Techniques and Contribution

`p-norms, p < ∞. It is immediate that Isotonic Regression, as formulated in Equation (2), is
a convex programming problem. For weighted `p-norms with p < ∞, applying generic convex-
programming algorithms such as Interior Point methods to this formulation leads to algorithms that
are quite slow.

We obtain faster algorithms for Isotonic Regression by replacing the computationally intensive com-
ponent of Interior Point methods, solving systems of linear equations, with approximate solves. This
approach has been used to design fast algorithms for generalized flow problems [26, 27, 28].

We present a complete proof of an Interior Point method for a large class of convex programs that
only requires approximate solves. Daitch and Spielman [26] had proved such a result for linear
programs. We extend this to `p-objectives, and provide an improved analysis that only requires
linear solvers with a constant factor relative error bound, whereas the method from Daitch and
Spielman required polynomially small error bounds.

The linear systems in [27, 28] are Symmetric Diagonally Dominant (SDD) matrices. The seminal
work of Spielman and Teng [29] gives near-linear time approximate solvers for such systems, and
later research has improved these solvers further [30, 31]. Daitch and Spielman [26] extended these
solvers to M-matrices (generalizations of SDD). The systems we need to solve are neither SDD,
nor M-matrices. We develop fast solvers for this new class of matrices using fast SDD solvers. We
stress that standard techniques for approximate inverse computation, e.g. Conjugate Gradient, are
not sufficient for approximately solving our systems in near-linear time. These methods have at least
a square root dependence on the condition number, which inevitably becomes huge in IPMs.

`∞-norms and Strict Isotonic Regression. Algorithms for `∞-norms and Strict Isotonic Regres-
sion are based on techniques presented in a recent paper of Kyng et al. [32]. We reduce `∞-norm
Isotonic Regression to the following problem, referred to as Lipschitz learning on directed graphs
in [32] (see Section 4 for details) : We have a directed graph H, with edge lengths given by len.

Given x ∈ RV (H), for every (u, v) ∈ E(H), define grad+G[x](u, v) = max
{
x(u)−x(v)
len(u,v) , 0

}
. Now,

given y that assigns real values to a subset of V (H), the goal is to determine x ∈ RV (H) that agrees
with y and minimizes max(u,v)∈E(H) grad

+
G[x](u, v).

3



The above problem is solved in O(m + n log n) time for general directed graphs in [32]. We give
a simple linear-time reduction to the above problem with the additional property that H is a DAG.
For DAGs, their algorithm can be implemented to run in O(m+ n) time.

It is proved in [21] that computing the Strict Isotonic Regression is equivalent to computing the
isotonic vector that minimizes the error under the lexicographic ordering (see Section 4). Under the
same reduction as in the `∞-case, we show that this is equivalent to minimizing grad+ under the
lexicographic ordering. It is proved in [32] that the lex-minimizer can be computed with basically n
calls to `∞-minimization, immediately implying our result.

1.4 Further Applications

The IPM framework that we introduce to design our algorithm for Isotonic Regression (IR), and
the associated results, are very general, and can be applied as-is to other problems. As a concrete
application, the algorithm of Kakade et al. [12] for provably learning Generalized Linear Models
and Single Index Models learns 1-Lipschitz monotone functions on linear orders in O(n2) time
(procedure LPAV). The structure of the associated convex program resembles IR. Our IPM results
and solvers immediately imply an n1.5 time algorithm (up to log factors).

Improved algorithms for IR (or for learning Lipschitz functions) on d-dimensional point sets could
be applied towards learning d-dim multi-index models where the link-function is nondecreasing
w.r.t. the natural ordering on d-variables, extending [10, 12]. They could also be applied towards
constructing Class Probability Estimation (CPE) models from multiple classifiers, by finding a map-
ping from multiple classifier scores to a probabilistic estimate, extending [13, 14].

Organization. We report experimental results in Section 2. An outline of the algorithms and analy-
sis for `p-norms, p <∞, are presented in Section 3. In Section 4, we define the Lipschitz regression
problem on DAGs, and give the reduction from `∞-norm Isotonic Regression. We defer a detailed
description of the algorithms, and most proofs to the accompanying supplementary material.

2 Experiments

An important advantage of our algorithms is that they can be implemented quite efficiently. Our
algorithms are based on what is known as a short-step method (see Chapter 11, [33]), that leads to
an O(

√
m) bound on the number of iterations. Each iteration corresponds to one linear solve in the

Hessian matrix. A variant, known as the long-step method (see [33]) typically require much fewer
iterations, about logm, even though the only provable bound known is O(m).
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For the important special case of `2-Isotonic
Regression, we have implemented our algo-
rithm in Matlab, with long step barrier method,
combined with our approximate solver for the
linear systems involved. A number of heuristics
recommended in [33] that greatly improve the
running time in practice have also been incor-
porated. Despite the changes, our implemen-
tation is theoretically correct and also outputs
an upper bound on the error by giving a feasi-
ble point to the dual program. Our implementa-
tion is available at https://github.com/
sachdevasushant/Isotonic.

In the figure, we plot average running times
(with error bars denoting standard deviation) for `2-Isotonic Regression on DAGs, where the un-
derlying graphs are 2-d grid graphs and random regular graphs (of constant degree). The edges for
2-d grid graphs are all oriented towards one of the corners. For random regular graphs, the edges
are oriented according to a random permutation. The vector of initial observations y is chosen to be
a random permutation of 1 to n obeying the partial order, perturbed by adding i.i.d. Gaussian noise
to each coordinate. For each graph size, and two different noise levels (standard deviation for the
noise on each coordinate being 1 or 10), the experiment is repeated multiple time. The relative error
in the objective was ascertained to be less than 1%.
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3 Algorithms for `p-norms, p <∞

Without loss of generality, we assume y ∈ [0, 1]n. Given p ∈ [1,∞), let p-ISO denote the following
`p-norm Isotonic Regression problem, and OPTp-ISO denote its optimum:

min
x∈IG

‖x− y‖pw,p . (3)

Let wp denote the entry-wise pth power of w. We assume the minimum entry of wp is 1, and the
maximum entry is wp

max ≤ exp(n). We also assume the additive error parameter δ is lower bounded
by exp(−n), and that p ≤ exp(n). We use the Õ notation to hide poly log log n factors.

Theorem 3.1. Given a DAG G(V,E), a set of observations y ∈ [0, 1]V , weights w, and an error
parameter δ > 0, the algorithm ISOTONICIPM runs in time Õ

(
m1.5 log2 n log (npw

p
max/δ)

)
, and

with probability at least 1− 1/n, outputs a vector xALG ∈ IG with

‖xALG − y‖pw,p ≤ OPTp-ISO + δ.

The algorithm ISOTONICIPM is obtained by an appropriate instantiation of a general Interior Point
Method (IPM) framework which we call APPROXIPM.

To state the general IPM result, we need to introduce two important concepts. These concepts are
defined formally in Supplementary Material Section A.1. The first concept is self-concordant barrier
functions; we denote the class of these functions by SCB. A self-concordant barrier function f is
a special convex function defined on some convex domain set S. The function approaches infinity
at the boundary of S. We associate with each f a complexity parameter θ(f) which measures how
well-behaved f is. The second important concept is the symmetry of a point z w.r.t. S: A non-
negative scalar quantity sym(z, S). A large symmetry value guarantees that a point is not too close
to the boundary of the set. For our algorithms to work, we need a starting point whose symmetry is
not too small. We later show that such a starting point can be constructed for the p-ISO problem.

APPROXIPM is a primal path following IPM: Given a vector c, a domain D and a barrier function
f ∈ SCB for D, we seek to compute minx∈D 〈c, x〉 . To find a minimizer, we consider a function
fc,γ(x) = f(x) + γ 〈c, x〉, and attempt to minimize fc,γ for changing values of γ by alternately
updating x and γ. As x approaches the boundary of D the f(x) term grows to infinity and with
some care, we can use this to ensure we never move to a point x outside the feasible domain D. As
we increase γ, the objective term 〈c, x〉 contributes more to fc,γ . Eventually, for large enough γ, the
objective value 〈c, x〉 of the current point x will be close to the optimum of the program.

To stay near the optimum x for each new value of γ, we use a second-order method (Newton steps)
to update x when γ is changed. This means that we minimize a local quadratic approximation to our
objective. This requires solving a linear systemHz = g, where g andH are the gradient and Hessian
of f at x respectively. Solving this system to find z is the most computationally intensive aspect of
the algorithm. Crucially we ensure that crude approximate solutions to the linear system suffices,
allowing the algorithm to use fast approximate solvers for this step. APPROXIPM is described in
detail in Supplementary Material Section A.5, and in this section we prove the following theorem.

Theorem 3.2. Given a convex bounded domain D ⊆ IRn and vector c ∈ IRn, consider the program

min
x∈D

〈c, x〉 . (4)

Let OPT denote the optimum of the program. Let f ∈ SCB be a self-concordant barrier function
for D. Given a initial point x0 ∈ D, a value upper bound K ≥ sup{〈c, x〉 : x ∈ D}, a symmetry
lower bound s ≤ sym(x0, D), and an error parameter 0 < ε < 1, the algorithm APPROXIPM runs
for

Tapx = O
(√

θ(f) log (θ(f)/ε·s)
)

iterations and returns a point xapx, which satisfies 〈c,xapx〉−OPT
K−OPT ≤ ε.

The algorithm requires O(Tapx) multiplications of vectors by a matrix M(x) satisfying 9/10 ·
H(x)−1 � M(x) � 11/10 · H(x)−1, where H(x) is the Hessian of f at various points x ∈ D
specified by the algorithm.
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We now reformulate the p-ISO program to state a version which can be solved using the APPROX-
IPM framework. Consider points (x, t) ∈ IRn × IRn, and define a set

DG = {(x, t) : for all v ∈ V . |x(v)− y(v)|p − t(v) ≤ 0} .
To ensure boundedness, as required by APPROXIPM, we add the constraint 〈wp , t〉 ≤ K.
Definition 3.3. We define the domain DK = (IG × IRn) ∩DG ∩ {(x, t) : 〈wp , t〉 ≤ K} .

The domain DK is convex, and allows us to reformulate program (3) with a linear objective:

min
x,t
〈wp , t〉 such that (x, t) ∈ DK . (5)

Our next lemma determines a choice of K which suffices to ensure that programs (3) and (5) have
the same optimum. The lemma is proven in Supplementary Material Section A.4.
Lemma 3.4. For all K ≥ 3nwp

max, DK is non-empty and bounded, and the optimum of program (5)
is OPTp-ISO.

The following result shows that for program (5) we can compute a good starting point for the path
following IPM efficiently. The algorithm GOODSTART computes a starting point in linear time by
running a topological sort on the vertices of the DAG G and assigning values to x according to the
vertex order of the sort. Combined with an appropriate choice of t, this suffices to give a starting
point with good symmetry. The algorithm GOODSTART is specified in more detail in Supplementary
Material Section A.4, together with a proof of the following lemma.
Lemma 3.5. The algorithm GOODSTART runs in time O(m) and returns an initial point (x0, t0)
that is feasible, and for K = 3nwp

max, satisfies sym((x0, t0),DK) ≥ 1
18n2pwp

max
.

Combining standard results on self-concordant barrier functions with a barrier for p-norms devel-
oped by Hertog et al. [34], we can show the following properties of a function FK whose exact
definition is given in Supplementary Material Section A.2.
Corollary 3.6. The function FK is a self-concordant barrier for DK and it has complexity param-
eter θ(FK) = O(m). Its gradient gFK

is computable in O(m) time, and an implicit representation
of the Hessian HFK

can be computed in O(m) time as well.

The key reason we can use APPROXIPM to give a fast algorithm for Isotonic Regression is that we
develop an efficient solver for linear equations in the Hessian of FK . The algorithm HESSIANSOLVE
solves linear systems in Hessian matrices of the barrier function FK . The Hessian is composed of
a structured main component plus a rank one matrix. We develop a solver for the main component
by doing a change of variables to simplify its structure, and then factoring the matrix by a block-
wise LDL>-decomposition. We can solve straightforwardly in the L and L>, and we show that
the D factor consists of blocks that are either diagonal or SDD, so we can solve in this factor
approximately using a nearly-linear time SDD solver. The algorithm HESSIANSOLVE is given in
full in Supplementary Material Section A.3, along with a proof of the following result.
Theorem 3.7. For any instance of program (5) given by some (G, y), at any point z ∈ DK , for any
vector a, HESSIANSOLVE((G, y), z, µ, a) returns a vector b =Ma for a symmetric linear operator
M satisfying 9/10 ·HFK

(z)−1 �M � 11/10 ·HFK
(z)−1. The algorithm fails with probability < µ.

HESSIANSOLVE runs in time Õ(m log n log(1/µ)).

These are the ingredients we need to prove our main result on solving p-ISO. The algorithm ISO-
TONICIPM is simply APPROXIPM instantiated to solve program (5), with an appropriate choice of
parameters. We state ISOTONICIPM informally as Algorithm 1 below. ISOTONICIPM is given in
full as Algorithm 6 in Supplementary Material Section A.5.

Proof of Theorem 3.1: ISOTONICIPM uses the symmetry lower bound s = 1
18n2pwp

max
, the value

upper bound K = 3nwp
max, and the error parameter ε = δ

K when calling APPROXIPM. By Corol-
lary 3.6, the barrier function FK used by ISOTONICIPM has complexity parameter θ(FK) ≤ O(m).
By Lemma 3.5 the starting point (x0, t0) computed by GOODSTART and used by ISOTONICIPM is
feasible and has symmetry sym(x0,DK) ≥ 1

18n2pwp
max

.

By Theorem 3.2 the point (xapx, tapx) output by ISOTONICIPM satisfies 〈w
p ,tapx〉−OPT
K−OPT ≤ ε, where

OPT is the optimum of program (5), and K = 3nwp
max is the value used by ISOTONICIPM for the
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constraint 〈wp , t〉 ≤ K, which is an upper bound on the supremum of objective values of feasible
points of program (5). By Lemma 3.4, OPT = OPTp-ISO. Hence, ‖y − xapx‖pp ≤ 〈w

p , tapx〉 ≤
OPT+ εK = OPTp-ISO + δ.

Again, by Theorem 3.2, the number of calls to HESSIANSOLVE by ISOTONICIPM is bounded by

O(T ) ≤ O
(√

θ(FK) log (θ(FK)/ε·s)
)
≤ O

(√
m log (npw

p
max/δ)

)
.

Each call to HESSIANSOLVE fails with probability < n−3. Thus, by a union bound, the probability
that some call to HESSIANSOLVE fails is upper bounded by O(

√
m log(npwp

max/δ))/n3 = O(1/n).
The algorithm usesO (

√
m log (npw

p
max/δ)) calls to HESSIANSOLVE that each take time Õ(m log2 n),

as µ = n3. Thus the total running time is Õ
(
m1.5 log2 n log (npw

p
max/δ)

)
. �

Algorithm 1: Sketch of Algorithm ISOTONICIPM

1. Pick a starting point (x, t) using the GOODSTART algorithm
2. for r = 1, 2
3. if r = 1 then γ ← −1; ρ← 1; c = − gradient of f at (x, t)
4. else γ ← 1; ρ← 1/poly(n); c = (0,wp)
5. for i← 1, . . . , C1m

0.5 logm :
6. ρ← ρ · (1 + γC2m

−0.5)
7. Let H, g be the Hessian and gradient of fc,ρ at x
8. Call HESSIANSOLVE to compute z ≈ H−1g
9. Update x← x− z

10. Return x.

4 Algorithms for `∞ and Strict Isotonic Regression

We now reduce `∞ Isotonic Regression and Strict Isotonic Regression to the Lipschitz Learning
problem, as defined in [32]. Let G = (V,E, len) be any DAG with non-negative edge lengths
len : E → R≥0, and y : V → R∪ {∗} a partial labeling. We think of a partial labeling as a function
that assigns real values to a subset of the vertex set V . We call such a pair (G, y) a partially-labeled
DAG. For a complete labeling x : V → R, define the gradient on an edge (u, v) ∈ E due to x
to be grad+G[x](u, v) = max

{
x(u)−x(v)
len(u,v) , 0

}
. If len(u, v) = 0, then grad+G[x](u, v) = 0 unless

x(u) > x(v), in which case it is defined as +∞. Given a partially-labelled DAG (G, y), we say that
a complete assignment x is an inf-minimizer if it extends y, and for all other complete assignments
x′ that extends y we have

max
(u,v)∈E

grad+G[x](u, v) ≤ max
(u,v)∈E

grad+G[x
′](u, v).

Note that when len = 0, then max(u,v)∈E grad+G[x](u, v) <∞ if and only if x is isotonic on G.

Suppose we are interested in Isotonic Regression on a DAG G(V,E) under ‖·‖w,∞. To reduce this
problem to that of finding an inf-minimizer, we add some auxiliary nodes and edges toG. Let VL, VR
be two copies of V . That is, for every vertex u ∈ V , add a vertex uL to VL and a vertex uR to VR. Let
EL = {(uL, u)}u∈V and ER = {(u, uR)}u∈V . We then let len′(uL, u) = 1/w(u) and len′(u, uR) =
1/w(u). All other edge lengths are set to 0. Finally, let G′ = (V ∪ VL ∪ VR, E ∪ EL ∪ ER, len′).
The partial assignment y′ takes real values only on the the vertices in VL ∪ VR. For all u ∈ V ,
y′(uL) := y(u), y′(uR) := y(u) and y′(u) := ∗. (G′, y′) is our partially-labeled DAG. Observe
that G′ has n′ = 3n vertices and m′ = m+ 2n edges.
Lemma 4.1. Given a DAG G(V,E), a set of observations y ∈ RV , and weights w, construct G′
and y′ as above. Let x be an inf-minimizer for the partially-labeled DAG (G′, y′). Then, x |V is the
Isotonic Regression of y with respect to G under the norm ‖·‖w,∞ .

Proof. We note that since the vertices corresponding to V in (G′, y′) are connected to each other by
zero length edges, max(u,v)∈E grad+G[x](u, v) < ∞ iff x is isotonic on those edges. Since G is a
DAG, we know that there are isotonic labelings on G. When x is isotonic on vertices corresponding
to V , gradient is zero on all the edges going in between vertices in V . Also, note that every vertex
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x corresponding to V in G′ is attached to two auxiliary nodes xL ∈ VL, xR ∈ VR. We also have
y′(xL) = y′(xR) = y(x). Thus, for any x that extends y and is Isotonic on G′, the only non-zero
entries in grad+ correspond to edges in ER and EL, and thus

max
(u,v)∈E′

grad+G′ [x](u, v) = max
u∈V

wu · |y(u)− x(u)| = ‖x− y‖w,∞ .

Algorithm COMPINFMIN from [32] is proved to compute the inf-minimizer, and is claimed to work
for directed graphs (Section 5, [32]). We exploit the fact that Dijkstra’s algorithm in COMPINFMIN
can be implemented in O(m) time on DAGs using a topological sorting of the vertices, giving a
linear time algorithm for computing the inf-minimizer. Combining it with the reduction given by
the lemma above, and observing that the size ofG′ isO(m+n),we obtain Theorem 1.2. A complete
description of the modified COMPINFMIN is given in Section B.2. We remark that the solution to
the `∞-Isotonic Regression that we obtain has been referred to as AVG `∞ Isotonic Regression
in the literature [20]. It is easy to modify the algorithm to compute the MAX, MIN `∞ Isotonic
Regressions. Details are given in Section B.

For Strict Isotonic Regression, we define the lexicographic ordering. Given r ∈ Rm, let πr denote
a permutation that sorts r in non-increasing order by absolute value, i.e., ∀i ∈ [m− 1], |r(πr(i))| ≥
|r(πr(i+ 1))|. Given two vectors r, s ∈ Rm, we write r �lex s to indicate that r is smaller than s in
the lexicographic ordering on sorted absolute values, i.e.

∃j ∈ [m], |r(πr(j))| < |s(πs(j))| and ∀i ∈ [j − 1], |r(πr(i))| = |s(πs(i))|
or ∀i ∈ [m], |r(πr(i))| = |s(πs(i))| .

Note that it is possible that r �lex s and s �lex r while r 6= s. It is a total relation: for every r and s
at least one of r �lex s or s �lex r is true.

Given a partially-labelled DAG (G, y), we say that a complete assignment x is a lex-minimizer if it
extends y and for all other complete assignments x′ that extend y we have grad+G[x] �lex grad

+
G[x
′].

Stout [21] proves that computing the Strict Isotonic Regression is equivalent to finding an Isotonic
x that minimizes zu = wu · (xu − yu) in the lexicographic ordering. With the same reduction as
above, it is immediate that this is equivalent to minimizing grad+G′ in the lex-ordering.

Lemma 4.2. Given a DAG G(V,E), a set of observations y ∈ RV , and weights w, construct G′
and y′ as above. Let x be the lex-minimizer for the partially-labeled DAG (G′, y′). Then, x |V is the
Strict Isotonic Regression of y with respect to G with weights w.

As for inf-minimization, we give a modification of the algorithm COMPLEXMIN from [32] that
computes the lex-minimizer in O(mn) time. The algorithm is described in Section B.2. Combining
this algorithm with the reduction from Lemma 4.2, we can compute the Strict Isotonic Regression
in O(m′n′) = O(mn) time, thus proving Theorem 1.3.
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Õ(
√
rank) iterations and faster algorithms for maximum flow. In FOCS, 2014.

[29] D. A. Spielman and S. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification,
and solving linear systems. STOC ’04, pages 81–90. ACM, 2004.

[30] I. Koutis, G. L. Miller, and R. Peng. A nearly-m logn time solver for SDD linear systems. FOCS ’11,
pages 590–598, Washington, DC, USA, 2011. IEEE Computer Society.

[31] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng, A. B. Rao, and S. C. Xu. Solving SDD
linear systems in nearly m log1/2 n time. STOC ’14, 2014.

[32] R. Kyng, A. Rao, S. Sachdeva, and D. A. Spielman. Algorithms for Lipschitz learning on graphs. In
Proceedings of COLT 2015, pages 1190–1223, 2015.

[33] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[34] D. den Hertog, F. Jarre, C. Roos, and T. Terlaky. A sufficient condition for self-concordance. Math.
Program., 69(1):75–88, July 1995.

[35] J. Renegar. A mathematical view of interior-point methods in convex optimization. SIAM, 2001.

[36] A. Nemirovski. Lecure notes: Interior point polynomial time methods in convex programming, 2004.

[37] E. J. McShane. Extension of range of functions. Bull. Amer. Math. Soc., 40(12):837–842, 12 1934.

[38] H. Whitney. Analytic extensions of differentiable functions defined in closed sets. Transactions of the
American Mathematical Society, 36(1):pp. 63–89, 1934.

9

http://web.eecs.umich.edu/~qstout/IsoRegAlg_140812.pdf
http://web.eecs.umich.edu/~qstout/IsoRegAlg_140812.pdf

