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Abstract

Overfitting is the bane of data analysts, even when data are plentiful. Formal
approaches to understanding this problem focus on statistical inference and gen-
eralization of individual analysis procedures. Yet the practice of data analysis is
an inherently interactive and adaptive process: new analyses and hypotheses are
proposed after seeing the results of previous ones, parameters are tuned on the
basis of obtained results, and datasets are shared and reused. An investigation of
this gap has recently been initiated by the authors in [7], where we focused on the
problem of estimating expectations of adaptively chosen functions.
In this paper, we give a simple and practical method for reusing a holdout (or
testing) set to validate the accuracy of hypotheses produced by a learning algorithm
operating on a training set. Reusing a holdout set adaptively multiple times can
easily lead to overfitting to the holdout set itself. We give an algorithm that enables
the validation of a large number of adaptively chosen hypotheses, while provably
avoiding overfitting. We illustrate the advantages of our algorithm over the standard
use of the holdout set via a simple synthetic experiment.
We also formalize and address the general problem of data reuse in adaptive data
analysis. We show how the differential-privacy based approach given in [7] is
applicable much more broadly to adaptive data analysis. We then show that a
simple approach based on description length can also be used to give guarantees of
statistical validity in adaptive settings. Finally, we demonstrate that these incompa-
rable approaches can be unified via the notion of approximate max-information
that we introduce. This, in particular, allows the preservation of statistical valid-
ity guarantees even when an analyst adaptively composes algorithms which have
guarantees based on either of the two approaches.

1 Introduction

The goal of machine learning is to produce hypotheses or models that generalize well to the unseen
instances of the problem. More generally, statistical data analysis is concerned with estimating
properties of the underlying data distribution, rather than properties that are specific to the finite data
set at hand. Indeed, a large body of theoretical and empirical research was developed for ensuring
generalization in a variety of settings. In this work, it is commonly assumed that each analysis
procedure (such as a learning algorithm) operates on a freshly sampled dataset – or if not, is validated
on a freshly sampled holdout (or testing) set.

∗See [6] for the full version of this work.
†Part of this work done while visiting the Simons Institute, UC Berkeley.
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Unfortunately, learning and inference can be more difficult in practice, where data samples are often
reused. For example, a common practice is to perform feature selection on a dataset, and then use
the features for some supervised learning task. When these two steps are performed on the same
dataset, it is no longer clear that the results obtained from the combined algorithm will generalize.
Although not usually understood in these terms, “Freedman’s paradox" is an elegant demonstration of
the powerful (negative) effect of adaptive analysis on the same data [10]. In Freedman’s simulation,
variables with significant t-statistic are selected and linear regression is performed on this adaptively
chosen subset of variables, with famously misleading results: when the relationship between the
dependent and explanatory variables is non-existent, the procedure overfits, erroneously declaring
significant relationships.

Most of machine learning practice does not rely on formal guarantees of generalization for learning
algorithms. Instead a dataset is split randomly into two (or sometimes more) parts: the training set
and the testing, or holdout, set. The training set is used for learning a predictor, and then the holdout
set is used to estimate the accuracy of the predictor on the true distribution (Additional averaging over
different partitions is used in cross-validation.). Because the predictor is independent of the holdout
dataset, such an estimate is a valid estimate of the true prediction accuracy (formally, this allows
one to construct a confidence interval for the prediction accuracy on the data distribution). However,
in practice the holdout dataset is rarely used only once, and as a result the predictor may not be
independent of the holdout set, resulting in overfitting to the holdout set [17, 16, 4]. One well-known
reason for such dependence is that the holdout data is used to test a large number of predictors and
only the best one is reported. If the set of all tested hypotheses is known and independent of the
holdout set, then it is easy to account for such multiple testing.

However such static approaches do not apply if the estimates or hypotheses tested on the holdout are
chosen adaptively: that is, if the choice of hypotheses depends on previous analyses performed on the
dataset. One prominent example in which a holdout set is often adaptively reused is hyperparameter
tuning (e.g.[5]). Similarly, the holdout set in a machine learning competition, such as the famous
ImageNet competition, is typically reused many times adaptively. Other examples include using
the holdout set for feature selection, generation of base learners (in aggregation techniques such as
boosting and bagging), checking a stopping condition, and analyst-in-the-loop decisions. See [13] for
a discussion of several subtle causes of overfitting.

The concrete practical problem we address is how to ensure that the holdout set can be reused to
perform validation in the adaptive setting. Towards addressing this problem we also ask the more
general question of how one can ensure that the final output of adaptive data analysis generalizes
to the underlying data distribution. This line of research was recently initiated by the authors in [7],
where we focused on the case of estimating expectations of functions from i.i.d. samples (these are
also referred to as statistical queries). .

1.1 Our Results

We propose a simple and general formulation of the problem of preserving statistical validity in
adaptive data analysis. We show that the connection between differentially private algorithms
and generalization from [7] can be extended to this more general setting, and show that similar
(but sometimes incomparable) guarantees can be obtained from algorithms whose outputs can be
described by short strings. We then define a new notion, approximate max-information, that unifies
these two basic techniques and gives a new perspective on the problem. In particular, we give an
adaptive composition theorem for max-information, which gives a simple way to obtain generalization
guarantees for analyses in which some of the procedures are differentially private and some have
short description length outputs. We apply our techniques to the problem of reusing the holdout set
for validation in the adaptive setting.

A reusable holdout: We describe a simple and general method, together with two specific instan-
tiations, for reusing a holdout set for validating results while provably avoiding overfitting to the
holdout set. The analyst can perform any analysis on the training dataset, but can only access the
holdout set via an algorithm that allows the analyst to validate her hypotheses against the holdout set.
Crucially, our algorithm prevents overfitting to the holdout set even when the analyst’s hypotheses
are chosen adaptively on the basis of the previous responses of our algorithm.
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Our first algorithm, referred to as Thresholdout, derives its guarantees from differential privacy and
the results in [7, 14]. For any function φ : X → [0, 1] given by the analyst, Thresholdout uses the
holdout set to validate that φ does not overfit to the training set, that is, it checks that the mean value
of φ evaluated on the training set is close to the mean value of φ evaluated on the distribution P from
which the data was sampled. The standard approach to such validation would be to compute the mean
value of φ on the holdout set. The use of the holdout set in Thresholdout differs from the standard use
in that it exposes very little information about the mean of φ on the holdout set: if φ does not overfit
to the training set, then the analyst receives only the confirmation of closeness, that is, just a single
bit. On the other hand, if φ overfits then Thresholdout returns the mean value of φ on the training set
perturbed by carefully calibrated noise.

Using results from [7, 14] we show that for datasets consisting of i.i.d. samples these modifications
provably prevent the analyst from constructing functions that overfit to the holdout set. This ensures
correctness of Thresholdout’s responses. Naturally, the specific guarantees depend on the number of
samples n in the holdout set. The number of queries that Thresholdout can answer is exponential in n
as long as the number of times that the analyst overfits is at most quadratic in n.

Our second algorithm SparseValidate is based on the idea that if most of the time the analystâĂŹs
procedures generate results that do not overfit, then validating them against the holdout set does not
reveal much information about the holdout set. Specifically, the generalization guarantees of this
method follow from the observation that the transcript of the interaction between a data analyst and
the holdout set can be described concisely. More formally, this method allows the analyst to pick
any Boolean function of a dataset ψ (described by an algorithm) and receive back its value on the
holdout set. A simple example of such a function would be whether the accuracy of a predictor on
the holdout set is at least a certain value α. (Unlike in the case of Thresholdout, here there is no
need to assume that the function that measures the accuracy has a bounded range or even Lipschitz,
making it qualitatively different from the kinds of results achievable subject to differential privacy). A
more involved example of validation would be to run an algorithm on the holdout dataset to select an
hypothesis and check if the hypothesis is similar to that obtained on the training set (for any desired
notion of similarity). Such validation can be applied to other results of analysis; for example one
could check if the variables selected on the holdout set have large overlap with those selected on the
training set. An instantiation of the SparseValidate algorithm has already been applied to the problem
of answering statistical (and more general) queries in the adaptive setting [1].

We describe a simple experiment on synthetic data that illustrates the danger of reusing a standard
holdout set, and how this issue can be resolved by our reusable holdout. The design of this experiment
is inspired by Freedman’s classical experiment, which demonstrated the dangers of performing
variable selection and regression on the same data [10].

Generalization in adaptive data analysis: We view adaptive analysis on the same dataset as an
execution of a sequence of steps A1 → A2 → · · · → Am. Each step is described by an algorithm
Ai that takes as input a fixed dataset S = (x1, . . . , xn) drawn from some distribution D over
Xn, which remains unchanged over the course of the analysis. Each algorithm Ai also takes as
input the outputs of the previously run algorithms A1 through Ai−1 and produces a value in some
range Yi. The dependence on previous outputs represents all the adaptive choices that are made
at step i of data analysis. For example, depending on the previous outputs, Ai can run different
types of analysis on S. We note that at this level of generality, the algorithms can represent the
choices of the data analyst, and need not be explicitly specified. We assume that the analyst uses
algorithms which individually are known to generalize when executed on a fresh dataset sampled
independently from a distribution D. We formalize this by assuming that for every fixed value
y1, . . . , yi−1 ∈ Y1 × · · · × Yi−1, with probability at least 1 − βi over the choice of S according
to distribution D, the output of Ai on inputs y1, . . . , yi−1 and S has a desired property relative to
the data distribution D (for example has low generalization error). Note that in this assumption
y1, . . . , yi−1 are fixed and independent of the choice of S, whereas the analyst will execute Ai on
values Y1, . . . ,Yi−1, where Yj = Aj(S,Y1, . . . ,Yj−1). In other words, in the adaptive setup, the
algorithm Ai can depend on the previous outputs, which depend on S, and thus the set S given to
Ai is no longer an independently sampled dataset. Such dependence invalidates the generalization
guarantees of individual procedures, potentially leading to overfitting.

Differential privacy: First, we spell out how the differential privacy based approach from [7] can
be applied to this more general setting. Specifically, a simple corollary of results in [7] is that for
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a dataset consisting of i.i.d. samples any output of a differentially-private algorithm can be used in
subsequent analysis while controlling the risk of overfitting, even beyond the setting of statistical
queries studied in [7]. A key property of differential privacy in this context is that it composes
adaptively: namely if each of the algorithms used by the analyst is differentially private, then the
whole procedure will be differentially private (albeit with worse privacy parameters). Therefore, one
way to avoid overfitting in the adaptive setting is to use algorithms that satisfy (sufficiently strong)
guarantees of differential-privacy.

Description length: We then show how description length bounds can be applied in the context
of guaranteeing generalization in the presence of adaptivity. If the total length of the outputs of
algorithms A1, . . . ,Ai−1 can be described with k bits then there are at most 2k possible values of
the input y1, . . . , yi−1 to Ai. For each of these individual inputs Ai generalizes with probability
1−βi. Taking a union bound over failure probabilities implies generalization with probability at least
1− 2kβi. Occam’s Razor famously implies that shorter hypotheses have lower generalization error.
Our observation is that shorter hypotheses (and the results of analysis more generally) are also better
in the adaptive setting since they reveal less about the dataset and lead to better generalization of
subsequent analyses. Note that this result makes no assumptions about the data distribution D. In the
full versionwe also show that description length-based analysis suffices for obtaining an algorithm
(albeit not an efficient one) that can answer an exponentially large number of adaptively chosen
statistical queries. This provides an alternative proof for one of the results in [7].

Approximate max-information: Our main technical contribution is the introduction and analysis of
a new information-theoretic measure, which unifies the generalization arguments that come from
both differential privacy and description length, and that quantifies how much information has been
learned about the data by the analyst. Formally, for jointly distributed random variables (S,Y ),
the max-information is the maximum of the logarithm of the factor by which uncertainty about S
is reduced given the value of Y , namely I∞(S,Y )

.
= log max P[S=S | Y =y]

P[S=S] , where the maximum
is taken over all S in the support of S and y in the support Y . Approximate max-information is a
relaxation of max-information. In our use, S denotes a dataset drawn randomly from the distribution
D and Y denotes the output of a (possibly randomized) algorithm on S. We prove that approximate
max-information has the following properties

• An upper bound on (approximate) max-information gives generalization guarantees.

• Differentially private algorithms have low max-information for any distribution D over
datasets. A stronger bound holds for approximate max-information on i.i.d. datasets. These
bounds apply only to so-called pure differential privacy (the δ = 0 case).

• Bounds on the description length of the output of an algorithm give bounds on the approxi-
mate max-information of the algorithm for any D.

• Approximate max-information composes adaptively.

Composition properties of approximate max-information imply that one can easily obtain general-
ization guarantees for adaptive sequences of algorithms, some of which are differentially private,
and others of which have outputs with short description length. These properties also imply that
differential privacy can be used to control generalization for any distribution D over datasets, which
extends its generalization guarantees beyond the restriction to datasets drawn i.i.d. from a fixed
distribution, as in [7].

We remark that (pure) differential privacy and description length are otherwise incomparable. Bounds
on max-information or differential privacy of an algorithm can, however, be translated to bounds on
randomized description length for a different algorithm with statistically indistinguishable output.
Here we say that a randomized algorithm has randomized description length of k if for every fixing
of the algorithm’s random bits, it has description length of k. Details of these results and additional
discussion appear in Section 2 and the full version.

1.2 Related Work

This work complements [7] where we initiated the formal study of adaptivity in data analysis. The
primary focus of [7] is the problem of answering adaptively chosen statistical queries. The main
technique is a strong connection between differential privacy and generalization: differential privacy
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guarantees that the distribution of outputs does not depend too much on any one of the data samples,
and thus, differential privacy gives a strong stability guarantee that behaves well under adaptive data
analysis. The link between generalization and approximate differential privacy made in [7] has been
subsequently strengthened, both qualitatively — by [1], who make the connection for a broader
range of queries — and quantitatively, by [14] and [1], who give tighter quantitative bounds. These
papers, among other results, give methods for accurately answering exponentially (in the dataset
size) many adaptively chosen queries, but the algorithms for this task are not efficient. It turns out
this is for fundamental reasons – Hardt and Ullman [11] and Steinke and Ullman [19] prove that,
under cryptographic assumptions, no efficient algorithm can answer more than quadratically many
statistical queries chosen adaptively by an adversary who knows the true data distribution.

The classical approach in theoretical machine learning to ensure that empirical estimates generalize
to the underlying distribution is based on the various notions of complexity of the set of functions
output by the algorithm, most notably the VC dimension. If one has a sample of data large enough
to guarantee generalization for all functions in some class of bounded complexity, then it does not
matter whether the data analyst chooses functions in this class adaptively or non-adaptively. Our goal,
in contrast, is to prove generalization bounds without making any assumptions about the class from
which the analyst can output functions.

An important line of work [3, 15, 18] establishes connections between the stability of a learning
algorithm and its ability to generalize. Stability is a measure of how much the output of a learning
algorithm is perturbed by changes to its input. It is known that certain stability notions are necessary
and sufficient for generalization. Unfortunately, the stability notions considered in these prior works
do not compose in the sense that running multiple stable algorithms sequentially and adaptively may
result in a procedure that is not stable. The measure we introduce in this work (max information),
like differential privacy, has the strength that it enjoys adaptive composition guarantees. This makes
it amenable to reasoning about the generalization properties of adaptively applied sequences of
algorithms, while having to analyze only the individual components of these algorithms. Connections
between stability, empirical risk minimization and differential privacy in the context of learnability
have been recently explored in [21].

Numerous techniques have been developed by statisticians to address common special cases of
adaptive data analysis. Most of them address a single round of adaptivity such as variable selection
followed by regression on selected variables or model selection followed by testing and are optimized
for specific inference procedures (the literature is too vast to adequately cover here, see Ch. 7 in [12]
for a textbook introduction and [20] for a survey of some recent work). In contrast, our framework
addresses multiple stages of adaptive decisions, possible lack of a predetermined analysis protocol
and is not restricted to any specific procedures.

Finally, inspired by our work, Blum and Hardt [2] showed how to reuse the holdout set to maintain
an accurate leaderboard in a machine learning competition that allows the participants to submit
adaptively chosen models in the process of the competition (such as those organized by Kaggle Inc.).
Their analysis also relies on the description length-based technique we used to analyze SparseValidate.

2 Max-Information

Preliminaries: In the discussion below log refers to binary logarithm and ln refers to the natural
logarithm. For two random variablesX and Y over the same domain X the max-divergence ofX
from Y is defined as D∞(X‖Y ) = log maxx∈X

P[X=x]
P[Y =x] . δ-approximate max-divergence is defined

as

Dδ
∞(X‖Y ) = log max

O⊆X , P[X∈O]>δ

P[X ∈ O]− δ
P[Y ∈ O]

.

Definition 1. [9, 8] A randomized algorithm A with domain Xn for n > 0 is (ε, δ)-differentially
private if for all pairs of datasets that differ in a single element S, S′ ∈ Xn: Dδ

∞(A(S)‖A(S′)) ≤
log(eε). The case when δ = 0 is sometimes referred to as pure differential privacy, and in this case
we may say simply that A is ε-differentially private.

Consider two algorithms A : Xn → Y and B : Xn × Y → Y ′ that are composed adaptively and
assume that for every fixed input y ∈ Y , B generalizes for all but fraction β of datasets. Here we
are speaking of generalization informally: our definitions will support any property of input y ∈ Y
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and dataset S. Intuitively, to preserve generalization of B we want to make sure that the output of A
does not reveal too much information about the dataset S. We demonstrate that this intuition can be
captured via a notion of max-information and its relaxation approximate max-information.

For two random variables X and Y we use X × Y to denote the random variable obtained by
drawingX and Y independently from their probability distributions.
Definition 2. LetX and Y be jointly distributed random variables. The max-information between
X and Y is defined as I∞(X;Y ) = D∞((X,Y )‖X × Y ). The β-approximate max-information
is defined as Iβ∞(X;Y ) = Dβ

∞((X,Y )‖X × Y ).

In our use (X,Y ) is going to be a joint distribution (S,A(S)), where S is a random n-element
dataset and A is a (possibly randomized) algorithm taking a dataset as an input.
Definition 3. We say that an algorithm A has β-approximate max-information of k if for every
distribution S over n-element datasets, Iβ∞(S;A(S)) ≤ k, where S is a dataset chosen randomly
according to S. We denote this by Iβ∞(A, n) ≤ k.

An immediate corollary of our definition of approximate max-information is that it controls the
probability of “bad events" that can happen as a result of the dependence of A(S) on S.
Theorem 4. Let S be a random dataset in Xn and A be an algorithm with range Y such that for
some β ≥ 0, Iβ∞(S;A(S)) = k. Then for any event O ⊆ Xn × Y ,

P[(S,A(S)) ∈ O] ≤ 2k · P[S ×A(S) ∈ O] + β.

In particular, P[(S,A(S)) ∈ O] ≤ 2k ·maxy∈Y P[(S, y) ∈ O] + β.

We remark that mutual information between S and A(S) would not suffice for ensuring that bad
events happen with tiny probability. For example mutual information of k allows P[(S,A(S)) ∈ O]
to be as high as k/(2 log(1/δ)), where δ = P[S ×A(S) ∈ O].

Approximate max-information satisfies the following adaptive composition property:
Lemma 5. Let A : Xn → Y be an algorithm such that Iβ1

∞ (A, n) ≤ k1, and let B : Xn × Y → Z
be an algorithm such that for every y ∈ Y , B(·, y) has β2-approximate max-information k2. Let
C : Xn → Z be defined such that C(S) = B(S,A(S)). Then Iβ1+β2

∞ (C, n) ≤ k1 + k2.

Bounds on Max-information: Description length k gives the following bound on max-information.
Theorem 6. LetA be a randomized algorithm taking as an input an n-element dataset and outputting
a value in a finite set Y . Then for every β > 0, Iβ∞(A, n) ≤ log(|Y|/β).

Next we prove a simple bound on max-information of differentially private algorithms that applies to
all distributions over datasets.
Theorem 7. Let A be an ε-differentially private algorithm. Then I∞(A, n) ≤ log e · εn.

Finally, we prove a stronger bound on approximate max-information for datasets consisting of
i.i.d. samples using the technique from [7].
Theorem 8. Let A be an ε-differentially private algorithm with range Y . For a distribution P over
X , let S be a random variable drawn from Pn. Let Y = A(S) denote the random variable output
by A on input S. Then for any β > 0, Iβ∞(S;A(S)) ≤ log e(ε2n/2 + ε

√
n ln(2/β)/2).

One way to apply a bound on max-information is to start with a concentration of measure result which
ensures that the estimate of predictor’s accuracy is correct with high probability when the predictor is
chosen independently of the samples. For example for a loss function with range [0, 1], Hoeffding’s
bound implies that for a dataset consisting of i.i.d. samples the empirical estimate is not within τ of
the true accuracy with probability ≤ 2e−2τ

2n. Now, given a bound of log e · τ2n on β-approximate
information of the algorithm that produces the estimator, Thm. 4 implies that the produced estimate is
not within τ of the true accuracy with probability ≤ 2log e·τ

2n · 2e−2τ2n + β ≤ 2e−τ
2n + β. Thm. 7

implies that any τ2-differentially private algorithm has max-information of at most log e · τ2n. For
a dataset consisting of i.i.d. samples Thm. 8 implies that a τ -differentially private algorithm has
β-approximate max-information of 1.25 log e · τ2n for β = 2e−τ

2n.
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3 Reusable Holdout

We describe two simple algorithms that enable validation of analyst’s queries in the adaptive setting.
Thresholdout: Our first algorithm Thresholdout follows the approach in [7] where differentially
private algorithms are used to answer adaptively chosen statistical queries. This approach can also be
applied to any low-sensitivity functions of the dataset but for simplicity we present the results for
statistical queries. Here we address an easier problem in which the analyst’s queries only need to be
answered when they overfit. Also, unlike in [7], the analyst has full access to the training set and the
holdout algorithm only prevents overfitting to holdout dataset. As a result, unlike in the general query
answering setting, our algorithm can efficiently validate an exponential in n number of queries as
long as a relatively small number of them overfit.

For a function φ : X → R and a dataset S = (x1, . . . , xn), let ES [φ]
.
= 1

n

∑n
i=1 φ(xi). Thresholdout

is given access to the training dataset St and holdout dataset Sh and a budget limit B. It allows any
query of the form φ : X → [0, 1] and its goal is to provide an estimate of P[φ]. To achieve this the
algorithm gives an estimate of ESh

[φ] in a way that prevents overfitting of functions generated by the
analyst to the holdout set. In other words, responses of Thresholdout are designed to ensure that, with
high probability, ESh

[φ] is close to P[φ] and hence an estimate of ESh
[φ] gives an estimate of the true

expectation P[φ].

Given a function φ, Thresholdout first checks if the difference between the average value of φ on the
training set St (or ESt [φ]) and the average value of φ on the holdout set Sh (or ESh

[φ]) is below a
certain threshold T + η. Here, T is a fixed number such as 0.01 and η is a Laplace noise variable
whose standard deviation needs to be chosen depending on the desired guarantees (The Laplace
distribution is a symmetric exponential distribution.) If the difference is below the threshold, then
the algorithm returns ESt

[φ]. If the difference is above the threshold, then the algorithm returns
ESh

[φ] + ξ for another Laplacian noise variable ξ. Each time the difference is above threshold the
“overfitting" budget B is reduced by one. Once it is exhausted, Thresholdout stops answering queries.
We provide the pseudocode of Thresholdout below.

Input: Training set St, holdout set Sh, threshold T, noise rate σ, budget B

1. sample γ ∼ Lap(2 · σ); T̂ ← T + γ

2. For each query φ do
(a) if B < 1 output “⊥”
(b) else

i. sample η ∼ Lap(4 · σ)

ii. if |ESh
[φ]− ESt

[φ]| > T̂ + η
A. sample ξ ∼ Lap(σ), γ ∼ Lap(2 · σ)

B. B ← B − 1 and T̂ ← T + γ
C. output ESh

[φ] + ξ
iii. else output ESt [φ].

We now establish the formal generalization guarantees that Thresholdout enjoys.
Theorem 9. Let β, τ > 0 and m ≥ B > 0. We set T = 3τ/4 and σ = τ/(96 ln(4m/β)). Let
S denote a holdout dataset of size n drawn i.i.d. from a distribution P and St be any additional
dataset over X . Consider an algorithm that is given access to St and adaptively chooses functions
φ1, . . . ,φm while interacting with Thresholdout which is given datasets S, St and values σ,B, T .
For every i ∈ [m], let ai denote the answer of Thresholdout on function φi : X → [0, 1]. Further, for
every i ∈ [m], we define the counter of overfitting Zi

.
= |{j ≤ i : |P[φj ]− ESt [φj ]| > τ/2}| . Then

P [∃i ∈ [m],Zi < B & |ai − P[φi]| ≥ τ ] ≤ β

whenever n ≥ n0 = O
(

ln(m/β)
τ2

)
·min{B,

√
B ln(ln(m/β)/τ)}.

SparseValidate: We now present a general algorithm for validation on the holdout set that can
validate many arbitrary queries as long as few of them fail the validation. More formally, our
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algorithm allows the analyst to pick any Boolean function of a dataset ψ (or even any algorithm that
outputs a single bit) and provides back the value of ψ on the holdout set ψ(Sh). SparseValidate has a
budget m for the total number of queries that can be asked and budget B for the number of queries
that returned 1. Once either of the budgets is exhausted, no additional answers are given. We now
give a general description of the guarantees of SparseValidate.

Theorem 10. Let S denote a randomly chosen holdout set of size n. Let A be an algorithm
that is given access to SparseValidate(m,B) and outputs queries ψ1, . . . , ψm such that each ψi
is in some set Ψi of functions from Xn to {0, 1}. Assume that for every i ∈ [m] and ψi ∈ Ψi,
P[ψi(S) = 1] ≤ βi. Let ψi be the random variable equal to the i’th query of A on S. Then
P[ψi(S) = 1] ≤ `i · βi, where `i =

∑min{i−1,B}
j=0

(
i
j

)
≤ mB .

In this general formulation it is the analyst’s responsibility to use the budgets economically and
pick query functions that do not fail validation often. At the same time, SparseValidate ensures
that (for the appropriate values of the parameters) the analyst can think of the holdout set as a fresh
sample for the purposes of validation. Hence the analyst can pick queries in such a way that failing
the validation reliably indicates overfitting. An example of the application of SparseValidate for
answering statistical and low-sensitivity queries that is based on our analysis can be found in [1]. The
analysis of generalization on the holdout set in [2] and the analysis of the Median Mechanism we
give in the full version also rely on this sparsity-based technique.

Experiments: In our experiment the analyst is given a d-dimensional labeled data set S of size 2n
and splits it randomly into a training set St and a holdout set Sh of equal size. We denote an element
of S by a tuple (x, y) where x is a d-dimensional vector and y ∈ {−1, 1} is the corresponding class
label. The analyst wishes to select variables to be included in her classifier. For various values of the
number of variables to select k, she picks k variables with the largest absolute correlations with the
label. However, she verifies the correlations (with the label) on the holdout set and uses only those
variables whose correlation agrees in sign with the correlation on the training set and both correlations
are larger than some threshold in absolute value. She then creates a simple linear threshold classifier
on the selected variables using only the signs of the correlations of the selected variables. A final test
evaluates the classification accuracy of the classifier on both the training set and the holdout set.

In our first experiment, each attribute of x is drawn independently from the normal distribution
N(0, 1) and we choose the class label y ∈ {−1, 1} uniformly at random so that there is no correlation
between the data point and its label. We chose n = 10, 000, d = 10, 000 and varied the number
of selected variables k. In this scenario no classifier can achieve true accuracy better than 50%.
Nevertheless, reusing a standard holdout results in reported accuracy of over 63% for k = 500 on
both the training set and the holdout set (the standard deviation of the error is less than 0.5%). The
average and standard deviation of results obtained from 100 independent executions of the experiment
are plotted above. For comparison, the plot also includes the accuracy of the classifier on another
fresh data set of size n drawn from the same distribution. We then executed the same algorithm with
our reusable holdout. Thresholdout was invoked with T = 0.04 and τ = 0.01 explaining why the
accuracy of the classifier reported by Thresholdout is off by up to 0.04 whenever the accuracy on the
holdout set is within 0.04 of the accuracy on the training set. We also used Gaussian noise instead of
Laplacian noise as it has stronger concentration properties. Thresholdout prevents the algorithm from
overfitting to the holdout set and gives a valid estimate of classifier accuracy. Additional experiments
and discussion are presented in the full version.
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