
In this Appendix, we provide additional material on variational inequalities and non-smooth op-
timization algorithms, give the proofs on the main theorems, and provide additional information
regarding the competing algorithms based on smoothing techniques and the implementation details
for different models.

A Preliminaries: Variational Inequalities and Accuracy Certificates

For the reader’s convenience, we recall here the relationship between variational inequalities, accu-
racy certificates, and execution protocols, for non-smooth optimization algorithms. The exposition
below is directly taken from [11], and recalled here for the reader’s convenience.

Execution protocols and accuracy certificates. Let X be a nonempty closed convex set in a
Euclidean space E and F (x) : X → E be a vector field.

Suppose that we process (X,F ) by an algorithm which generates a sequence of search points xt ∈
X , t = 1, 2, ..., and computes the vectors F (xt), so that after t steps we have at our disposal t-step
execution protocol It = {xτ , F (xτ )}tτ=1. By definition, an accuracy certificate for this protocol is
simply a collection λt = {λtτ}tτ=1 of nonnegative reals summing up to 1. We associate with the
protocol It and accuracy certificate λt two quantities as follows:

• Approximate solution xt(It, λt) :=
∑t

τ=1 λ
t
τxτ , which is a point of X;

• Resolution Res(X ′
∣∣It, λt) on a subset X ′ 6= ∅ of X given by

Res(X ′
∣∣It, λt) = sup

x∈X′

t∑

τ=1

λtτ 〈F (xτ ), xτ − x〉. (15)

The role of those notions for non-smooth optimization is explained below.

Variational inequalities. Assume that F is monotone, i.e.,VI(X,F)

〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ X . (16)

Our goal is to approximate a weak solution to the variational inequality (v.i.) VI(X,F ) associated
with (X,F ). A weak solution is defined as a point x∗ ∈ X such that

〈F (y), y − x∗〉 ≥ 0 ∀y ∈ X. (17)

A natural (in)accuracy measure of a candidate weak solution x ∈ X to VI(X,F ) is the dual gap
function

ǫVI(x
∣∣X,F ) = sup

y∈X
〈F (y), x− y〉 (18)

This inaccuracy is a convex nonnegative function which vanishes exactly at the set of weak solutions
to the VI(X,F ).

Proposition A.1. For every t, every execution protocol It = {xτ ∈ X,F (xτ )}tτ=1 and every
accuracy certificate λt one has xt := xt(It, λt) ∈ X . Besides this, assuming F monotone, for
every closed convex set X ′ ⊂ X such that xt ∈ X ′ one has

ǫVI(x
t
∣∣X ′, F ) ≤ Res(X ′

∣∣It, λt). (19)

Proof. Indeed, xt is a convex combination of the points xτ ∈ X with coefficients λtτ , whence
xt ∈ X . With X ′ as in the premise of Proposition, we have

∀y ∈ X ′ : 〈F (y), xt − y〉 =
t∑

τ=1

λtτ 〈F (y), xτ − y〉 ≤
t∑

τ=1

λtτ 〈F (xτ ), xτ − y〉 ≤ Res(X ′
∣∣It, λt),

where the first ≤ is due to monotonicity of F .
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Convex-concave saddle point problems. Now let X = X1 × X2, where Xi is a closed convex
subset in Euclidean space Ei, i = 1, 2, and E = E1 × E2, and let Φ(x1, x2) : X1 × X2 → R

be a locally Lipschitz continuous function which is convex in x1 ∈ X1 and concave in x2 ∈ X2.
X1, X2,Φ give rise to the saddle point problem

SadVal = min
x1∈X1

max
x2∈X2

Φ(x1, x2), (20)

two induced convex optimization problems

Opt(P ) = min
x1∈X1

[
Φ(x1) = sup

x2∈X2

Φ(x1, x2)

]
(P )

Opt(D) = max
x2∈X2

[
Φ(x2) = inf

x1∈X1

Φ(x1, x2)

]
(D)

(21)

and a vector field F (x1, x2) = [F1(x
1, x2);F2(x

1, x2)] specified (in general, non-uniquely) by the
relations

∀(x1, x2) ∈ X1 ×X2 : F1(x
1, x2) ∈ ∂x1Φ(x1, x2), F2(x

1, x2) ∈ ∂x2 [−Φ(x1, x2)].

It is well known that F is monotone on X , and that weak solutions to the VI(X,F ) are exactly the
saddle points of Φ on X1 × X2. These saddle points exist if and only if (P ) and (D) are solvable
with equal optimal values, in which case the saddle points are exactly the pairs (x1∗, x

2
∗) comprised

by optimal solutions to (P ) and (D). In general, Opt(P ) ≥ Opt(D), with equality definitely taking
place when at least one of the sets X1, X2 is bounded; if both are bounded, saddle points do exist.
To avoid unnecessary complications, from now on, when speaking about a convex-concave saddle
point problem, we assume that the problem is proper, meaning that Opt(P ) and Opt(D) are reals;
this definitely is the case when X is bounded.

A natural (in)accuracy measure for a candidate x = [x1;x2] ∈ X1×X2 to the role of a saddle point
of Φ is the quantity

ǫSad(x
∣∣X1, X2,Φ) = Φ(x1)− Φ(x2)

= [Φ(x1)− Opt(P )] + [Opt(D)− Φ(x2)] + [Opt(P )− Opt(D)]
(22)

This inaccuracy is nonnegative. It is the sum of the duality gap Opt(P )−Opt(D) (always nonnega-
tive and vanishing when one of the sets X1, X2 is bounded), and the two inaccuracies resp. of x1 as
a candidate solution to (P ) and of x2 as a candidate solution to (D).

The role of accuracy certificates in convex-concave saddle point problems stems from the following
observation.

Proposition A.2. LetX1, X2 be nonempty closed convex sets, Φ : X := X1×X2 → R be a locally
Lipschitz continuous convex-concave function, and F be the associated monotone vector field onX .

Let It = {xτ = [x1τ ;x
2
τ ] ∈ X,F (xτ )}tτ=1 be a t-step execution protocol associated with (X,F )

and λt = {λtτ}tτ=1 be an associated accuracy certificate. Then xt := xt(It, λt) = [x1,t;x2,t] ∈ X .

Assume, further, that X ′
1 ⊂ X1 and X ′

2 ⊂ X2 are closed convex sets such that

xt ∈ X ′ := X ′
1 ×X ′

2. (23)

Then

ǫSad(x
t
∣∣X ′

1, X
′
2,Φ) = sup

x2∈X′

2

Φ(x1,t, x2)− inf
x1∈X′

1

Φ(x1, x2,t) ≤ Res(X ′
∣∣It, λt). (24)

In addition, setting Φ̃(x1) = supx2∈X′

2
Φ(x1, x2), for every x̄1 ∈ X ′

1 we have

Φ̃(x1,t)− Φ̃(x̄1) ≤ Φ̃(x1,t)− Φ(x̄1, x2,t) ≤ Res({x̄1} ×X ′
2

∣∣It, λt). (25)

In particular, when the problem Opt = minx1∈X′

1
Φ̃(x1) is solvable with an optimal solution x1∗, we

have

Φ̃(x1,t)− Opt ≤ Res({x1∗} ×X ′
2

∣∣It, λt). (26)
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Proof. The inclusion xt ∈ X is clear. For every set Y ⊂ X we have

∀[p; q] ∈ Y :

Res(Y
∣∣It, λt) ≥

∑t
τ=1 λ

t
τ

[
〈F1(x

1
τ ), x

1
τ − p〉+ 〈F2(x

2
τ ), x

2
τ − q〉

]

≥∑t
τ=1 λ

t
τ

[
[Φ(x1τ , x

2
τ )− Φ(p, x2τ )] + [Φ(x1τ , q)− Φ(x1τ , x

2
τ )]
]

[by the origin of F and since Φ is convex-concave]

=
∑t

τ=1 λ
t
τ

[
Φ(x1τ , q)− Φ(p, x2τ )

]
≥ Φ(x1,t, q)− Φ(p, x2,t)

[by origin of xt and since Φ is convex-concave]

Thus, for every Y ⊂ X we have

sup
[p;q]∈Y

[
Φ(x1,t, q)− Φ(p, x2,t)

]
≤ Res(Y

∣∣It, λt). (27)

Now assume that Condition (23) is satisfied. Setting Y = X ′ := X ′
1×X ′

2, and recalling what ǫSad is,
(27) yields (24). With Y = {x̄1} ×X ′

2 (27) yields the second inequality in (25); the first inequality
in (25) is clear since x2,t ∈ X ′

2.

B Theoretical analysis of composite Mirror Prox with inexact proximal

mappings

We restate the Theorem 3.1 and state Corollary B.1, and prove both results below. The theoret-
ical convergence rate established in Theorem 3.1 and Corollary B.1 extends the previous result
established in Corollary 3.1 in [11] for CMP with exact prox-mappings. Indeed, when exact prox-
mappings are used, we recover the result of [11]. When inexact prox-mappings are used, the errors
due to the inexactness of the prox-mappings accumulates and is reflected in the bound (29) and (37).

Theorem 3.1. Assume that the sequence of step-sizes (γt) in the CMP algorithm satisfy

σt := γt〈Fu(û
t)−Fu(u

t), ût −ut+1〉−Vût(ut+1)−Vut(ût) ≤ γ2tM
2 , t = 1, 2, . . . , T . (28)

Then, denoting Θ[X] = sup[u;v]∈X Vu1(u), for a sequence of inexact prox-mappings with inexact-

ness ǫt ≥ 0, we have

ǫVI(x̄T
∣∣X,F ) := sup

x∈X
〈F (x), x̄T − x〉 ≤ Θ[X] +M2

∑T
t=1γ

2
t + 2

∑T
t=1ǫt∑T

t=1 γt
. (29)

Remarks Note that the assumption on the sequence of step-sizes (γt) is clearly satisfied when

γt ≤ (
√
2L)−1. When M = 0, it is satisfied as long as γt ≤ L−1.

Proof. The proof builds upon and extends the proof in [11]. For all u, u′, w ∈ U , we have the
so-called three-point identity

〈V ′
u(u

′), w − u′〉 = Vu(w)− Vu′(w)− Vu(u
′). (30)

For x = [u; v] ∈ X, ξ = [η; ζ], ǫ ≥ 0, let [u′; v′] ∈ P ǫ
x(ξ). By definition, for all [s;w] ∈ X , the

inequality holds

〈η + V ′
u(u

′), u′ − s〉+ 〈ζ, v′ − w〉 ≤ ǫ,

which by (30) implies that

〈η, u′ − s〉+ 〈ζ, v′ − w〉 ≤ 〈V ′
u(u

′), s− u′〉+ ǫ = Vu(s)− Vu′(s)− Vu(u
′) + ǫ. (31)

When applying (31) with ǫ = ǫt, [u; v] = [ut; vt] = xt, ξ = γtF (x
t) = [γtFu(u

t); γtFv], [u
′; v′] =

[ût; v̂t] = yt, and [s;w] = [ut+1; vt+1] = xt+1, we obtain

γt[〈Fu(u
t), ût − ut+1〉+ 〈Fv, v̂

t − vt+1〉] ≤ Vut(ut+1)− Vût(ut+1)− Vut(ût) + ǫt ; (32)

and applying (31) with ǫ = ǫt, [u; v] = xt, ξ = γtF (y
t), [u′; v′] = xt+1, and [s;w] = z ∈ X we

get

γt[〈Fu(û
t), ut+1 − s〉+ 〈Fv, v

t+1 − w〉] ≤ Vut(s)− Vut+1(s)− Vut(ut+1) + ǫt . (33)
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Adding (33) to (32), we obtain for every z = [s;w] ∈ X

γt〈F (yt), yt − z〉 = γt[〈Fu(û
t), ût − s〉+ 〈Fv, v̂

t − w〉]
≤ Vut(s)− Vut+1(s) + σt + 2ǫt , (34)

with
σt := γt〈Fu(û

t)− Fu(u
t), ût − ut+1〉 − Vût(ut+1)− Vut(ût) .

Due to the strong convexity, with modulus 1, of Vu(·) w.r.t. ‖ · ‖, we have for all u, û

Vu(û) ≥
1

2
‖u− û‖2 .

Therefore,

σt ≤ γt‖Fu(û
t)− Fu(u

t)‖∗‖ût − ut+1‖ − 1

2
‖ût − ut+1‖2 − 1

2
‖ut − ût‖2

≤ 1

2

[
γ2t ‖Fu(û

t)− Fu(u
t)‖2∗ − ‖ut − ût‖2

]

≤ 1

2

[
γ2t [M + L‖ût − ut‖]2 − ‖ut − ût‖2

]
,

where the last inequality follows from Assumption A.3. Note that γtL < 1 implies that

γ2t [M + L‖ût − ut‖]2 − ‖ût − ut‖2 ≤ max
r

[
γ2t [M + Lr]2 − r2

]
=

γ2tM
2

1− γ2tL
2
.

Let us assume that the (nonnegative) step-sizes (γt) are chosen so that (28) holds, that is σt ≤ γ2tM
2.

It is indeed the case when 0 < γt ≤ 1/
√
2L; whenM = 0, we can take also γt ≤ 1/L. Summing up

inequalities (34) over t = 1, 2, ..., t, and taking into account that Vut+1(s) ≥ 0, we finally conclude
that for all z = [s;w] ∈ X ,

T∑

t=1

λtT 〈F (yt), yt − z〉 ≤ Vu1(s) +M2
∑T

t=1 γ
2
t + 2

∑T
t=1 ǫt∑T

t=1 γt
, where λtT =

(
T∑

i=1

γi

)−1

γt .

Corollary B.1. Assume further thatX = X1×X2, and letF be the monotone vector field associated
with the saddle point problem

SadVal = min
x1∈X1

max
x2∈X2

Φ(x1, x2), (35)

two induced convex optimization problems

Opt(P ) = minx1∈X1

[
Φ(x1) = supx2∈X2

Φ(x1, x2)
]

(P )
Opt(D) = maxx2∈X2

[
Φ(x2) = infx1∈X1

Φ(x1, x2)
]

(D)
(36)

with convex-concave locally Lipschitz continuous cost function Φ. In addition, assuming that
problem (P ) in (36) is solvable with optimal solution x1∗ and denoting by x̄1T the projection of
x̄T ∈ X = X1 ×X2 onto X1, we have

Φ(x̄1T )− Opt(P ) ≤
[∑T

t=1
γt

]−1 [
Θ[{x1∗} ×X2] +M2

∑T

t=1
γ2t + 2

∑T

t=1
ǫt

]
. (37)

C Theoretical analysis of composite conditional gradient

C.1 Convergence rate

The CCG algorithm enjoys a convergence rate in O(t−(κ−1)) in the evaluations of the function φ+,

and the accuracy certificates (δt) enjoy the same rate O(t−(κ−1)) as well, for solving problems of
type (10).

Proposition 3.1. DenoteD the ‖·‖-diameter ofU . When solving problems of type (10), the sequence
of iterates (xt) of CCG satisfies

φ+(xt)−min
x∈X

φ+(x) ≤ 2L0D
κ

κ(3− κ)

(
2

t+ 1

)κ−1

, t ≥ 2 (38)

In addition, the accuracy certificates (δt) satisfy

min
1≤s≤t

δs ≤ O(1)L0D
κ

(
2

t+ 1

)κ−1

, t ≥ 2 (39)
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C.2 Proof of Proposition 3.1

Let us define ǫt = φ+(xt)−min
x∈X

φ+(x).

10. The projection of X onto Eu is contained in U , whence

‖u[∇φ(ut)]− ut‖ ≤ D, ∀t = 1, 2, . . . .

This observation, due to the structure of φ+, implies that whenever x, x′ ∈ X and γ ∈ [0, 1], we
have

φ+(x+ γ(x+ − x)) ≤ φ+(x) + γ〈∇φ+(x), x′ − x〉+ L0D
κ

κ
γκ. (40)

Setting xt+ = xt + γt(x[∇φ(ut)]− xt) and γt = 2/(t+ 1), we have

ǫt+1 ≤ φ+(xt+)−min
x∈X

φ+(x) (41)

≤ ǫt + γs〈∇φ(xt), x[∇φ+(xt)]− x〉+ L0D
κ

κ
γκt (42)

= ǫt − γtδt +
L0D

κ

κ
γκt , (43)

whence, due to δt ≥ ǫt ≥ 0,

(i) ǫt+1 ≤ (1− γt)ǫt +
L0D

κ

κ
γκt , t = 1, 2, ...,

(ii) γsδs ≤ ǫs − ǫs+1 +
L0D

κ

κ
γκs , s = 1, 2, ... (44)

20. Let us prove (38) by induction on s ≥ 2. By (44.i) and due to γ1 = 1 we have

ǫ2 ≤ L0D
κ

κ
. (45)

Whence, due to γ2 = 2/3 and 1 < κ ≤ 2, we get

ǫ2 ≤ 2L0D
κ

κ(3− κ)
γκ−1
2 . (46)

Now, assume that,for some t ≥ 2

ǫt ≤
2L0D

κ

κ(3− κ)
γκ−1
t . (47)

Then, invoking (44.i),

ǫt+1 ≤ 2L0D
κ

κ(3− κ)
γκ−1
t (1− γt) +

L0D
κ

κ
γκt

≤ 2L0D
κ

κ(3− κ)

[
γκ−1
t − κ− 1

2
γκt

]

≤ 2L0D
κ

κ(3− κ)
2κ−1

[
(t+ 1)1−κ + (1− κ)(t+ 1)−κ

]

Therefore, by convexity of (t+ 1)1−κ in t

ǫt+1 ≤ 2L0D
κ

κ(3− κ)
2κ−1(t+ 2)1−κ =

2L0D
κ

κ(3− κ)
γκ−1
t+1

The induction is completed.

30. To prove (39), given s ≥ 2, let t− = Ceil(max[2, t/2]). Summing up inequalities (44.ii) over
t− ≤ s ≤ t, we get

(
min
1≤s≤t

δs

) ∑t

s=t−
γs ≤

t∑

s=t−

γsδs ≤ ǫt− − ǫt+1 +
L0D

κ

2

∑t

s=t−
γκs ≤ O(1)L0D

κγκ−1
t

and
∑t

s=t−
γs ≥ O(1), and (39) follows.
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D Semi-Proximal Mirror-Prox

D.1 Theoretical analysis for Semi-Proximal Mirror-Prox

We first restate Proposition 3.2 and provide the proof below.

Proposition 3.2. Under the assumption (A.1) − (A.4) and (S.1) − (S.3) with M = 0, for the
outlined algorithm to return an ǫ-solution to the variational inequality V I(X,F ), the total number

of Mirror Prox steps required does not exceed O
(

LΘ[X]
ǫ

)
, and the total number of calls to the

Linear Minimization Oracle does not exceed

N = O(1)

(
L0L

κDκ

ǫκ

) 1
κ−1

Θ[X].

In particular, if we use Euclidean proximal setup on U2 with ω2(·) = 1
2‖x2‖2, which leads to κ = 2

and L0 = 1, then the number of LMO calls does not exceed N = O(1)
(
L2D2(Θ[X1] +D2

)
/ǫ2.

Proof. Let us fix N as the number of Mirror prox steps, and since M = 0, from Theorem 3.1, the
efficiency estimate of the variational inequality implies that

ǫVI(x̄
N |X,F ) ≤ L(Θ[X] + 2

∑N
t=1 ǫt)

N
.

Let us fix ǫt = Θ[X]
2N for each t = 1, . . . , N , then from Proposition 3.1, it takes at most s =

O(1)(L0D
κN

Θ[X] )1/(κ−1) LMO oracles to generate a point such that ∆s ≤ ǫt. Moreover, we have

ǫVI(x̄
N |X,F ) ≤ 2

LΘ[X]

N
.

Therefore, to ensure ǫVI(x̄
N |X,F ) ≤ ǫ for a given accuracy ǫ > 0, the number of Mirror Prox steps

N is at most O(LΘ[X]
ǫ ) and the number of LMO calls on X2 needed is at most

N = O(1)
(L0L

κDκ

ǫκ

)1/(κ−1)

Θ[X].

In particular, if κ = 2 and L0 = 1, this quantity can be reduced to N = O(1)L
2D2Θ[X]

ǫ2 .

D.2 Discussion of Semi-Proximal Mirror-Prox

The proposed Semi-Proximal Mirror-Prox algorithm enjoys the optimal complexity bounds, i.e.
O(1/ǫ2), in the number of calls to linear minimization oracle. Furthermore, Semi-Proximal Mirror-
Prox generalizes previously proposed approaches and improves upon them in special cases of prob-
lem (3).

When there is no regularization penalty, Semi-Proximal Mirror-Prox is more general than previ-
ous algorithms for solving the corresponding constrained non-smooth optimization problem. Semi-
Proximal Mirror-Prox does not require assumptions on favorable geometry of dual domains Z or
simplicity of ψ(·) in (2). When the regularization is simply a norm (with no operator in front of the
argument), Semi-Proximal Mirror-Prox is competitive with previously proposed approaches [15, 24]
based on smoothing techniques.

When the regularization penalty is non-trivial, Semi-Proximal Mirror-Prox is the first proximal-free
or conditional-gradient-type optimization algorithm, up to our knowledge.

E Numerical experiments and implementation details

E.1 Robust collaborative fitering: ℓ1-empirical risk +nuclear norm

We consider the collaborative filtering problem, with a nuclear-norm regularisation penalty and an
ℓ1-empirical risk function:

min
x

1

|E|
∑

(i,j)∈E

|xij − bij |+ λ‖x‖nuc. (48)
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Competing algorithms. We compare the above three candidate algorithm. The smoothed problem
for Semi-SPG and Smooth-CG in this case becomes

min
x,v:‖x‖nuc≤v

fγ(x) + λv, where fγ(x) = max
‖y‖∞≤1





1

|E|
∑

(i,j)∈E

(xij − bij)yij −
γ

2
‖y‖22



 . (49)

Note that in this case, for Smooth-CG, the update of x at step t requires solving reoptimization
problem

min
θ1,...,θt

fγ(

t∑

i=1

θiuiv
T
i ) + λ

t∑

i=1

θi (50)

which requires computing the full matrix representation for the gradient. For large t and large-scale
problems, the computation cost for re-optimization is no longer negligible. However, the Semi-MP
and Semi-SPG do not suffer from this limitation since the conditional gradient routines are called
for simple quadratic subproblems. For this particular example, we implement the Semi-MP slightly
different from the above scheme. We solve the following saddle point reformulation with properly
selected ρ,

min
x,y,v1,v2:

v1≥‖x‖nuc,v2≥‖y‖1

max
‖w‖2≤1

v2 + λv1 + ρ〈Ax− b− y, w〉 (51)

where we use A to denote the operator 1
|E|PE . The semi-structured variational inequality Semi-

VI (X,F ) associated with the above saddle point problem is given by X = {[u = (x, y, w); v =
(v1.v2)] : ‖x‖nuc ≤ v1, ‖y‖1 ≤ v2, ‖w‖2 ≤ 1} and F = [Fu(u);Fv] = [ρAw;−ρw; ρ(y − Ax +
b);λ; 1]. The subdomain X1 = {(y, w, v2) : ‖y‖1 ≤ v2, ‖w‖2 ≤ 1} is given by full-prox setup
and the subdomain X2 = {(x; v1) : ‖x‖nuc ≤ v1} is given by LMO. By setting both the distance
generating functions as the Euclidean distance, the update of w reduces to the gradient step, the
update of y reduces to the soft-thresholding operator, and the update of x is given by the composite
conditonal gradient routine. In our experiment, the factor ρ is updated adaptively as follows. We
start with a small ρ = 1e− 3 and increase it with a factor of 3 until when enforcing y = x does not
increase the objective function value. We set the stepsizes γt along the iterations using line-search.
All in all, the Semi-Proximal Mirror-Prox algorithm (Semi-MP) is fully automatic, and does not
require tuning of any parameter.

We run the above three algorithms on the the small and medium MovieLens datasets. The small-
size dataset consists of 943 users and 1682 movies with about 100K ratings,while the medium-size
dataset consists of 3952 users and 6040 movies with about 1M ratings. We follow [24] to set the
regularization parameters. We randomly pick 80% of the entries to build the training dataset, and
compute the normalized mean absolute error (NMAE) on the remaining test dataset. For Smooth-
CG, we carry out the algorithm with different smoothing parameters, ranging from {1e − 3, 1e −
2, 1e − 1, 1e0} and select the one with the best performance. For the Semi-SPG algorithm, we
adopt the best smoothing parameter found in Smooth-CG. We use two different strategies to control
the number of LMO calls at each iteration, i.e. the accuracy of the proximal mapping for both
Semi-SPG and Semi-MP, which are a) fixed inner CG steps and b) decaying ǫt = c/t as the theory
suggested. We report in Fig. 2 and Fig. 3 the performance of each algorithm under different choice
of parameters and the overall comparison of objective value and NMAE on test data in Fig. 4.
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Figure 2: Robust collaborative filtering on MovieLens 100K: objective function vs elapsed time.
From left to right: (a) Semi-MP; (b) Semi-SPG ; (c) Smooth-CG; (d) best of three algorithms.
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Figure 3: Robust collaborative filtering on MovieLens 1M: objective function vs elasped time.
From left to right: (a) Semi-MP; (b) Semi-SPG ; (c) Smooth-CG; (d) best of three algorithms.
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Figure 4: Robust collaborative filtering on Movie Lens: objective function and test NMAE against
elapsed time. From left to right: (a) MovieLens 100K objective; (b) MovieLens 100K test NMAE;
(c) MovieLens 1M objective; (d) MovieLens 1M test NMAE.

In Fig. 2 and Fig. 3, we can see that using fixed inner CG steps sometimes achieve comparable per-
formance as using the decaying epsilon ǫt. In Fig. 4, we can see that Semi-MP clearly outperforms
Smooth-CG, while it is competitive with Semi-SPG. In the large-scale setting, Semi-MP achieves
better objective as well as test NMAE compared to Smooth-CG.

E.2 Link prediction: hinge loss + ℓ1-norm + nuclear norm

We consider the following model for the link prediction problem,

min
x∈Rm×n

1

|E|
∑

(i,j)∈E

max (1− (bij − 0.5)xij , 0) + λ1‖x‖1 + λ2‖x‖nuc (52)

This example is more complicated than the previous two examples since it has not only one nons-
mooth loss function but also two regularization terms. Applying the smoothing-CG or Semi-SPG
would require to build two smooth approximations, one for hinge loss term and one for ℓ1 norm
term. Therefore, we consider another alternative approach, Semi-LPADMM, where we apply the
linearized preconditioned ADMM algorithm by solving proximal mapping through conditional gra-
dient routines. Up to our knowledge, ADMM with early stopping is not well-analyzed in literature,
but intuitively as long as the accumulated error is controlled sufficiently, the variant will converge.
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Figure 5: Link prediction on Wikivote: objective function value against the LMO calls. From left to
right: (a)Wikivote(1024) with fixed inner steps; (b) Wikivote(1024) with ǫt = c/t; (c) Wikivote(full)
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We conduct experiments on a binary social graph data set called Wikivote, which consists of 7118
nodes and 103,747 edges. Since the computation cost of these two algorithms mainly come from the
LMO calls, we present in below the performance in terms of number of LMO calls. For the first set
of experiments, we select top 1024 highest degree users from Wikivote and run the two algorithms
on this small dataset with different strategies for the inner LMO calls.

In Fig. 5, we observe that the Semi-MP is less sensitive to the inner accuracies of prox-mappings
compared to the ADMM variant, which sometimes stop progressing if the prox mapping of early
iterations are not solved with sufficient accuracy. Another observation is that in this example, the
second strategy, which essentially saves the use of LMOs, works better in the long run than us-
ing fixed number of LMOs. The results indicate again on the full dataset again indicates that our
algorithm performs better than the semi-proximal variant of ADMM algorithm.
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