A High-dimensional Setting

We now study the vector-output regression problems in the high-dimensional setting, where d > n
but the parameter vector is required to be s-sparse with s < d. Our goal is to provide an algorithm
with error bounds that are at most logarithmic in d and are linear in s. Here, we provide our result
for a special case of the Pooled model, where data is sampled from a Gaussian distribution. Our
analysis can be easily extended to the SUR model as well.

1
Let X; = ZéZiA% where each entry of Z; is sampled i.i.d. from the univariate normal distribution

and Xr = 0, A = 0. Let w, € R? be such that w, is s-sparse, i.e., |w.|o < s. The outputs are
given by, y; = X;w. +n;, 1; ~ N(0,%,), where 3, = 0.

For the above setting, we analyze Algorithm 1, but where Least Squares Estimation step (Step 5) is
replaced by sparsity constrained optimization:
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w =arg min f(w)=arg min -—
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Note that the above problem is in general NP-hard to solve due to the sparsity constraint. But,
we can use the Iterative Hard Thresholding (IHT) method [26] to solve (11), if f(w) satisfies the
restricted strong smoothness (RSS) and the restricted strong convexity (RSC) properties (defined
in (12)). Below, we re-state the IHT convergence result by by [26].

Theorem 8 (Theorem 1 of [26]). Let f have RSC and RSS parameters given by L3z = L and
ass = o respectively. Let IHT algorithm (Algorithm 1, [26]) be invoked with f, 5 = k2 - 5. Then,
the T-th iterate of IHT (wy1), for 7 = O(£ - log @) satisfies: f(wiy1) < f(W) + €, where w
is any global optimum of (11).

As the algorithm has only logarithmic dependence on €, we can set € to be arbitrary small (say
.001f(w)). For simplicity, we ignore ¢ for now. Note that the proof of Lemma 3 only requires that
the least squares step satisfies: f(wyy1) < f(w,). Moreover, columns of X corresponding to the
index set S;1 = supp(w;) Usupp(wyr1) Usupp(w.) are used by X, and the least squares solution.
So, Lemma 3 applies directly but with d = |S;1| < 335°.

Hence, we obtain the following error bound for the 7T'-th iterate of Algorithm 1:
8Cslogd m

+277,
n tr(Zp2x )

Ex_py[|X(wr —w.)|3] <

Recall that 5 = (5)2 - s, where L, o are the RSS and the RSC constants of f. Hence, we now only
need to provide RSS/RSC constants for the above given f.

Lemma 9 (RSC/RSS). Let X; be as given above. Also, let n > C5log d. Then the following holds
Sor all fixed A (wp. > 1 —exp(—n)):
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where v € R? is any 8-sparse vector:
The above lemma shows that for any S-sparse w, w’, we have:

Q23 25

L
22w w3+ (V. w = W)+ f (W) < (%) < W)V F,w = W)+ 2 fw—w [, (12)

where L = Loz = 2Amax(A) is the RSS constant of f and o = cvog = )‘m+(A) is the RSC constant.

That is the error bound for AltMin procedure is given by:

8C'slogd <)\maX(A))2 m
tr(

+2°T, 13
n )\min(A) ZRE;l) (13

Ex_py [[X(wr —w.)[3] <

*For simplicity, we ignore a technicality regarding assuming that S;41 is a fixed set. The assumption can
be easily removed by taking a union bound over all sets of size 33.
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Note that the above bound is linear in s but has a condition number (of A) dependence. The condition
number factor appears in the analysis of the standard linear regression as well [26], and is in general
unavoidable for computationally efficient algorithms [27].

Proof of Lemma 9. Consider a “fixed” support set S s.t. |S| = 5. Also, let Z}%/ 2ATAE};{2 =
PIFRNLLY uJT be the eigenvalue decomposition of A7 A. Then, w.p. > 1 — exp(—n), the following
holds for all v € R?s.t. ||v||op < 5 and supp(v) C S:

VT ZXiATAXiV = Z:\\ (Z(X?)Suju?(Xi)S> Vs,
i=1 j=1 i=1
_ S Riad (z ASA (KT »SAS;-) Mave.
j=1
Gn n
>3 Z vEAssvs = 3 tr(AT AS p)vT Av, (14)

where (; follows by Lemma 10, (X;)s denotes the submatrix of X; corresponding to index set S.
Similarly, vs and Ass can be defined to be sub-vector and sub-matrix of v and A, respectively.
The lower bound of the theorem follows by taking a union bound on all O(d®) sets S and setting
n > Cslogd.

The upper bound on v¥' (L 377" | XTAT AX;) v also follows similarly. O

B Technical Lemmas
Lemma 10. Let z; i Pal < i < n, where P, is such that B, p_|z2T| = Iixq and the

sub-Gaussian norm of z is given by ||z||y,. Let n > Cd - ||z||y,. Then, the following holds w.p.
>1—exp(—C-n):

1 « 1
= ziz] — Iova|| <
n 4 10
i=1 2
Proof. Lemma follows directly by Corollary 5.50 of [28]. (I

Lemma 11 (Corollary 5.35 of [28]). Let M € R™™ be s.t. M;; "%" N(0,1), Vi, j. Also, let
n > 4m, then the following holds w.p. > 1 — exp(—C - n):

SV < 0n(M) < 01(M) < 2V,

where o;(M) is the i-th singular value of M.

Lemma 12. Let g = An, where  ~ N (0, I,,x,,) € R™ and A € R™*" is a fixed matrix indepen-
dent of n. Also, let n > Cm. Then, w.p. > 1 —1/n'%, we have:

Igll3 < CllA|I% log(n).

Proof. First consider the j-th coordinate of g; = ejTAn. As 7 is a Gaussian vector and A is a fixed
matrix, g; ~ [lel' All2 - N'(0,1). Hence, wp. 1 —1/n'!, g; < C|el Al2y/logn. Lemma now
follows by combining the above observation with [|g||3 = >°,(e] An)? and the union bound.  [J
Lemma 13. Letg = >, Aim;, where A; € RIX™ p; i (0, Inxm) € R™. Also, let n > Cm.
Then, w.p. > 1 —1/n'°, we have:

lel3 < C (z |Ai|2F> log,

i=1
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Proof. Lemma now follows by applying Lemma 12to g = An where A = [A; ... A,] € R,
T T
n=Mmn ...n,]". O

Lemma 14. Let X; ~ Px,1 < i < n be sub-Gaussian random variables. Also, let n >
Cd|| X ||y, log d, where || X||y, is the sub-Gaussian norm of each X; (see Definition 1). Let A

be any fixed matrix. Then, w.p. > 1 — mexp(—C - n), the following holds for all v € R%:

T (Exopy [XTATAX])v < VT (% > o xt ATAXZ-> v<2vl (Exopy [XTATAX])v
i=1

Proof. Let ATA =37, A;(AT A)uju] be the eigenvalue decomposition of A” A. Then, Vv € R*:

v En: X;ATAX;v = Em: A (AT A)v (Z X u;uf )

i=1 =1

S oA (ATANVTSL, <Z Syt X ul X5y >2§(ujv, (15)

j=1 i=1

where Yxu; = Expy[XTuju] X]. Let z;; = E;(sziTuj. Then, by definition of Xx,, we
have:

E[zi‘jzg;] = Idxd-

Moreover, ||z;;|ly, < ||X|/y, by definition (see Definition 1). Hence, using Lemma 10 and the
union bound for m u;’s (recall that A and hence u;’s are fixed), w.p. > 1 — mexp(—Cn) the
following holds for all v € R¢:

TZXA AX;v > — Z/\ (ATAWVTSx,,v = Z/\ (ATAVTExp, [Xujul X]v,

=1 ] 1 J 1
n
=3V v (Ex~py [XTATAX]) v, (16)
The upper bound on v’ (n S XTATAX;, ) v also follows similarly. O

C Proofs of Claims from Section 2

We first provide analysis for a general estimator that decorrelates noise using certain fixed A, B
matrices. Our bounds for OLS, MLE follow directly using the below given general theorem.

d.
Theorem 15. Let X; i Px,1 < 1 < n where Px is a sub-Gaussian distribution with sub-

Gaussian norm || X ||y, < oo (see Definition 1). Also, let m; ~ N(0, Lyxm). Let w. € R? be a
fixed weight vector and A, B be fixed matrices. Let,

- NSRS
W:argmln—g |AX; (W —w.) — Bn;|)3. 17)
won
i=1

Also, letn > C-(m+d)log(m+d) - || X||y,, where C > 0 is a global constant. Then, the following
holds (w.p. > 1 —1/n'0):

C?dlog(n)
n

Ex_py [[AX(W —w.)[I5] < [1BI3-
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Proof. As w is the optimal solution to (17), we have:

n n
D IAX (W — w.) — Bnll3 < ) || Bnill3,
i=1 i=1
STIAX (W - w3 <2(W —w,) FEF3 Y X7 AT B,
i=1 i=1
1, . G 1, _1 -
12 (% — w5 < 2| FZ (W = w)o|[F72 Y X7 AT B, (18)
i=1
where FF = Y0 | XTATAX; and ¢; follows from Cauchy-Schwarz inequality. Also, using
Lemma 14, Ayin (F) > 3 Amin(Ex~py [XT AT AX]). Using the fact that || X||, < oo (see Defini-
tion 1), we have Ain(F) > $Amin(Ex~p, [XTAT AX]) > 0. Hence, F~1/2 is well-defined.

Note that g = 3" | F~2 X A" Bn;. Using Lemma 13, we have (w.p. > 1 — 1/n'0):

Igll3 < logn - > [|F~=XT AT B|[} =logn - tr (Z XiF‘lXiTATBBTA> :

i=1 i=1

IN

=1
dlogn - || Bl|3, (19)

where the last equality follows from the definition of F'.

logn - | B||3 tr (F‘l ZX?ATAXZ) ,

Now, using Lemma 14, we have (w.p. > 1 — mexp(—Cn)):

(W—w.)" > XTATAX; (W = w.) > (W = wa) " (Exepy [XTATAX]) (W = w.). (20)

i=1
Theorem now follows by combining (18), (19), and (20). (I

|3

We now provide proofs of both Theorem 2 as well as Lemma 3 which is the key component used by
our proof of the main theorem.

Proof of Theorem 2. Theorem follows using Lemma 3 and observing that:
1 111
Ex.ps |I577 X(wr = wo)l] = Ex_py [I557 X257 5% (wr — w.)|l]

Z )\min (EX*) ||E)§((WT - W*)Hg’

= )\min (EX*)]EXN'PX [”X(WT 7W*)H%:| 3 (21)
where the second inequality follows from the definition of ¥ x, and the last equality follows by
using ZX :EXNPX [XTX} O
Proof of Lemma 3. Recall that,

a 1
Yy =— Z (vi — Xiwy)(yi — Xowy)T, By = A+ 3,
ieDy
where A = %Zieptz Xi(w, — we)(w, — we)TXT. Now, using Lemma 14, Apin(S) >

IAmin(2¢) > 0as X = 0. So, 3, is invertible.

Note that the samples of set D;" are independent of w, as well as D}'. Moreover, D}" is independent
of w,; and hence is independent of A. Also,

1 a1 a—%
= in — Y 2X(w—w) =%, 2t 22
Wil arg H‘lhlln n ie;w || t (W w ) t M ||2 ( )
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~_1 a1 1
Let A =3, 2 and B = X, >3?. Note that, A, B are both fixed matrices w.r.t. D}¥ as A itself
is independent of D}¥. Now, applying Theorem 15 with the above mentioend A, B, we get (w.p.
>1—1/n0):

ool C?%dlog(n PP
Expy (157 Xwi —w3] < C1EW ysdsondy, 3)
Now, the following holds (w.p. > 1 — exp(—cn)):
1~ 1 1~ 1 ¢ 1 1
12287122 ||, = max vITIS Ny £ max PAED YED IED JEAY
v,||v]2=1 v,||v]|2=1
_1 _1
= 2|[(Imxm + 5 2AX, 2) 72 <2, (24)

where (; follows from Lemma 16 and the fact that D;" is independent of w;. The last inequality
follows as A is a p.s.d. matrix, $0, Ayin(Lnxm + 2k 2AX, %) > 1.
Next, we have:

~_1 N G 1 _1 .
Ex.py |I57 2 X% —wa) 3] 2 SEx py 157 X(% - w.)l3],
1 111
= SEx.py IS BIET X (W - w3
¢ 1 N T oTw—1 1 AN NS N
& CEx.py |(W—w.)XTE (ImmerE*zAE*z) SU2X(W - w)|

1
_1 _1
)\max (Imxm + 2 2AE* 2)

v

Ex.py [I5 X (& - wollf]

(25)

where (; follows from Lemma 16 and (5 follows from the definition of 3J;, and the last equation

_1 _1
follows from Amin ((Imxm £ YITAYL 2)—1) - [
Amax (Immm* EINSN 2)

Now,

Amax (Ime + Z:%AE:%) =1+ HE*_%AZ:%HQ

1< -1 1
<1+ - thr(E* 2 X;(wy — wa)(wy —wi) T XTRL?)

1 n
=1+ (w, —w.)" (n > Xz'TE*lXi> (Wi —w.)
i=1

¢1 _1

14 2Exp, [Hz* 2 X (w, — w*)ug] : (26)
where (; follows from Lemma 14.
Using (23), (24), (25), and (26), we have:

2C2%dlog(n) +4C’2dlog(n)
n n

_1 _1
Ex_ps [I357F X (w1 - wa)[3] < Ex_py |15 X(we = wa)[]

Theorem now follows, as n > 16C'd log d. (|

Proof of Lemma 5. We show the error bound for a general estimator:
_ IR 2
W = argmin — Zl |AX; (W —w.) — B[z,
=
where A, B € R™*™ are fixed p.s.d. matrices.
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Now, the optimal solution is given by:
1< 1<
Y XFTATAX; | (Ww—w,)=—Y XIA"Bn,,
(n;_l: : )(w w.) == 3 XTA"By

1 n 1 n
<_ ZAéXj,TATAXiA;> A2 (W —w,) =— ZA*%XiTATBm. Q27)
i i3
Note that, X; = Z;A% where Z7 ~ N(0, Izxq). Also, let ATA = > Ai(AT A)uju] be the
eigenvalue decomposition of A7 A. Then,

I~ 1 L 1 &

SN AT XTATAXGA = NATA (=D ZMaulz ). 28

n ; 7 ]; ]( ) n 7;21 2 u]uj ( )

Also, note that Z,iT u; ~ N(0, I4xq). Hence, using the standard Gaussian concentration result (see
Lemma 11) along with the assumption that n > C'dlog d, we have:

1 n
Amax <— SoaEx] ATAXZ»A%) < 2tr(ATA). (29)
nia
We now consider RHS of (27). Note that,
1 n
~ > AT EXTAT By ~ N0, Blusa), (30)
i=1
where 82 = LU [ATBnl} = % tr(EéBTAATBE*% S 0 ), where 7; ~

N (0, I, xm ). Here again, using Lemma 11 we have (w.p. > 1 — 1/n!%):
1
32 > —tr(BYAAT BY,).
2n
Hence, w.p. > 1 — 1/n'% — exp(—d), we have:
1<, 1 d
=S AXT ATy > Vi \/tr(BTAATBY,). G
n =1 2 2\/ﬁ

We obtain the following by combining (27), (29), and (31):
d mtr(BTAATBY,)

E XW-w)3] > — 32
s [IX = w) ] > o - ()

Note that the “m” term on RHS appears as Ex_p  [[| X(W — w.)|2] = m||Az (W — w.)]|2].
Lemma now follows by using A = B = I,,,x,,, forOLS and A = B = E;% for MLE. O

Lemma 16. Let y;, X;,1n;, W, be as defined in Theorem 15 and let w, € R? be any fixed vector
indpendent of (X;,m;). Also, let ¥y = % M(yi — Xiwy)(yi — Xow)T, 5 = A + 5., where,

1
A= L3 Xi(w — wi)(we — w) X,

and X|s are independent of w;. Then, w.p. > 1 — exp(—C - n), the following holds Vv € R?:

1 ~
3 VIYv < vISv <2 v,
Proof. Letv € R™ be any vector. Also, ¥y = A 4+ X, > 0as X, > 0. Hence,
~ 1 1
vIiyv=vTy? (Z ziziT> Y7v,

_1 _1
where z, = 3, ? X,;(w,—w;)+3, ?n; is an “uncentered” Gaussian vector and hence, ||z; ||y, < C
for a global constant C' > 0. Also, E[z;z]] = I. Lemma now follows using standard Gaussian
concentration similar to Lemma 10. O
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Claim 17. Assume the notation of Theorem 2. Then the following holds:
1
A*

min

<[54 ]l2-

Proof. Let¥, =5 ; A (Z)u, ujT be the eigenvalue decomposition of >,.. Then, we have:

_1 _1
Nom= min v Exy_p [ 2 X' 1XY 2y,

min
vilIvl=1

1 _1 _1
> mi —  VTE Y2 XTuwul X322

v,||v
1 . T B —1 1
> min v*'E Y X XY v = .
Z ST vl ¥ B B AN =
Hence proved. O
Claim 18. Assume the notation of Section 2.2. Then, the following holds:
1 1 YR
Sxs = Ex_py [Sx XTSI LXSP) = UERE) o here S = tr(Sh) - A.
tr(Xg)
Proof.
Sx = Exapy [XTX] = A% By no)[ZTSRZ] - A% = tr(Sg) - A,
a1 B 1 1 11 tr(XpX )
Yx.=E S EXTEXY 2 = ———Fy Ztyey ive 7l = ——— 2 Tyva.
X X Px Sy . x| (o) 4 N2 BREERZ] (on) dxd
(I

Corollary 19 (Result for Pooled Model, Gaussian Data, Dependent Rows). Let X; be as defined
above. Let n > C(m + d) log(m + d). Then the followings holds (w.p. > 1 — T /n'?):

C'd m-tr(Zp3y) Cdlogn m-tr(Xr¥,)

<Ex_px[IX(wors — w.)ll3] <

n tr(XR)? n tr(g)2
c'd m Cdlogn m
L < E X A'% — Wy 2 < . ’
e S x.px IX(WarLe a2l = — Ean)
8Cdlogn m
E X(wr —w,)|3] < . + €,
x.px [ X (wr M2l < — r(OansT)

where, wr is the output of Algorithm 1 with T = log %

D Proof of Claims from Section 3

Proof of Theorem 7. Let 3\(; € R™*™d e defined as:

X 0 .- 0
— o x2 ... 0
= . . ) ) (33)
0 0 ... xm

k2
Also, let w, = vec(W,) € R™4¥1 and similarly, w, = vec(W,), Vt.
Then, the observations y; can be re-written as:
yi = Xiw, +n;.

Similarly, we can rewrite the Step 4 in Algorithm 2 as:

weR™:-d

R
vec(Wiy1) = Wiy = arg min - Z 12, 2 (Xiw — y3)||2.
i=1
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That is, the above problem is a special case of the problem discussed in Section 2. First part of the

theorem now follows using Lemma 3.

We now consider the second part of the theorem. Using the above given notation, we have:

192 H (X 0 Wr — X e WL 3] = Ex

SR

SO (Wi - WL XT) (Wh - W xR |

Jsk

Z(Z*_l)jj <W’% - W£7Xj>2 ’ (34

L J

where (; follows from the fact that X7 and X" are independent 0-mean vectors. Theorem now
follows by using the above observation with the first part of the theorem. O

Claim 20. Assume hypothesis and notation of Theorem 7. Then, we have: (X 1) i = ﬁ v j.

Proof. Let S, = Y11, Ak(Z.)ugul be the eigenvalue decomposition of 3. Now,

1 :; ej )’ Z \/)\k— VAR (e ug)” < (0755245

where the last inequality follows using Cauchy-Schwarz inequality. Hence, (¥;1);; > ORPE
*)37

Moreover, equality holds only when ¥, is a diagonal matrix.
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