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This supplementary material contains the detailed proof of Theorem 1 in the main text, and some
theoretical analysis concerning the representation power of region embedding to formally argue for
its effectiveness.

1 Proof of Theorem 1

For completeness, the statement of the theorem as well as related assumptions and definitions are
included.

Suppose that we observe two views (X1, X2) ∈ X1 × X2 of the input, and a target label Y ∈ Y of
interest, where X1 and X2 are finite discrete sets.
Assumption 1. Assume that there exists a set of hidden states H such that X1, X2, and Y are
conditionally independent given h inH, and that the rank of matrix [P (X1, X2)] is |H|.
Definition 1 (multi-view embedding). A function f1 is a multi-view embedding of X1 w.r.t. X2 if
there exists a function g1 such that P (X2|X1) = g1(f1(X1), X2) for any (X1, X2) ∈ X1 ×X2.
Theorem 1. Consider a multi-view embedding f1 of X1 w.r.t. X2. Under Assumption 1, there exists
a function q1 such that P (Y |X1) = q1(f1(X1), Y ).
Further consider a multi-view embedding f2 of X2 w.r.t. X1. Then, under Assumption 1, there exists
a function q such that

P (Y |X1, X2) = q(f1(X1), f2(X2), Y ).

Proof. First, assume that X1 contains d1 elements, and X2 contains d2 elements, and |H| = k. The
independence and rank condition in Assumption 1 implies the decomposition

P (X2|X1) =
∑
h∈H

P (X2|h)P (h|X1)

is of rank k if we consider P (X2|X1) as a d2 × d1 matrix (which we denote by A). Now we may
also regard P (X2|h) as a d2 × k matrix (which we denote by B), and P (h|X1) as a k × d1 matrix
(which we denote by C). From the matrix equation A = BC, we obtain C = (B>B)−1B>A.
Consider the k × d2 matrix U = (B>B)−1B>. Then we know that its elements correspond to
a function of (h,X2) ∈ H × X2. Therefore the relationship C = UA implies that there exists a
function u(h,X2) such that

∀h ∈ H : P (h|X1) =
∑

X2∈X2

P (X2|X1)u(h,X2).

Using the definition of embedding in Definition 1, we obtain

P (h|X1) =
∑

X2∈X2

g1(f1(X1), X2)u(h,X2).
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Define t1(a1, h) =
∑

X2
g1(a1, X2)u(h,X2), then for any h ∈ H we have

P (h|X1) = t1(f1(X1), h). (1)

Similarly, there exists a function t2(a2, h) such that for any h ∈ H
P (h|X2) = t2(f2(X2), h). (2)

Observe that

P (Y |X1) =
∑
h∈H

P (Y, h|X1) =
∑
h∈H

P (h|X1)P (Y |h,X1)

=
∑
h∈H

P (h|X1)P (Y |h) =
∑
h∈H

t1(f1(X1), h)P (Y |h)

where the third equation has used the assumption that Y is independent of X1 given h and the last
equation has used (1). By defining q1(a1, Y ) =

∑
h∈H t1(a1, h)P (Y |h), we obtain P (Y |X1) =

q1(f1(X1), Y ), as desired.

Further observe that

P (Y |X1, X2) =
∑
h∈H

P (Y, h|X1, X2)

=
∑
h∈H

P (h|X1, X2)P (Y |h,X1, X2)

=
∑
h∈H

P (h|X1, X2)P (Y |h), (3)

where the last equation has used the assumption that Y is independent of X1 and X2 given h.

Note that

P (h|X1, X2) =
P (h,X1, X2)

P (X1, X2)
=

P (h,X1, X2)∑
h′∈H P (h′, X1, X2)

=
P (h)P (X1|h)P (X2|h)∑

h′∈H P (h′)P (X1|h′)P (X2|h′)

=
P (h,X1)P (h,X2)/P (h)∑

h′∈H P (h′, X1)P (h′, X2)/P (h′)

=
P (h|X1)P (h|X2)/P (h)∑

h′∈H P (h′|X1)P (h′|X2)/P (h′)

=
t1(f1(X1), h)t2(f2(X2), h)/P (h)∑

h′∈H t1(f1(X1), h′)t2(f2(X2), h′)/P (h′)
,

where the third equation has used the assumption that X1 is independent of X2 given h, and
the last equation has used (1) and (2). The last equation means that P (h|X1, X2) is a func-
tion of (f1(X1), f2(X2), h). That is, there exists a function t̃ such that P (h|X1, X2) =
t̃(f1(X1), f2(X2), h). From (3), this implies that

P (Y |X1, X2) =
∑
h∈H

t̃(f1(X1), f2(X2), h)P (Y |h).

Now the theorem follows by defining q(a1, a2, Y ) =
∑

h∈H t̃(a1, a2, h)P (Y |h).

2 Representation Power of Region Embedding

In this section, we provide some formal definitions and theoretical arguments to support the effec-
tiveness of the type of region embedding experimented with in the main text.

A text region embedding is a function that maps a region of text (a sequence of two or more words)
into a numerical vector. The particular form of region embedding we consider takes either sequential
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or bow representation of the text region as input. More precisely, consider a language with vocabu-
lary V . Each word w in the language is taken from V , and can be represented as a |V | dimensional
vector referred to as one-hot-vector representation. Each of the |V | vector components represents
a vocabulary entry. The vector representation of w has value one for the component correspond-
ing to the word, and value zeros elsewhere. A text region of size m is a sequence of m words
(w1, w2, . . . , wm), where each word wi ∈ V . It can be represented as a m|V | dimensional vector,
which is a concatenation of vector representations of the words, as in (2) in Section 1.1 of the main
text. Here we call this representation seq-representation. An alternative is the bow-representation
as in (3) of the main text.

Let Rm be the set of all possible text regions of size m in the seq-representation (or alternatively,
bow-representation). We consider embeddings of a text region x ∈ Rm in the form of

(Wx+ b)+ = max(0,Wx+ b) .

The embedding matrix W and bias vector b are learned by training, and the training objective
depends on the task. In the following, this particular form of region embedding is referred to as
RETEX (Region Embedding of TEXt), and the vectors produced by RETEX or the results of RETEX
are referred to as RETEX vectors.

The goal of region embedding learning is to map high-level concepts (relevant to the task of interest)
to low-dimensional vectors. As said in the main text, this cannot be done by word embedding
learning since a word embedding embeds individual words in isolation (i.e., word-i is mapped to
vector-i irrespective of its context), which are too primitive to correspond to high-level concepts.
For example, “easy to use” conveys positive sentiment, but “use” in isolation does not. Through
the analysis of the representation power of RETEX, we show that unlike word embeddings, RETEX
can model high-level concepts by using co-presence and absence of words in the region, which is
similar to the traditional use of m-grams but more efficient/robust.

First we show that for any (possibly nonlinear) real-valued function f(·) defined on Rm, there
exists a RETEX so that this function can be expressed in terms of a linear function of RETEX
vectors. This property is often referred to as universal approximation in the literature (e.g., see
https://en.wikipedia.org/wiki/Universal_approximation_theorem).
Proposition 1. Consider a real-valued function f(·) defined on Rm. There exists an embedding
matrix W, bias vector b, and vector v such that f(x) = v>(Wx+ b)+ for all x ∈ Rm.

Proof. Denote by Wi,j the entry of W corresponding to the i-th row and j-th column. Assume
each element in Rm can be represented as a d dimensional vector with no more than m ones (and
the remaining entries are zeros). Given a specific xi ∈ Rm, let Si be a set of indexes j ∈ {1, . . . , d}
such that the j-th component of xi is one. We create a row Wi,· in W such that Wi,j = 2I(j ∈
Si)−1 for 1 ≤ j ≤ d, where I(·) is the set indicator function. Let bi = −|Si|+1 where bi denotes
the i-th component of b. It follows that Wi,·x+ bi = 1 if x = xi, and Wi,·x+ bi ≤ 0 otherwise.
In this manner we create one row of W per every member of Rm. Let vi = f(xi). Then it follows
that f(x) = v>(Wx+ b)+.

The proof essentially constructs the indicator functions of all the m-grams (text regions of size m) in
Rm and maps them to the corresponding function values. Thus, the representation power of RETEX
is at least as good as m-grams, and more powerful than the sum of word embeddings in spite of the
seeming similarity in form. However, it is well known that the traditional m-gram-based approaches,
which assign one vector dimension per m-gram, can suffer from the data sparsity problem because
an m-gram is useful only if it is seen in the training data.

This is where RETEX can have clear advantages. We show below that it can map similar m-grams
(similar w.r.t. the training objective) to similar lower-dimensional vectors, which helps learning the
task of interest. It is also more expressive than the traditional m-gram-based approaches because it
can map not only co-presence but also absence of words (which m-gram cannot express concisely)
into a single dimension. These properties lead to robustness to data sparsity.

We first introduce a definition of a simple concept.
Definition 2. Consider Rm of the seq-representation. A high level semantic concept C ⊂ Rm is
called simple if it can be defined as follows. Let V1, . . . , Vm ⊂ V be m word groups (each word
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group may either represent a set of similar words or the absent of certain words), and s1, . . . , sm ⊂
{±1} be signs. Define C such that x ∈ C if and only if the i-th word in x either belongs to Vi (if
si = 1) or ¬Vi (if si = −1).

The next proposition illustrates the points above by stating that RETEX has the ability to represent
a simple concept (defined above via the notion of similar words) by a single dimension. This is in
contrast to the construction in the proof of Proposition 1, where one dimension could represent only
one m-gram.
Proposition 2. The indicator function of any simple concept C can be embedded into one dimension
using RETEX.

Proof. Consider a text region vector x ∈ Rm in seq-representation that contains m of |V |-
dimensional segments, where the i-th segment represents the i-th position in the text region. Let
the i-th segment of w be a vector of zeros except for those components in Vi being si. Let
b = 1−

∑m
i=1(si + 1)/2. Then it is not difficult to check that I(x ∈ C) = (w>x+ b)+.

The following proposition shows that RETEX can embed concepts that are unions of simple con-
cepts into low-dimensional vectors.
Proposition 3. If C ⊂ Rm is the union of q simple concepts C1, . . . , Cq , then there exists a function
f(x) that is the linear function of q-dimensional RETEX vectors so that x ∈ C if and only if
f(x) > 0.

Proof. Let b ∈ Rq , and let W have q rows, so that I(x ∈ Ci) = (Wi,·x+ bi)+ for each row i, as
constructed in the proof of Proposition 2. Let v = [1, . . . , 1]> ∈ Rq . Then f(x) = v>(Wx+ b)+
is a function of the desired property.

Note that q can be much smaller than the number of m-grams in concept C. Proposition 3 shows
that RETEX has the ability to simultaneously make use of word similarity (via word groups) and the
fact that words occur in the context, to reduce the embedding dimension. A word embedding can
model word similarity but does not model context. m-gram-based approaches can model context but
cannot model word similarity — which means a concept/context has to be expressed with a large
number of individual m-grams, leading to the data sparsity problem. Thus, the representation power
of RETEX exceeds that of single-word embedding and traditional m-gram-based approaches.
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