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Abstract

Sequential Monte Carlo (SMC), or particle filtering, is a popular class of meth-
ods for sampling from an intractable target distribution using a sequence of sim-
pler intermediate distributions. Like other importance sampling-based methods,
performance is critically dependent on the proposal distribution: a bad proposal
can lead to arbitrarily inaccurate estimates of the target distribution. This paper
presents a new method for automatically adapting the proposal using an approx-
imation of the Kullback-Leibler divergence between the true posterior and the
proposal distribution. The method is very flexible, applicable to any parameter-
ized proposal distribution and it supports online and batch variants. We use the
new framework to adapt powerful proposal distributions with rich parameteriza-
tions based upon neural networks leading to Neural Adaptive Sequential Monte
Carlo (NASMC). Experiments indicate that NASMC significantly improves infer-
ence in a non-linear state space model outperforming adaptive proposal methods
including the Extended Kalman and Unscented Particle Filters. Experiments also
indicate that improved inference translates into improved parameter learning when
NASMC is used as a subroutine of Particle Marginal Metropolis Hastings. Finally
we show that NASMC is able to train a latent variable recurrent neural network
(LV-RNN) achieving results that compete with the state-of-the-art for polymor-
phic music modelling. NASMC can be seen as bridging the gap between adaptive
SMC methods and the recent work in scalable, black-box variational inference.

1 Introduction

Sequential Monte Carlo (SMC) is a class of algorithms that draw samples from a target distribution
of interest by sampling from a series of simpler intermediate distributions. More specifically, the se-
quence constructs a proposal for importance sampling (IS) [[1L12]. SMC is particularly well-suited for
performing inference in non-linear dynamical models with hidden variables, since filtering naturally
decomposes into a sequence, and in many such cases it is the state-of-the-art inference method [2}/3]].
Generally speaking, inference methods can be used as modules in parameter learning systems. SMC
has been used in such a way for both approximate maximum-likelihood parameter learning [4] and
in Bayesian approaches such as the recently developed Particle MCMC methods [3].

Critically, in common with any importance sampling method, the performance of SMC is strongly
dependent on the choice of the proposal distribution. If the proposal is not well-matched to the tar-
get distribution, then the method can produce samples that have low effective sample size and this
leads to Monte Carlo estimates that have pathologically high variance [1]. The SMC community
has developed approaches to mitigate these limitations such as resampling to improve particle di-
versity when the effective sample size is low [1] and applying MCMC transition kernels to improve
particle diversity [5 2, 3]. A complementary line of research leverages distributional approximate
inference methods, such as the extended Kalman Filter and Unscented Kalman Filter, to construct
better proposals, leading to the Extended Kalman Particle Filter (EKPF) and Unscented Particle Fil-



ter (UPF) [3]]. In general, however, the construction of good proposal distributions is still an open
question that severely limits the applicability of SMC methods.

This paper proposes a new gradient-based black-box adaptive SMC method that automatically tunes
flexible proposal distributions. The quality of a proposal distribution can be assessed using the (in-
tractable) Kullback-Leibler (KL) divergence between the target distribution and the parametrized
proposal distribution. We approximate the derivatives of this objective using samples derived from
SMC. The framework is very general and tractably handles complex parametric proposal distribu-
tions. For example, here we use neural networks to carry out the parameterization thereby leveraging
the large literature and efficient computational tools developed by this community. We demonstrate
that the method can efficiently learn good proposal distributions that significantly outperform exist-
ing adaptive proposal methods including the EKPF and UPF on standard benchmark models used
in the particle filter community. We show that improved performance of the SMC algorithm trans-
lates into improved mixing of the Particle Marginal Metropolis-Hasting (PMMH) [3]]. Finally, we
show that the method allows higher-dimensional and more complicated models to be accurately han-
dled using SMC, such as those parametrized using neural networks (NN), that are challenging for
traditional particle filtering methods .

The focus of this work is on improving SMC, but many of the ideas are inspired by the burgeoning
literature on approximate inference for unsupervised neural network models. These connections are
explored in section [6]

2 Sequential Monte Carlo

We begin by briefly reviewing two fundamental SMC algorithms, sequential importance sampling
(SIS) and sequential importance resampling (SIR). Consider a probabilistic model comprising (pos-
sibly multi-dimensional) hidden and observed states z;.7 and @;.p respectively, whose joint dis-
tribution factorizes as p(z1.7, z1.7) = p(z1)p(x1|21) HtTZQ p(zt|z1:4—1)p(@t|Z1:4, 1.4—1). This
general form subsumes common state-space models, such as Hidden Markov Models (HMMs), as
well as non-Markovian models for the hidden state, such as Gaussian processes.

The goal of the sequential importance sampler is to approximate the posterior distribution over

the hidden state sequence, p(z1.7|x1.7) ~ ZnN 1 wt")d(zl T — zgn%), through a weighted set of

N sampled trajectories drawn from a simpler proposal distribution {z%f’%}nzl: N ~ q(z1.7|®1.T).
Any form of proposal distribution can be used in principle, but a particularly convenient one takes
the same factorisation as the true posterior ¢(z1.7|®1.7) = q(21]21) Hthz q(zt|z1.4-1, T1.¢), With
filtering dependence on x. A short derivation (see supplementary material) then shows that the
normalized importance weights are defined by a recursion:
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SIS is elegant as the samples and weights can be computed in sequential fashion using a single
forward pass. However, naive implementation suffers from a severe pathology: the distribution
of importance weights often become highly skewed as ¢ increases, with many samples attaining

very low weight. To alleviate the problem, the Sequential Importance Resampling (SIR) algorithm

[L] adds an additional step that resamples z ( )

(z§ t)) and gives the new particles equal Welght This replaces degenerated particles that have low
weight with samples that have more substantial importance weights without violating the validity of
the method. SIR requires knowledge of the full trajectory of previous samples at each stage to draw
the samples and compute the importance weights. For this reason, when carrying out resampling,

each new particle needs to update its ancestry information. Letting a( t) represent the ancestral

index of particle n at time ¢ for state z,, where 1 < 7 < ¢, and collectmg these into the set
(a<) ( )

T,t

A(" = {agnt)7 vy Ay t)} where a( ) =a, 'y ;_;, the resampled trajectory can be denoted z;
) HO)
{z1 P zt } where zf to={z ai f, ..., z; "}, Finally, to lighten notation, we use the shorthand

at time ¢ from a multinomial distribution given by

"More advanced implementations resample only when the effective sample size falls below a threshold [2]].
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w; = w(z for the weights. Note that, when employing resampling, these do not depend on

the previous weights wt(_)1 since resampling has given the previous particles uniform weight. The

implementation of SMC is given by Algorithm 1 in the supplementary material.

(n))

2.1 The Critical Role of Proposal Distributions in Sequential Monte Carlo

The choice of the proposal distribution in SMC is critical. Even when employing the resampling
step, a poor proposal distribution will produce trajectories that, when traced backwards, quickly
collapse onto a single ancestor. Clearly this represents a poor approximation to the true posterior
p(z1.7|®1.7). These effects can be mitigated by increasing the number of particles and/or applying
more complex additional MCMC moves [5. 2], but these strategies increase the computational cost.

The conclusion is that the proposal should be chosen with care. The optimal choice for an uncon-
strained proposal that has access to all of the observed data at all times is the intractable posterior
distribution g¢(21.7|x1.:7) = pe(2z1.7|®1.7). Given the restrictions imposed by the factorization,
this becomes ¢(z¢|z1.t—1, €1.t) = p(2t|Z1:t—1, 1.t), which is still typically intractable. The boot-
strap filter instead uses the prior q(z¢|z1.4—1, ®1.t) = p(2¢|21.4—1, ®1.4—1) Which is often tractable,
but fails to incorporate information from the current observation x;. A halfway-house employs
distributional approximate inference techniques to approximate p(z:|z1.t—1,®1.+). Examples in-
clude the EKPF and UPF [5]. However, these methods suffer from three main problems. First,
the extended and unscented Kalman Filter from which these methods are derived are known to be
inaccurate and poorly behaved for many problems outside of the SMC setting [6]. Second, these
approximations must be applied on a sample by sample basis, leading to significant additional com-
putational overhead. Third, neither approximation is tuned using an SMC-relevant criterion. In the
next section we introduce a new method for adapting the proposal that addresses these limitations.

3 Adapting Proposals by Descending the Inclusive KL Divergence

In this work the quality of the proposal distribution will be optimized using the
inclusive KL-divergence between the true posterior distribution and the proposal,
KL[po(z1.7|T1.7)||g¢(Z1:7|®1.7)].  (Parameters are made explicit since we will shortly be
interested in both adapting the proposal ¢ and learning the model 6.) This objective is chosen for
four main reasons. First, this is a direct measure of the quality of the proposal, unlike those typically
used such as effective sample size. Second, if the true posterior lies in the class of distributions
attainable by the proposal family then the objective has a global optimum at this point. Third, if
the true posterior does not lie within this class, then this KL divergence tends to find proposal
distributions that have higher entropy than the original which is advantageous for importance
sampling (the exclusive KL is unsuitable for this reason [[7]). Fourth, the derivative of the objective
can be approximated efficiently using a sample based approximation that will now be described.

The gradient of the negative KL divergence with respect to the parameters of the proposal distribu-
tion takes a simple form,

0
— —KL[pg(z1.7|21.7)||9g (z1:7]T1:7)] = /pe(zl;T|ﬂ?1;T) log g4 (z1:7|T1:7)d2 17

¢ 2]
The expectation over the posterior can be approximated using samples from SMC. One option would
use the weighted sample trajectories at the final time-step of SMC, but although asymptotically
unbiased such an estimator would have high variance due to the collapse of the trajectories. An
alternative, that reduces variance at the cost of introducing some bias, uses the intermediate ancestral
trees i.e. a filtering approximation (see the supplementary material for details),
(n)
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The simplicity of the proposed approach brings with it several advantages and opportunities.

Online and batch variants. Since the derivatives distribute over time, it is trivial to apply this
update in an online way e.g. updating the proposal distribution every time-step. Alternatively, when
learning parameters in a batch setting, it might be more appropriate to update the proposal pa-
rameters after making a full forward pass of SMC. Conveniently, when performing approximate



maximum-likelihood learning the gradient update for the model parameters 6 can be efficiently
approximated using the same sample particles from SMC (see supplementary material and Algo-
rithm E]) A similar derivation for maximum likelihood learning is also discussed in [4].

a —(n in)1
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Algorithm 1 Stochastic Gradient Adaptive SMC (batch inference and learning variants)

Require: proposal: g4, model: pg, observations: X = {scl:Tj }j:l; M, number of particles: N
repeat

{w(j) }j=1:m < NextMiniBatch(X)

(= 5, Nj=timi=t:; < SMC(0, 6, N, {@{}, }i=1:m)
Ald)

Ao =350, Yo Zlog gg (27 |a:“,z1.:*a>
i A( 7) ]
A=Y 50, S G logpe (s, 2 |xl) |, 217))  (optional)

¢ Optlmlze((b, Ao)
0 + Optimize(#, Af) (optional)
until convergence

Efficiency of the adaptive proposal. In contrast to the EPF and UPF, the new method employs an
analytic function for propagation and does not require costly particle-specific distributional approxi-
mation as an inner-loop. Similarly, although the method bears similarity to the assumed-density filter
(ADF) [8]] which minimizes a (local) inclusive KL, the new method has the advantage of minimizing
a global cost and does not require particle-specific moment matching.

Training complex proposal models. The adaptation method described above can be applied to any
parametric proposal distribution. Special cases have been previously treated by [9]. We propose
a related, but arguably more straightforward and general approach to proposal adaptation. In the
next section, we describe a rich family of proposal distributions, that go beyond previous work,
based upon neural networks. This approach enables adaptive SMC methods to make use of the rich
literature and optimization tools available from supervised learning.

Flexibility of training. One option is to train the proposal distribution using samples from SMC
derived from the observed data. However, this is not the only approach. For example, the proposal
could be trained using data sampled from the generative model instead, which might mitigate over-
fitting effects for small datasets. Similarly, the trained proposal does not need to be the one used to
generate the samples in the first place. The bootstrap filter or more complex variants can be used.

4 Flexible and Trainable Proposal Distributions Using Neural Networks

The proposed adaption method can be applied to any parametric proposal distribution. Here we
briefly describe how to utilize this flexibility to employ powerful neural network-based parameteriza-
tions that have recently shown excellent performance in supervised sequence learning tasks [[10} [11]].
Generally speaking, applications of these techniques to unsupervised sequence modeling settings is
an active research area that is still in its infancy [[12]] and this work opens a new avenue in this wider
research effort.

In a nutshell, the goal is to parameterize gy (2¢|21.¢—1, 1.+) — the proposal’s stochastic mapping from
all previous hidden states z;.,—; and all observations (up to and including the current observation)
T1.¢, to the current hidden state, z; — in a flexible, computationally efficient and trainable way. Here
we use a class of functions called Long Short-Term Memory (LSTM) that define a deterministic
mapping from an input sequence to an output sequence using parameter-efficient recurrent dynam-
ics, and alleviate the common vanishing gradient problem in recurrent neural networks [[13} 10} [11]].
The distributions ¢4 (z:|h;) can be a mixture of Gaussians (a mixture density network (MDN) [14])
in which the mixing proportions, means and covariances are parameterised through another neural
network (see the supplementary for details on LSTM, MDN, and neural network architectures).



5 Experiments

The goal of the experiments is three fold. First, to evaluate the performance of the adaptive method
for inference on standard benchmarks used by the SMC community with known ground truth. Sec-
ond, to evaluate the performance when SMC is used as an inner loop of a learning algorithm. Again
we use an example with known ground truth. Third, to apply SMC learning to complex models that
would normally be challenging for SMC comparing to the state-of-the-art in approximate inference.

One way of assessing the success of the proposed method would be to evaluate
KL[p(z1.7|®1.7)||9(21.7|®1.7)]. However, this quantity is hard to accurately compute. Instead
we use a number of other metrics. For the experiments where ground truth states z;.7 are known
we can evaluate the root mean square error (RMSE) between the approximate posterior mean of the
latent variables (Z;) and the true value RMSE(z1.7, Z1.7) = (% 3, (2 — 2)?)'/2. More gener-
ally, the estimate of the log-marginal likelihood (LML = logp(xi.7) = ), log p(@i|®1.4—1) =

Do log(% Yom wt(n))) and its variance is also indicative of performance. Finally, we also employ a
common metric called the effective sample size (ESS) to measure the effectiveness of our SMC
method. ESS of particles at time ¢ is given by ESS, = (Zn(w,ﬁ"/))?)*l. If g(z1.7|®1.7) =
p(z1.7|T1.7), expected ESS is maximized and equals the number of particles (equivalently, the
normalized importance weights are uniform). Note that ESS alone is not a sufficient metric, since it
does not measure the absolute quality of samples, but rather the relative quality.

5.1 Inference in a Benchmark Nonlinear State-Space Model

In order to evaluate the effectiveness of our adaptive SMC method, we tested our method on a
standard nonlinear state-space model often used to benchmark SMC algorithms [2,13]. The model is
given by Eq.[3} where § = (0, 0,). The posterior distribution pg(z1.7|®1.7) is highly multi-modal
due to uncertainty about the signs of the latent states.

p(zt|zt—1) = N(Zt; f(zt—lat)7012))a p(Z1) = N(Z1;0,5),
p(@i|z) = N(2; 9(z0-1),0%), 3
f(zeo1,t) = 2e1/24+ 2521 /(1 + 22_1) + 8cos(1.2t), g(z:) = 22/20

The experiments investigated how the new proposal adaptation method performed in comparison to
standard methods including the bootstrap filter, EKPF, and UKPF. In particular, we were interested
in the following questions: Do rich multi-modal proposals improve inference? For this we compared
a Gaussian proposal with a diagonal Gaussian to a mixture density network with three components (-
MD-). Does a recurrent parameterization of the proposal help? For this we compared a non-recurrent
neural network with 100 hidden units (-NN-) to a recurrent neural network with 50 LSTM units (-
RNN-). Can injecting information about the prior dynamics into the proposal improve performance
(similar in spirit to [15]] for variational methods)? To assess this, we parameterized proposals for v
(process noise) instead of z; (-f-), and let the proposal have access to the prior dynamics f(z;_1,t) .

For all experiments, the parameters in the non-linear state-space model were fixed to (o,,0,,) =

(+v/10,1). Adaptation of the proposal was performed on 1000 samples from the generative process
at each iteration. Results are summarized in Fig. [T] and Table [I] (see supplementary material for
additional results). Average run times for the algorithms over a sequence of length 1000 were:
0.782s bootstrap, 12.1s EKPF, 41.4s UPF, 1.70s NN-NASMC, and 2.67s RNN-NASMC, where
EKPF and UPF implementations are provided by [5]]. Although these numbers should only be taken
as a guide as the implementations had differing levels of acceleration.

The new adaptive proposal methods significantly outperform the bootstrap, EKPF, and UPF meth-
ods, in terms of ESS, RMSE and the variance in the LML estimates. The multi-modal proposal
outperforms a simple Gaussian proposal (compare RNN-MD-f to RNN-f) indicating multi-modal
proposals can improve performance. Moreover, the RNN outperforms the non-recurrent NN (com-
pare RNN to NN). Although the proposal models can effectively learn the transition function, in-
jecting information about the prior dynamics into the proposal does help (compare RNN-f to RNN).
Interestingly, there is no clear cut winner between the EKPF and UPF, although the UPF does return
LML estimates that have lower variance [5]]. All methods converged to similar LMLs that were close
to the values computed using large numbers of particles indicating the implementations are correct.
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Figure 1: Left: Box plots for LML estimates from iteration 200 to 1000. Right: Average ESS over

the first 1000 iterations.

ESS (iter) LML RMSE
mean  std mean  std mean  std
prior 36.66 0.25 -2957 148 3266 0.578
EKPF 60.15 0.83 -2829 407 3.578 0.694
UPF 50.58 0.63 -2696 79 2.956 0.629
RNN 69.64 0.60 -2774 34 3,505 0.977
RNN-f 73.88 0.71 -2633 36 2.568 0.430
RNN-MD 69.25 1.04 -2636 40 2.612 0472
RNN-MD-f | 76.71 0.68 -2622 32 2.509 0.409
NN-MD 69.39 1.08 -2634 36 2.731 0.608

Table 1: Left, Middle: Average ESS and log marginal likelihood estimates over the last 400 itera-
tions. Right: The RMSE over 100 new sequences with no further adaptation.

5.2 Inference in the Cart and Pole System

As a second and more physically meaningful system we considered a cart-pole system that consists
of an inverted pendulum that rests on a movable base [16]. The system was driven by a white noise
input. An ODE solver was used to simulate the system from its equations of motion. We considered
the problem of inferring the true position of the cart and orientation of the pendulum (along with
their derivatives and the input noise) from noisy measurements of the location of the tip of the pole.
The results are presented in Fig. 2] The system is significantly more intricate than the model in
Sec. [5.1] and does not directly admit the usage of EKPF or UPF. Our RNN-MD proposal model
successfully learns good proposals without any direct access to the prior dynamics.
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for x, the horizontal location of the cart, and @, the change in relative angle of the pole. RNN-MD
learns to have higher ESS than the prior and more accurately estimates the latent states.
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Figure 3: PMMH samples of o, values for N = {100, 10} particles. For small numbers of particles
(right) PMMH is very slow to burn in and mix when proposing from the prior distribution due to the
large variance in the marginal likelihood estimates it returns.

5.3 Bayesian learning in a Nonlinear SSM

SMC is often employed as an inner loop of a more complex algorithm. One prominent example
is Particle Markov Chain Monte Carlo [3], a class of methods that sample from the joint posterior
over model parameters 0 and latent state trajectories, p(#, z1.7|x1.7). Here we consider the Particle
Marginal Metropolis-Hasting sampler (PMMH). In this context SMC is used to construct a proposal
distribution for a Metropolis-Hasting (MH) accept/reject step. The proposal is formed by sampling a
proposed set of parameters e.g. by perturbing the current parameters using a Gaussian random walk,
then SMC is used to sample a proposed set of latent state variables, resulting in a joint proposal
q(0*, 25,710, z1.7) = q(0%|0)pe~(z].p|x1.7). The MH step uses the SMC marginal likelihood
estimates to determine acceptance. Full details are given in the supplementary material.

In this experiment, we evaluate our method in a PMMH sampler on the same model from Sec-
tion following [3]F| A random walk proposal is used to sample 6 = (o, 0,), q(0*|0) =
N (6%]6,diag([0.15,0.08])). The prior over 6 is set as ZG(0.01,0.01). @ is initialized as (10, 10),
and the PMMH is run for 500 iterations.

Two of the adaptive models considered section [5.1] are used for comparison (RNN-MD and RNN-
MD-f) , where “-pre-”” models are pre-trained for 500 iterations using samples from the initial § =
(10, 10). The results are shown in Fig.|3|and were typical for a range of parameter settings. Given a
sufficient number of particles (N = 100), there is almost no difference between the prior proposal
and our method. However, when the number of particles gets smaller (N = 10), NASMC enables
significantly faster burn-in to the posterior, particularly on the measurement noise o, and, for similar
reasons, NASMC mixes more quickly. The limitation with the NASMC-PMMH is that the model
needs to continuously adapt as the global parameter is sampled, but note this is still not as costly as
adapting on a particle-by-particle basis as is the case for the EKPF and UPF.

5.4 Polyphonic Music Generation

Finally, the new method is used to train a latent variable recurrent neural network (LV-RNN) for
modelling four polymorphic music datasets of varying complexity [[17]. These datasets are often
used to benchmark RNN models because of their high dimensionality and the complex temporal
dependencies involved at different time scales [17, |18} [19]. Each dataset contains at least 7 hours of
polyphonic music with an average polyphony (number of simultaneous notes) of 3.9 out of 88. LV-
RNN contains a recurrent neural network with LSTM layers that is driven by i.i.d. stochastic latent
variables (z;) at each time-point and stochastic outputs (x;) that are fed back into the dynamics (full
details in the supplementary material). Both the LSTM layers in the generative and proposal models
are set as 1000 units and Adam [20] is used as the optimizer. The bootstrap filter is compared to
the new adaptive method (NASMC). 10 particles are used in the training. The hyperparameters
are tuned using the validation set [17]]. A diagonal Gaussian output is used in the proposal model,
with an additional hidden layer of size 200. The log likelihood on the test set, a standard metric
for comparison in generative models [18, 21} |19], is approximated using SMC with 500 particles.

2Only the prior proposal is compared, since Sec. shows the advantage of our method over EKPF/UPE.



The results are reported in Table The adaptive method significantly outperforms the bootstrap
filter on three of the four datasets. On the piano dataset the bootstrap method performs marginally
better. In general, the NLLs for the new methods are comparable to the state-of-the-art although
detailed comparison is difficult as the methods with stochastic latent states require approximate
marginalization using importance sampling or SMC.

Dataset LV-RNN LV-RNN STORN FD-RNN sRNN | RNN-NADE
(NASMC) (Bootstrap) (SGVB)
Piano-midi-de 7.61 7.50 7.13 7.39 7.58 7.03
Nottingham 2.72 3.33 2.85 3.09 343 2.31
MuseData 6.89 7.21 6.16 6.75 6.99 5.60
JSBChorales 3.99 4.26 6.91 8.01 8.58 5.19

Table 2: Estimated negative log likelihood on test data. “FD-RNN” and “STORN” are from [[19],
and “sRNN” and “RNN-NADE” are results from [18]].

6 Comparison of Variational Inference to the NASMC approach

There are several similarities between NASMC and Variational Free-energy methods that em-
ploy recognition models. Variational Free-energy methods refine an approximation g,(z|z) to
the posterior distribution pg(z|x) by optimising the exclusive (or variational) KL-divergence
KL[gg(z|x)||pe(z|z)]. It is common to approximate this integral using samples from the approxi-
mate posterior [21}, 122} 23]]. This general approach is similar in spirit to the way that the proposal is
adapted in NASMC, except that the inclusive KL-divergence is employed KL [py(z|x)||q4(2|2)] and
this entails that sample based approximation requires simulation from the true posterior. Critically,
NASMC uses the approximate posterior as a proposal distribution to construct a more accurate pos-
terior approximation. The SMC algorithm therefore can be seen as correcting for the deficiencies in
the proposal approximation. We believe that this can lead to significant advantages over variational
free-energy methods, especially in the time-series setting where variational methods are known to
have severe biases [24]]. Moreover, using the inclusive KL avoids having to compute the entropy
of the approximating distribution which can prove problematic when using complex approximating
distributions (e.g. mixtures and heavy tailed distributions) in the variational framework. There is a
close connection between NASMC and the wake-sleep algorithm [25] . The wake-sleep algorithm
also employs the inclusive KL divergence to refine a posterior approximation and recent generaliza-
tions have shown how to incorporate this idea into importance sampling [26]. In this context, the
NASMC algorithm extends this work to SMC.

7 Conclusion

This paper developed a powerful method for adapting proposal distributions within general SMC
algorithms. The method parameterises a proposal distribution using a recurrent neural network
to model long-range contextual information, allows flexible distributional forms including mixture
density networks, and enables efficient training by stochastic gradient descent. The method was
found to outperform existing adaptive proposal mechanisms including the EKPF and UPF on a stan-
dard SMC benchmark, it improves burn in and mixing of the PMMH sampler, and allows effective
training of latent variable recurrent neural networks using SMC. We hope that the connection be-
tween SMC and neural network technologies will inspire further research into adaptive SMC meth-
ods. In particular, application of the methods developed in this paper to adaptive particle smoothing,
high-dimensional latent models and adaptive PMCMC for probabilistic programming are particular
exciting avenues.

Acknowledgments

SG is generously supported by Cambridge-Tiibingen Fellowship, the ALTA Institute, and Jesus
College, Cambridge. RET thanks the EPSRC (grants EP/G050821/1 and EP/L000776/1). We thank
Theano developers for their toolkit, the authors of [S] for releasing the source code, and Roger
Frigola, Sumeet Singh, Fredrik Lindsten, and Thomas Schon for helpful suggestions on experiments.

3Results for RNN-NADE are separately provided for reference, since this is a different model class.



References

(1]
(2]
(3]

(4]

(5]
(6]
(7]

(8]

(9]

(10]
(11]

(12]
[13]

[14]
(15]
(16]

(17]

(18]

(19]
[20]
[21]
[22]
(23]

[24]

[25]

[26]

N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to nonlinear/non-gaussian bayesian state
estimation,” in IEE Proceedings F (Radar and Signal Processing), vol. 140, pp. 107-113, IET, 1993.

A. Doucet, N. De Freitas, and N. Gordon, Sequential monte carlo methods in practice. Springer-Verlag,
2001.

C. Andrieu, A. Doucet, and R. Holenstein, “Particle markov chain monte carlo methods,” Journal of the
Royal Statistical Society: Series B (Statistical Methodology), vol. 72, no. 3, pp. 269-342, 2010.

G. Poyiadjis, A. Doucet, and S. S. Singh, “Particle approximations of the score and observed information
matrix in state space models with application to parameter estimation,” Biometrika, vol. 98, no. 1, pp. 65—
80, 2011.

R. Van Der Merwe, A. Doucet, N. De Freitas, and E. Wan, “The unscented particle filter,” in Advances in
Neural Information Processing Systems, pp. 584-590, 2000.

R. Frigola, Y. Chen, and C. Rasmussen, “Variational gaussian process state-space models,” in Advances
in Neural Information Processing Systems, pp. 3680-3688, 2014.

D.J. MacKay, Information theory, inference, and learning algorithms, vol. 7. Cambridge university press
Cambridge, 2003.

T. P. Minka, “Expectation propagation for approximate bayesian inference,” in Proceedings of the Sev-
enteenth conference on Uncertainty in artificial intelligence, pp. 362-369, Morgan Kaufmann Publishers
Inc., 2001.

J. Cornebise, Adaptive Sequential Monte Carlo Methods. PhD thesis, Ph. D. thesis, University Pierre and
Marie Curie—Paris 6, 2009.

A. Graves, Supervised sequence labelling with recurrent neural networks, vol. 385. Springer, 2012.

L. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in Advances
in Neural Information Processing Systems, pp. 3104-3112, 2014.

A. Graves, “Generating sequences with recurrent neural networks,” CoRR, vol. abs/1308.0850, 2013.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8,
pp. 1735-1780, 1997.

C. M. Bishop, “Mixture density networks,” 1994.

K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra, “DRAW: A recurrent neural network

for image generation,” in Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, pp. 1462-1471, 2015.

A. McHutchon, Nonlinear modelling and control using Gaussian processes. PhD thesis, University of
Cambridge UK, Department of Engineering, 2014.

N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Modeling temporal dependencies in high-
dimensional sequences: Application to polyphonic music generation and transcription,” in International
Conference on Machine Learning (ICML), 2012.

Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in optimizing recurrent networks,” in
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pp. 8624—
8628, IEEE, 2013.

J. Bayer and C. Osendorfer, “Learning stochastic recurrent networks,” arXiv preprint arXiv:1411.7610,
2014.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” The International Conference on
Learning Representations (ICLR), 2015.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” The International Conference on
Learning Representations (ICLR), 2014.

D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate inference in
deep generative models,” International Conference on Machine Learning (ICML), 2014.

A. Mnih and K. Gregor, “Neural variational inference and learning in belief networks,” International
Conference on Machine Learning (ICML), 2014.

R. E. Turner and M. Sahani, “Two problems with variational expectation maximisation for time-series
models,” in Bayesian Time series models (D. Barber, T. Cemgil, and S. Chiappa, eds.), ch. 5, pp. 109—
130, Cambridge University Press, 2011.

G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, “The” wake-sleep” algorithm for unsupervised neural
networks,” Science, vol. 268, no. 5214, pp. 1158-1161, 1995.

J. Bornschein and Y. Bengio, “Reweighted wake-sleep,” The International Conference on Learning Rep-
resentations (ICLR), 2015.



