Supplementary material: High-dimensional neural spike train
analysis with generalized count linear dynamical systems

Here we provide details of the variational inference method for the generalized count linear
dynamical system model (GCLDS).

1 VBEM algorithm details

1.1 Variational Inference in E-step

We first introduce the “vectorized” notation for the GCLDS model. Note that in the E-step the
inference is separable across trials, so for ease of notation, we only consider one single trial and
drop the trial index r. We assume N neurons observed during 7' time bins. Denote x; as the
p-dimensional latent variable and and y; as the N-dimensional observation, respectively.
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The prior can be summarized as a multi-variate Gaussian distribution:

p(x) = N(p, %)
where
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The likelihood has the form
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tyi
p(ytz‘\ﬁtz‘) :gc(yti‘ntiagi('))

n :=Wx
W =blk-diag(C, ..., C),

1



where we stack all the 7y in 9 = (911, o, PNy ey NT1y ooy NTN) € RNT | The log likelihood reads:
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In the E-step we make a Gaussian approximation to the posterior:
p(xly) = q(x) = N(x[m, V).

The variational lower bound reads:

L(m,V) :/q(x) log p(x,y)dx
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Defining v, = kny + gi(k) — log k!, we know that vy is also normally distributed under the
variational distribution

Viik ~ N (htik, prir)-
Therefore we can re-write the term Eg,)[log p(ys|n:i)] and find a lower bound of the term by

Eq(mi) [log p(yi|nei)]
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where vy; = (W1, ..., Viire). We always have vy0 = priop = 0. For the other variables define
V= (V11, V125 oy VINs ooy VT s VTN ) s

and define h and p similarly. We then have the constraints

h:=Wm~+d

p :=diag(WVWT)
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where
W=w®e(1,2,..,K)T
d =171 ® (g1(1) —log 1!, ..., g1 (K) —log K1, ..., gn (1) — log 1!, .., gn (K) — log K!)"

where ® is the Kronecker product. Applying this lower bound and setting 49 = prio = 0, we get
the evidence lower bound (ELBO)
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the variational inference can now be cast as the optimization problem:

L* V.h
max (m, V, h, p)
subject to V =0

h=Wm+d

p = diag(WVwT)
Following [1], we can solve the dual problem

- .1 L
mi}\n max L(m,V,h,p) +al'(h—Wm—d) + §AT(,0 — diag(WVWT)),
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where o, A € RTNE are the Lagrange multipliers. The unique maximizer with respect to (m, V) is
given by

m* =p — SWa

V*=B;! = (57 + W (diagh) W)
Maximization over (h, p) is also available in close form. Collecting the term containing (h, p). for

J* to be finite, we need to enforce the constraint aix = Ay, — 1yy,,—x). Therefore, we can express
everything in terms of A
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Denoting 4;; = (1{yti:1}7 1{yti:2}, ey 1{yti:K}) and § = (Y11, -, YINs --» YT, ---» TN ), the dual



problem is reduced to

min D(\)

subject to Ay >0
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and the gradient of the dual reads

N |
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1.2 M-step

We have two sets of parameters to optimize in the M-step. One set is for the observation (C, {g;(-)}:)
, the other is for the dynamical system (A, {b;}:, @, Q1,11). It turns out that the M-step can be
performed separately for these two sets.

The part of the likelihood about the observation can be written as
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This part is concave and can be optimized efficiently using convex optimization techniques.

The part of the likelihood about the dynamical system has the form
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Since everything is quadratic with respect to x, the expectation can be calculated analytically.
Moreover, all the parameters can be optimized analytically in close form.
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