
Supplementary material: High-dimensional neural spike train

analysis with generalized count linear dynamical systems

Here we provide details of the variational inference method for the generalized count linear
dynamical system model (GCLDS).

1 VBEM algorithm details

1.1 Variational Inference in E-step

We first introduce the “vectorized” notation for the GCLDS model. Note that in the E-step the
inference is separable across trials, so for ease of notation, we only consider one single trial and
drop the trial index r. We assume N neurons observed during T time bins. Denote xt as the
p-dimensional latent variable and and yt as the N -dimensional observation, respectively.

x :=

 x1
...
xT

 ,y :=

 y1
...
yT


The prior can be summarized as a multi-variate Gaussian distribution:

p(x) = N (µ,Σ)

where

µ =


µ1

Aµ1 + b1
...

AT−1µ1 +
∑T−1

t=1 A
T−1−tbt

 ,Σ−1 =

 Q−10 +ATQ−1A ATQ−1

Q−1A Q−1 +ATQ−1A ATQ−1

. . .
. . .

. . .

 .

The likelihood has the form

p(y|x) =
∏
t,i

p(yti|ηti)

p(yti|ηti) =GC(yti|ηti, gi(·))
η :=Wx

W =blk-diag(C, ..., C),
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where we stack all the ηti in η = (η11, ..., η1N , ...., ηT1, ..., ηTN ) ∈ RNT . The log likelihood reads:

log p(x,y) ∝− 1

2
(x− µ)TΣ−1(x− µ) +

∑
t,i

[ytiηn + gi(yti)− log(
∑
k

1

k!
exp(kηti + gi(k)))]

−
∑
t,i

log(yti!)−
1

2
log |Σ|

In the E-step we make a Gaussian approximation to the posterior:

p(x|y) ≈ q(x) = N (x|m, V ).

The variational lower bound reads:

L(m, V ) =

∫
q(x) log

p(x,y)

q(x)
dx

=
1

2
(log |V | − tr[Σ−1V ]− (m− µ)TΣ−1(m− µ))

+
∑
t,i

Eq(ηti)[log p(yti|ηti)]−
1

2
log |Σ|+ dT

2
.

Defining νtik = kηti + gi(k) − log k!, we know that νtik is also normally distributed under the
variational distribution

νtik ∼ N (htik, ρtik).

Therefore we can re-write the term Eq(x)[log p(yti|ηti)] and find a lower bound of the term by

Eq(ηti) [log p(yti|ηti)]

=Eq(ηti)

[
ytiηti + gi(yti)− log(yti!)− log(

∑
k

1

k!
exp(kηti + gi(k)))

]

=Eq(νti)

[
νtiyti − log(

K∑
k=0

exp(νtik))

]

≥htiyti − log(

K∑
k=0

Eq(νti)(exp(νtik)))

=htiyti − log(
K∑
k=0

exp(hnk + ρnk/2))

where νti = (νti1, ..., νtiK). We always have νti0 = ρti0 = 0. For the other variables define

ν = (ν11, ν12, ..., ν1N , ..., νT1, ..., νTN )T ,

and define h and ρ similarly. We then have the constraints

h :=W̃m + d̃

ρ :=diag(W̃V W̃ T )
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where

W̃ =W ⊗ (1, 2, ...,K)T

d̃ =1T×1 ⊗ (g1(1)− log 1!, ..., g1(K)− logK!, ...., gN (1)− log 1!, ..., gN (K)− logK!)T

where ⊗ is the Kronecker product. Applying this lower bound and setting νti0 = ρti0 = 0, we get
the evidence lower bound (ELBO)

L∗(m, V,h, ρ) =
1

2
(log |V | − tr[Σ−1V ]− (m− µ)TΣ−1(m− µ))

+
∑
t,i

[
1{yti>0}htiyti − log(1 +

K∑
k=1

exp(htik + ρtik/2))

]

the variational inference can now be cast as the optimization problem:

max
m,V,h,ρ

L∗(m, V,h, ρ)

subject to V � 0

h = W̃m + d̃

ρ = diag(W̃V W̃ T )

Following [1], we can solve the dual problem

min
α,λ

max
m,V,h,ρ

L(m, V,h, ρ) + αT (h− W̃m− d̃) +
1

2
λT (ρ− diag(W̃V W̃ T )),

where α, λ ∈ RTNK are the Lagrange multipliers. The unique maximizer with respect to (m, V ) is
given by

m∗ =µ− ΣW̃ Tα

V ∗ =B−1λ := (Σ−1 + W̃ T (diagλ)W̃ )−1

Maximization over (h, ρ) is also available in close form. Collecting the term containing (h, ρ). for
f∗ to be finite, we need to enforce the constraint αtik = λtik − 1{yti=k}. Therefore, we can express
everything in terms of λ

f∗ti(λti) =max
h,ρ

αTtihti + λTtiρti/2 +

[
1{yti>0}htiyti − log(1 +

K∑
k=1

exp(htik + ρtik/2)

]

=

K∑
k=1

λtik log λtik + (1−
K∑
k=1

λtik) log(1−
K∑
k=1

λtik).

Denoting ỹti = (1{yti=1},1{yti=2}, ...,1{yti=K}) and ỹ = (ỹ11, ..., ỹ1N , ..., ỹT1, ..., ỹTN ), the dual
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problem is reduced to

min
λ

D(λ)

subject to λtik > 0

K∑
k=1

λtik < 1, t = 1, ..., T, n = 1, ..., N, k = 1, ...,K

where

D(λ) :=
1

2
(λ− ỹ)T W̃ΣW̃ T (λ− ỹ)− (W̃µ+ d̃)T (λ− ỹ)− 1

2
log |Bλ|+

∑
t,i

f∗ti(λti)

and the gradient of the dual reads

D′(λ) = W̃ΣW̃ T (λ− ỹ)− W̃µ− d̃− 1

2
diag(WB−1λ W T )−

∑
n

f∗ti
′(λti)

1.2 M-step

We have two sets of parameters to optimize in the M-step. One set is for the observation (C, {gi(·)}i)
, the other is for the dynamical system (A, {bt}t, Q,Q1, µ1). It turns out that the M-step can be
performed separately for these two sets.

The part of the likelihood about the observation can be written as

L1(C, g) =

N∑
i=1

[ ∑
t=1,...,T
r=1,...,R

yrti(c
T
i mrt) + gi(yrti)

− log(1 +
K∑
k=1

1

k!
exp(k(cTi mrt) + gi(k) +

1

2
k2cTi Vrtci))

]
This part is concave and can be optimized efficiently using convex optimization techniques.

The part of the likelihood about the dynamical system has the form

L2(A,Q,Q1, µ1) =

R∑
r=1

Eq(xr)

[
− 1

2
(xr1 − µ1)TQ−11 (xr1 − µ1)

− 1

2

T−1∑
t=1

(xr(t+1) −Axrt − bt)
TQ−1(xr(t+1) −Axrt − bt)

− 1

2
log |Q1| −

T − 1

2
log |Q|

]
Since everything is quadratic with respect to x, the expectation can be calculated analytically.
Moreover, all the parameters can be optimized analytically in close form.
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