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1 Details of simulation study

To generate the cost function depicted in Figure 1a, we draw n “ m “ 1000 points from mean-zero
3-dimensional Gaussian distributions with the following respective covariance matrices:

ΣX “

«

1 0.2 0.4
0.2 1 0
0.4 0 1

ff

ΣY “

«

1 ´0.9 0
´0.9 1 0

0 0 1

ff

Due to the large sample sizes, the empirical distributions accurately represent the underlying pop-
ulations, and thus the projection produced by the tightening procedure (in green) is significantly
inferior to the projection produced by the RELAX algorithm (in red) in terms of actual divergence
captured. Note that only dimensions 2 and 3 of the projection-space are plotted in the figure since
β1 “

b

1 ´
řd

`“2 β
2
` is fixed for the unit-norm projections of interest.

Next, we detail the process by which the data are generated for the two-sample problems depicted
in Figure 1c. We set the features of the underlying X and Y to mean-zero multivariate Gaussian
distributions in blocks of 3, where within each block, (common) covariance parameters are sampled
from the Wishart(I3ˆ3) distribution with 3 degrees of freedom. Only for the first block of 3 features
do we sample a separate covariance matrix for X and a separate covariance matrix for Y , so all
differences between the two distributions lie in the first 3 features. To generate a dataset with d “
3 ˆ `, we simply concatenate ` of our blocks together (always including the first block with the
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underlying difference) and draw n “ m “ 100 points from each class. We generate 20 datasets by
increasing ` (so the largest d “ 60), and repeat this entire experiment 10 times reporting the average
p-values in Figure 1c.

Each p-value is obtain by randomly permuting the class labels and recomputing the test statistic
100 times (where we use the same permutations between all datasets). In SPARDA, regularization
parameter λ is re-selected using our cross-validation technique in each permutation. The overall
Wasserstein distance in the ambient space is computed by solving a transportation problem [1], and
we note the similarity between this statistic and the cross-match test [2]. A popular kernel method
for testing high-dimensional distribution equality, the mean map discrepancy, is computed using the
Gaussian kernel with bandwidth parameter chosen by the “median trick” [3] (this is very similar to
the energy test of [4]). Finally, we also compute the DiProPerm statistic, employing the the DWD-t
variant recommended for testing general equality of distributions [5].

2 Single cell gene expression in cortex vs. hippocampus

Playing critical roles in the brain, the somatosensory cortex (linked to the senses) and hippocampal
region (linked to memory regulation and spatial coding) contain a diversity of cell types [6]. It is
thus of great interest to identify how cell populations in these regions diverge in developing brains,
a question we address by applying SPARDA to single cell RNA-seq data from these regions. Fol-
lowing [7], we represent gene expression by log-transformed FPKM computed from the sequencing
read counts1, so values are directly comparable between genes. Because expression measurements
from individual cells are poorer in quality than transcriptome profiles obtained in aggregate across
tissue samples (due to a drastically reduced amount of available RNA), it is important to filter out
poorly measured genes and we retain a set of 10,305 genes that are measured with sufficient accuracy
for informative analysis [7].

Table 1 and Figure 1 demonstrate that SPARDA discovers many interesting genes which are already
known to play important functional roles in these regions of the brain. For comparison, we also
run LIMMA, a standard method for differential expression analysis which tests for marginal mean-
differences on a gene-by-gene basis [8]. Ordering the significant genes under LIMMA by magnitude
of their mean expression difference, we find that 3 of the top 10 genes identified by SPARDA also
appear in this top 10 list (Crym, Spink8, Neurod6), demonstrating SPARDA’s implicit attraction to-
ward large first-order differences over more nuanced changes in practice. Because only few genes
can feasibly be considered for subsequent experimentation in these studies, a good tool for differ-
ential expression analysis must rank the most relevant genes very highly in order for researchers to
take note.

One particularly relevant gene in this data is Snca, a presynaptic signaling and membrane trafficking
gene whose defects are implicated in both Parkinson and Alzheimer’s disease [9, 10]. While Snca is
ranked 11th highest under SPARDA, it only ranks 349 according to LIMMA p-values and 95 based
on absolute mean-shift. Figure 2 shows that the primary change in Snca expression between the cell
types is not a shift in the distributions, but rather the movement of a large fraction of low (1-2.5 log-
FPKM) expression cells into the high-expression (ą 2.5 log-FPKM) regime. As this type of change
does not match the restrictive assumptions of LIMMA’s t-test, the method fails to highly-rank this
gene while the Wasserstein distance employed by SPARDA is perfectly suited for measuring this
sort of effect.

2.1 Identifying genes whose interactions differ between cortex vs. hippocampus cells

After restricting our analysis to only the top 500 genes with largest average expression (since genes
playing important roles in interactions must be highly expressed), we normalize each gene’s ex-
pression values to have mean zero and unit variance within in the cells of each class. Subsequent
application of SPARDA reveals that most of the genes corresponding to the ten greatest values of
the resulting pβ are known to play important roles in in signaling and regulation (see Table 2).

1available in NCBI’s Gene Expression Omnibus (under accession GSE60361)
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GENE WEIGHT DESCRIPTION

Cck 0.0593 Primary distinguishing gene between distinct interneuron classes
identified in the cortex and hippocampus [11]

Neurod6 0.0583 General regulator of nervous system development whose induced mutation
displays different effects in neocortex vs. the hippocampal region [12]

Stmn3 0.0573 Up-expressed in hippocampus of patients with depressive disorders [13]
Plp1 0.0570 An oligodendrocyte- and myelin-related gene which exhibits cortical

differential expression in schizophrenia [14]
Crym 0.0550 Plays a role in neuronal specification [15]
Spink8 0.0536 Serine protease inhibitor specific to hippocampal pyramidal cells [6]
Gap43 0.0511 Encodes plasticity protein important for axonal regeneration

and neural growth
Cryab 0.0500 Stress induction leads to reduced expression in the mouse hippocampus [16]
Mal 0.0494 Regulates dendritic morphology and is expressed at lower levels

in cortex than in hippocampus [17]
Tspan13 0.0488 Membrane protein which mediates signal transduction events in

cell development, activation, growth and motility

Table 1: Genes with the greatest weight in the projection pβ produced by SPARDA analysis of the
mouse brain single cell RNA-seq data. Where not cited, the description of the genes are taken from
the standard ontology annotations.

GENE WEIGHT DESCRIPTION

Thy1 0.1245 Plays a role in cell-cell & cell-ligand interactions during synaptogenesis
and other processes in the brain

Vsnl1 0.1245 Modulates intracellular signaling pathways of the central nervous system
Stmn3 0.1222 Stathmins form important protein complex with tubulins

Stmn2 0.1188 Note: Tubulins Tubb3 and Tubb2 are ranked 20th and 25th by weight in pβ

Tmem59 0.1176 Fundamental regulator of neural cell differentiation. Knock out in the
hippocampus results in drastic expression changes of many other genes [18]

Basp1 0.1171 Transcriptional cofactor which can divert the differentiation of cells to
a neuronal-like morphology [19]

Snhg1 0.1166 Unclassified non-coding RNA gene
Mllt11 0.1145 Promoter of neurodifferentiation and axonal/dendritic maintenance [20]
Uchl1 0.1137 Loss of function leads to profound degeneration of motor neurons [21].
Cck 0.1131 Targets pyramidal neurons and enables neocortical plasticity allowing

for example the auditory cortex to detect light stimuli [22, 23]

Table 2: Genes with the greatest weight in the projection pβ produced by SPARDA analysis of the
marginally normalized expression data.
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Figure 1: Biological process terms most significantly enriched in the annotations of the top 100
genes identified by SPARDA.
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Figure 2: Distribution of Snca expression across cells of the somatosensory cortex and hippocampus.
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3 Proofs and Auxiliary Lemmas

Throughout this section, we use C to denote absolute constants whose value may change from
line to line. F is defined the cdf of a random variable, and the corresponding quantile function is
F´1ppq :“ inftx : F pxq ě pu. Note our assumptions (A1)-(A3) ensure the quantile function equals
the unique inverse of any projected cdf. Hat notation is used to represent the empirical versions of
all quantities, and recall that D denotes the squared Wasserstein distance.

3.1 Proof of Theorem 1

Proof. Since pβ maximizes the empirical divergence, we have:

PrpDppβT pXpnq, pβT pY pnqq ą ∆´ εq

ěPrpDpβ˚
T
pXpnq, β˚

T
pY pnqq ą ∆´ εq

ěPrpDpβ˚
T
pXpnq, β˚

T
Xq `Dpβ˚

T
pY pnq, β˚

T
Y q ď εq

ě1´ 4 exp

ˆ

´
nε2

16R4

˙

applying Lemma 1 and the union bound.

Lemma 1. For bounded univariate random variable Z P r´R,Rs with nonzero continuous density
in this region, we have

Dp pZpnq, Zq ą ε

with probability at most 2 exp
´

´ nε2

8R4

¯

Proof. On the real line, the (squared) Wasserstein distance is given by:

Dp pZpnq, Zq “

ż 1

0

´

pF´1
Z ppq ´ F´1

Z ppq
¯2

dp

“ 4R2

ż 1

0

˜

pF´1
Z ppq ´ F´1

Z ppq

2R

¸2

dp where

ˇ

ˇ

ˇ

ˇ

ˇ

pF´1
Z ppq ´ F´1

Z ppq

2R

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1 for each p P p0, 1q

ď 4R2

ż 1

0

ˇ

ˇ

ˇ

ˇ

ˇ

pF´1
Z ppq ´ F´1

Z ppq

2R

ˇ

ˇ

ˇ

ˇ

ˇ

dp

“ 2R

ż 1

0

ˇ

ˇ

ˇ

pF´1
Z ppq ´ F´1

Z ppq
ˇ

ˇ

ˇ
dp

“ 2R

ż 8

´8

ˇ

ˇ

ˇ

pFZpzq ´ FZpzq
ˇ

ˇ

ˇ
dz by the equivalence of the (empirical) quantile function and inverse (empirical) cdf

ď 4R2 ¨ sup
z

ˇ

ˇ

ˇ

pFZpzq ´ FZpzq
ˇ

ˇ

ˇ

ď ε with probability ě 1´ 2 exp

ˆ

´
nε2

8R4

˙

by the Dvoretzky-Kiefer-Wolfowitz inequality [24].
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3.2 Proof of Theorem 2

Proof. We first construct a fine grid of points tα1, . . . , αSu which form an (ε{R2)-net cover-
ing the surface of the unit ball in Rd. When PX “ PY , the Cramer-Wold device [25] implies
that for any point in our grid: DpαTs X,α

T
s Y q “ 0. A result analogous to Theorem 1 implies

DpαTs
pXpnq, αTs

pY pnqq ą ε with probability ă C1 exp
`

´C2

R4nε
2
˘

.

Subsequently, we apply the union bound over the finite set of all grid points. The total number of

points under consideration is the covering number of the unit-sphere which is
´

1` 2R2

ε

¯d

. Thus,

the probability that DpαTs pXpnq, αTs
pY pnqq ă ε simultaneously for all points in the grid is at least

C1

ˆ

1`
2R2

ε

˙d

exp

ˆ

´
C2

R4
nε2

˙

By construction, there must exist grid point α0 such that ||pβ ´ α0||2 ă ε{R2. By Lemma 2

DppβT pXpnq, pβT pY pnqq ď Dpα0
T
pXpnq, α0

T
pY pnqq ` Cε

thus completing the proof.

Lemma 2. For α, β P B such that ||α´ β||2 ă ε, we have:

|DpαT pXpnq, αT pY pnqq ´DpβT pXpnq, βT pY pnqq| ď CεR2 (1)

Proof. We assume that the α-projected divergence is larger than the β-projected divergence, and
write:

DpβT pXpnq, βT pY pnqq “ min
MPM,

n
ÿ

i“1

m
ÿ

j“1

pβTxpiq ´ βT ypjqq2Mij

recalling that M is the set of matching matrices defined in the main text. LetMpβq denote the matrix
which is used in the computation of the β-projected empirical Wasserstein distance (the minimizer
of the righthand side of the above expression). Thus, we can express (1) as:

n
ÿ

i“1

m
ÿ

j“1

pαTxpiq ´ αT ypjqq2Mpαqij ´
n
ÿ

i“1

m
ÿ

j“1

pβTxpiq ´ βT ypjqq2Mpβqij

ď

n
ÿ

i“1

m
ÿ

j“1

pαTxpiq ´ αT ypjqq2Mpβqij ´
n
ÿ

i“1

m
ÿ

j“1

pβTxpiq ´ βT ypjqq2Mpβqij

ď

n
ÿ

i“1

m
ÿ

j“1

”

pαT pxpiq ´ ypjqqq2 ´ pβT pxpiq ´ ypjqqq2
ı

Mpβqij

“

n
ÿ

i“1

m
ÿ

j“1

”

pα´ βqT pxpiq ´ ypjqq ¨ pα` βqT pxpiq ´ ypjqq
ı

Mpβqij

ď

n
ÿ

i“1

m
ÿ

j“1

CεR2Mpβqij “ CεR2
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3.3 Proof of Theorem 3

Proof. Our proof relies primarily on a quantitative form of the Cramer-Wold result presented in [26].
We adapt Theorem 3.1 [26] in its contrapositive form: If D a ě 0 such that TapX,Y q ą hpgp∆qq,
then Dβ P B such that

sup
zPR

ˇ

ˇ

ˇ

ˇ

Pr
`

βTX ď z
˘

´ Pr
`

βTY ď z
˘

ˇ

ˇ

ˇ

ˇ

ą gpC∆q (2)

Subsequently we leverage a number of well-characterized relationships between different probabil-
ity metrics (cf. [27]) to lower bound the projected (squared) Wasserstein distance (of the underlying
random variables).

Letting Kβ denote the projected Kolmogorov distance in (2), we have that the β-projected Lévy-
distance, Lβ satisfies:

Kβ ď p1` ΦqLβ where Φ :“ sup
αPB

 

sup
y
|fαTY pyq|

(

(3)

and fαTY pyq is the density of the projection of Y in the α direction.

In turn the projected Lévy Lβ is bounded above by the Prokhorov metric which itself is bounded
above by the square root of the β-projected Wasserstein distance. Following the chain of inequal-
ities, we obtain: DpβTX,βTY q ě C∆, to which we can apply Theorem 1 to obtain the desired
probabilistic bound on the empirical projected divergence.

3.4 Proof of Theorem 4

Proof. Theorem 2 implies that with high probability, any βSC P Rd´k has
DpβTSC

pX
pnq

SC , β
T
SC

pY
pnq

SC q ă ε, while Theorem 3 specifies the probability that there exists

βS P Rk such that DppβTS pX
pnq
S , pβTS

pY
pnq
S q ą d ¨ ε.

A bound for the probability that both theorems’ conclusions hold may be obtained by the union
bound. When this is the case, it is clear that the optimal k-sparse pβ P Rd must obey the sparsity
pattern specified in the statement of Theorem 4. To see this, consider any β P B with βj ‰ 0 for
some j P SC and note that it is always possible to produce a strictly superior projection by setting
βj “ 0 and distributing the additional weight |βj | among the features in S in an optimal manner.

4 Derivation of semidefinite relaxation properties

Here, we provide some intuitive arguments for the conclusions in §4.3, regarding some conditions
under which our semidefinite relaxation is nearly tight.

Condition (i) derives from the fact that (5) has rank one solution when the objective is approximately
linear in B.

(ii) and (iii) are derived by noting that (5) is the Wasserstein distance between random variables
B1{2X and B1{2Y where AX follows a NpAµX , AΣXA

T q distribution when X is Gaussian. Fur-
thermore, the Wasserstein distance between (multivariate) Gaussian distributions can be analytically
written as

W pX,Y q “ ||µX ´ µY ||
2
2 ` ||Σ

1{2
X ´ Σ

1{2
Y ||2F
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