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Abstract

We present a data-driven optimal control framework that is derived using the path
integral (PI) control approach. We find iterative control laws analytically without a
priori policy parameterization based on probabilistic representation of the learned
dynamics model. The proposed algorithm operates in a forward-backward manner
which differentiate it from other PI-related methods that perform forward sam-
pling to find optimal controls. Our method uses significantly less samples to find
analytic control laws compared to other approaches within the PI control family
that rely on extensive sampling from given dynamics models or trials on physical
systems in a model-free fashion. In addition, the learned controllers can be gener-
alized to new tasks without re-sampling based on the compositionality theory for
the linearly-solvable optimal control framework. We provide experimental results
on three different tasks and comparisons with state-of-the-art model-based meth-
ods to demonstrate the efficiency and generalizability of the proposed framework.

1 Introduction

Stochastic optimal control (SOC) is a general and powerful framework with applications in many
areas of science and engineering. However, despite the broad applicability, solving SOC problems
remains challenging for systems in high-dimensional continuous state action spaces. Various func-
tion approximation approaches to optimal control are available [1, 2] but usually sensitive to model
uncertainty. Over the last decade, SOC based on exponential transformation of the value function has
demonstrated remarkable applicability in solving real world control and planning problems. In con-
trol theory the exponential transformation of the value function was introduced in [3, 4]. In the recent
decade it has been explored in terms of path integral interpretations and theoretical generalizations
[5, 6, 7, 8], discrete time formulations [9], and scalable RL/control algorithms [10, 11, 12, 13, 14].
The resulting stochastic optimal control frameworks are known as Path Integral (PI) control for con-
tinuous time, Kullback Leibler (KL) control for discrete time, or more generally Linearly Solvable
Optimal Control [9, 15].

One of the most attractive characteristics of PI control is that optimal control problems can be solved
with forward sampling of Stochastic Differential Equations (SDEs). While the process of sampling
with SDEs is more scalable than numerically solving partial differential equations, it still suffers
from the curse of dimensionality when performed in a naive fashion. One way to circumvent this
problem is to parameterize policies [10, 11, 14] and then perform optimization with sampling. How-
ever, in this case one has to impose the structure of the policy a-priori, therefore restrict the possible
optimal control solutions within the assumed parameterization. In addition, the optimized policy
parameters can not be generalized to new tasks. In general, model-free PI policy search approaches
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require a large number of samples from trials performed on real physical systems. The issue of
sample inefficiency further restricts the applicability of PI control methods on physical systems with
unknown or partially known dynamics.

Motivated by the aforementioned limitations, in this paper we introduce a sample efficient, model-
based approach to PI control. Different from existing PI control approaches, our method combines
the benefits of PI control theory [5, 6, 7] and probabilistic model-based reinforcement learning
methodologies [16, 17]. The main characteristics of the our approach are summarized as follows

• It extends the PI control theory [5, 6, 7] to the case of uncertain systems. The structural
constraint is enforced between the control cost and uncertainty of the learned dynamics,
which can be viewed as a generalization of previous work [5, 6, 7].

• Different from parameterized PI controllers [10, 11, 14, 8], we find analytic control law
without any policy parameterization.

• Rather than keeping a fixed control cost weight [5, 6, 7, 10, 18], or ignoring the con-
straint between control authority and noise level [11], in this work the control cost weight
is adapted based on the explicit uncertainty of the learned dynamics model.

• The algorithm operates in a different manner compared to existing PI-related methods that
perform forward sampling [5, 6, 7, 10, 18, 11, 12, 14, 8]. More precisely our method per-
form successive deterministic approximate inference and backward computation of optimal
control law.

• The proposed model-based approach is significantly more sample efficient than sampling-
based PI control [5, 6, 7, 18]. In RL setting our method is comparable to the state-of-the-art
RL methods [17, 19] in terms of sample and computational efficiency.

• Thanks to the linearity of the backward Chapman-Kolmogorov PDE, the learned controllers
can be generalized to new tasks without re-sampling by constructing composite controllers.
In contrast, most policy search and trajectory optimization methods [10, 11, 14, 17, 19, 20,
21, 22] find policy parameters that can not be generalized.

2 Iterative Path Integral Control for a Class of Uncertain Systems

2.1 Problem formulation

We consider a nonlinear stochastic system described by the following differential equation

dx =
(
f(x) + G(x)u

)
dt+ Bdω, (1)

with state x ∈ Rn, control u ∈ Rm, and standard Brownian motion noise ω ∈ Rp with variance
Σω . f(x) is the unknown drift term (passive dynamics), G(x) ∈ Rn×m is the control matrix and
B ∈ Rn×p is the diffusion matrix. Given some previous control uold, we seek the optimal control
correction term δu such that the total control u = uold + δu. The original system becomes

dx =
(
f(x) + G(x)(uold + δu)

)
dt+ Bdω =

(
f(x) + G(x)uold

)︸ ︷︷ ︸
f̃(x,uold)

dt+ G(x)δudt+ Bdω.

In this work we assume the dynamics based on the previous control can be represented by Gaussian
processes (GP) such that

fGP(x) = f̃(x,uold)dt+ Bdω, (2)

where fGP is the GP representation of the biased drift term f̃ under the previous control. Now the
original dynamical system (1) can be represented as follow

dx = fGP + Gδudt, fGP ∼ GP(µf ,Σf ), (3)

where µf ,Σf are predictive mean and covariance functions, respectively. For the GP model we use
a prior of zero mean and covariance function K(xi,xj) = σ2

s exp(− 1
2 (xi − xj)

TW(xi − xj)) +

δijσ
2
ω, with σs, σω,W the hyper-parameters. δij is the Kronecker symbol that is one iff i = j and

zero otherwise. Samples over fGP can be drawn using an vector of i.i.d. Gaussian variable Ω

f̃GP = µf + LfΩ (4)
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where Lf is obtained using Cholesky factorization such that Σf = LfL
T
f . Note that generally Ω is

an infinite dimensional vector and we can use the same sample to represent uncertainty during learn-
ing [23]. Without loss of generality we assume Ω to be the standard zero-mean Brownian motion.
For the rest of the paper we use simplified notations with subscripts indicating the time step. The
discrete-time representation of the system is xt+dt = xt+µft+Gtδutdt+LftΩt

√
dt, and the con-

ditional probability of xt+dt given xt and δut is a Gaussian p
(
xt+dt|xt, δut

)
= N

(
µt+dt,Σt+dt

)
,

where µt+dt = xt + µft + Gtδut and Σt+dt = Σft. In this paper we consider a finite-horizon
stochastic optimal control problem

J(x0) = E
[
q(xT ) +

∫ T

t=0

L(xt, δut)dt
]
,

where the immediate cost is defined as L(xt,ut) = q(xt) + 1
2δu

T
t Rtδut, and q(xt) = (xt −

xdt )
TQ(xt − xdt ) is a quadratic cost function where xdt is the desired state. Rt = R(xt) is a state-

dependent positive definite weight matrix. Next we show the linearized Hamilton-Jacobi-Bellman
equation for this class of optimal control problems.

2.2 Linearized Hamilton-Jacobi-Bellman equation for uncertain dynamics

At each iteration the goal is to find the optimal control update δut that minimizes the value function

V (xt, t) = min
δut

E
[ ∫ t+dt

t

L(xt, δut)dt+ V (xt + dxt, t+ dt)dt|xt
]
. (5)

(5) is the Bellman equation. By approximating the integral for a small dt and applying Itô’s rule we
obtain the Hamilton-Jacobi-Bellman (HJB) equation (detailed derivation is skipped):

−∂tVt = min
δut

(qt +
1

2
δuT

t Rtδut + (µft + Gtδut)
T∇xVt +

1

2
Tr(Σft∇xxVt)).

To find the optimal control update, we take gradient of the above expression (inside the parentheses)
with respect to δut and set to 0. This yields δut = −R−1

t GT
t ∇xVt. Inserting this expression into

the HJB equation yields the following nonlinear and second order PDE

−∂tVt = qt + (∇xVt)
Tµft −

1

2
(∇xVt)

TGtR
−1GT

t ∇xVt +
1

2
Tr(Σft∇xxVt). (6)

In order to solve the above PDE we use the exponential transformation of the value function
Vt = −λ log Ψt, where Ψt = Ψ(xt) is called the desirability of xt. The corresponding
partial derivatives can be found as ∂tVt = − λ

Ψt
∂tΨt, ∇xVt = − λ

Ψt
∇xΨt and ∇xxVt =

λ
Ψ2
t
∇xΨt∇xΨT

t − λ
Ψt
∇xxΨt. Inserting these terms to (6) results in

λ

Ψt
∂tΨt = qt−

λ

Ψt
(∇xΨt)

T
µft−

λ2

2Ψ2
t

(∇xΨt)
T

GtR
−1
t G

T
t ∇xΨt+

λ

2Ψ2
t

Tr((∇xΨt)
T

Σft∇xΨt)−
λ

2Ψt
Tr(∇xxΨtΣft).

The quadratic terms ∇xΨt will cancel out under the assumption of λGtR
−1
t GT

t = Σft. This
constraint is different from existing works in path integral control [5, 6, 7, 10, 18, 8] where the
constraint is enforced between the additive noise covariance and control authority, more precisely
λGtR

−1
t GT

t = BΣωBT. The new constraint enables an adaptive update of control cost weight
based on explicit uncertainty of the learned dynamics. In contrast, most existing works use a fixed
control cost weight [5, 6, 7, 10, 18, 12, 14, 8]. This condition also leads to more exploration (more
aggressive control) under high uncertainty and less exploration with more certain dynamics. Given
the aforementioned assumption, the above PDE is simplified as

∂tΨt =
1

λ
qtΨt − µT

ft∇xΨt −
1

2
Tr(∇xxΨtΣft), (7)

subject to the terminal condition ΨT = exp(− 1
λqT ). The resulting Chapman-Kolmogorov PDE (7)

is linear. In general, solving (7) analytically is intractable for nonlinear systems and cost functions.
We apply the Feynman-Kac formula which gives a probabilistic representation of the solution of the
linear PDE (7)

Ψt = lim
dt→0

∫
p(τt|xt) exp

(
− 1

λ
(

T−dt∑
j=t

qjdt)
)
ΨTdτt, (8)
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where τt is the state trajectory from time t to T . The optimal control is obtained as

Gtδût = −GtR
−1
t GT

t (∇xVt) = λGtR
−1
t GT

t

(∇xΨt

Ψt

)
= Σft

(∇xΨt

Ψt

)
=⇒ût = uoldt + δût = uoldt + G−1

t Σft

(∇xΨt

Ψt

)
.

(9)

Rather than computing ∇xΨt and Ψt, the optimal control ût can be approximated based on path
costs of sampled trajectories. Next we briefly review some of the existing approaches.

2.3 Related works

According to the path integral control theory [5, 6, 7, 10, 18, 8], the stochastic optimal control
problem becomes an approximation problem of a path integral (8). This problem can be solved by
forward sampling of the uncontrolled (u = 0) SDE (1). The optimal control ût is approximated
based on path costs of sampled trajectories. Therefore the computation of optimal controls becomes
a forward process. More precisely, when the control and noise act in the same subspace, the optimal
control can be evaluated as the weighted average of the noise ût = Ep(τt|xt)

[
dωt

]
, where the

probability of a trajectory is p(τt|xt) =
exp(− 1

λS(τt|xt))∫
exp(− 1

λS(τt|xt))dτ
, and S(τt|xt) is defined as the path

cost computed by performing forward sampling. However, these approaches require a large amount
of samples from a given dynamics model, or extensive trials on physical systems when applied in
model-free reinforcement learning settings. In order to improve sample efficiency, a nonparametric
approach was developed by representing the desirability Ψt in terms of linear operators in a repro-
ducing kernel Hilbert space (RKHS) [12]. As a model-free approach, it allows sample re-use but
relies on numerical methods to estimate the gradient of desirability, i.e., ∇xΨt , which can be com-
putationally expensive. On the other hand, computing the analytic expressions of the path integral
embedding is intractable and requires exact knowledge of the system dynamics. Furthermore, the
control approximation is based on samples from the uncontrolled dynamics, which is usually not
sufficient for highly nonlinear or underactuated systems.

Another class of PI-related method is based on policy parameterization. Notable approaches in-
clude PI2 [10], PI2-CMA [11], PI-REPS[14] and recently developed state-dependent PI[8]. The
limitations of these methods are: 1) They do not take into account model uncertainty in the passive
dynamics f(x). 2) The imposed policy parameterizations restrict optimal control solutions. 3) The
optimized policy parameters can not be generalized to new tasks. A brief comparison of some of
these methods can be found in Table 1. Motivated by the challenge of combining sample efficiency
and generalizability, next we introduce a probabilistic model-based approach to compute the optimal
control (9) analytically.

PI [5, 6, 7], iterative PI [18] PI2[10], PI2-CMA [11] PI-REPS[14] State feedback PI[8] Our method
Structural constraint λGtR

−1
t GT

t = BΣωBT same as PI same as PI same as PI λGR−1GT = Σf

Dynamics model model-based model-free model-based model-based GP model-based
Policy parameterization No Yes Yes Yes No

Table 1: Comparison with some notable and recent path integral-related approaches.

3 Proposed Approach

3.1 Analytic path integral control: a forward-backward scheme

In order to derive the proposed framework, firstly we learn the function fGP(xt) = f̃(x,uold)dt +
Bdω from sampled data. Learning the continuous mapping from state to state transition can be
viewed as an inference with the goal of inferring the state transition dx̃t = fGP(xt). The kernel
function has been defined in Sec.2.1, which can be interpreted as a similarity measure of random
variables. More specifically, if the training input xi and xj are close to each other in the kernel
space, their outputs dxi and dxj are highly correlated. Given a sequence of states {x0, . . .xT },
and the corresponding state transition {dx̃0, . . . ,dx̃T }, the posterior distribution can be obtained
by conditioning the joint prior distribution on the observations. In this work we make the standard
assumption of independent outputs (no correlation between each output dimension).
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To propagate the GP-based dynamics over a trajectory of time horizon T we employ the moment
matching approach [24, 17] to compute the predictive distribution. Given an input distribution over
the state N (µt,Σt), the predictive distribution over the state at t + dt can be approximated as a
Gaussian p(xt+dt) ≈ N (µt+dt,Σt+dt) such that

µt+dt = µt + µft, Σt+dt = Σt + Σft + COV[xt,dx̃t] + COV[dx̃t,xt]. (10)

The above formulation is used to approximate one-step transition probabilities over the trajectory.
Details regarding the moment matching method can be found in [24, 17]. All mean and variance
terms can be computed analytically. The hyper-parameters σs, σω,W are learned by maximizing
the log-likelihood of the training outputs given the inputs [25]. Given the approximation of transition
probability (10), we now introduce a Bayesian nonparametric formulation of path integral control
based on probabilistic representation of the dynamics. Firstly we perform approximate inference
(forward propagation) to obtain the Gaussian belief (predictive mean and covariance of the state)
over the trajectory. Since the exponential transformation of the state cost exp(− 1

λq(x)dt) is an
unnormalized Gaussian N (xd, 2λ

dtQ
−1). We can evaluate the following integral analytically∫

N
(
µj ,Σj

)
exp

(
−

1

λ
qjdt

)
dxj =

∣∣∣I +
dt

2λ
ΣjQ

∣∣∣− 1
2 exp

(
−

1

2
(µj − x

d
j )

T dt

2λ
Q(I +

dt

2λ
λΣjQ)

−1
(µj − x

d
j )
)
,

(11)

for j = t+dt, ..., T . Thus given a boundary condition ΨT = exp(− 1
λqT ) and predictive distribution

at the final stepN (µT ,ΣT ), we can evaluate the one-step backward desirability ΨT−dt analytically
using the above expression (11). More generally we use the following recursive rule

Ψj−dt = Φ(xj ,Ψj) =

∫
N
(
µj ,Σj

)
exp

(
− 1

λ
qjdt

)
Ψjdxj , (12)

for j = t+ dt, ..., T − dt. Since we use deterministic approximate inference based on (10) instead
of explicitly sampling from the corresponding SDE, we approximate the conditional distribution
p(xj |xj−dt) by the Gaussian predictive distribution N (µj ,Σj). Therefore the path integral

Ψt =

∫
p
(
τt|xt

)
exp

(
− 1

λ
(

T−dt∑
j=t

qjdt)
)

ΨT dτt

≈
∫
...

∫
N
(
µT−dt,ΣT−dt

)
exp

(
− 1

λ
qT−dtdt

)∫
N
(
µT ,ΣT

)
exp

(
− 1

λ
qT
)

︸ ︷︷ ︸
ΨT

dxT

︸ ︷︷ ︸
ΨT−dt

dxT−dt

︸ ︷︷ ︸
ΨT−2dt

...dxt+dt

=

∫
N
(
µt+dt,Σt+dt

)
exp

(
− 1

λ
qt+dtdt

)
Ψt+dtdxt+dt = Φ(xt+dt,Ψt+dt). (13)

We evaluate the desirability Ψt backward in time by successive computation using the above recur-
sive expression. The optimal control law ût (9) requires gradients of the desirability function with
respect to the state, which can be computed backward in time as well. For simplicity we denote the
function Φ(xj ,Ψj) by Φj . Thus we compute the gradient of the recursive expression (13)

∇xΨj−dt = Ψj∇xΦj + Φj∇xΨj , (14)

where j = t+ dt, ..., T − dt. Given the expression in (11) we compute the gradient terms in (14) as

∇xΦj =
dΦj

dp(xj)

dp(xj)

dxt
=
∂Φj

∂µj

dµj

dxt
+
∂Φj

∂Σj

dΣj

dxt
, where

∂Φj

∂µj

= Φj(µj − xd
j )T

dt

2λ
Q(I +

dt

2λ
λΣjQ)−1,

∂Φj

∂Σj
=

Φj

2

( dt

2λ
Q(I +

dt

2λ
λΣjQ)−1(µj − xd

j

)(
µj − xd

j

)T − I
) dt

2λ
Q(I +

dt

2λ
λΣjQ)−1, and

d{µj ,Σj}
dxt

=
{ ∂µj

∂µj−dt

dµj−dt

dxt
+

∂µj

∂Σj−dt

dΣj−dt

dxt
,
∂Σj

∂µj−dt

dµj−dt

dxt
+

∂Σj

∂Σj−dt

dΣj−dt

dxt

}
.

The term ∇xΨT−dt is compute similarly. The partial derivatives
∂µj

∂µj−dt
,

∂µj
∂Σj−dt

,
∂Σj

∂µj−dt
,

∂Σj

∂Σj−dt

can be computed analytically as in [17]. We compute all gradients using this scheme without any
numerical method (finite differences, etc.). Given Ψt and∇xΨt, the optimal control takes a analytic

5



form as in eq.(9). Since Ψt and ∇xΨt are explicit functions of xt, the resulting control law is es-
sentially different from the feedforward control in sampling-based path integral control frameworks
[5, 6, 7, 10, 18] as well as the parameterized state feedback PI control policies [14, 8]. Notice that
at current time step t, we update the control sequence ût,...,T using the presented forward-backward
scheme. Only ût is applied to the system to move to the next step, while the controls ût+dt,...,T are
used for control update at future steps. The transition sample recorded at each time step is incorpo-
rated to update the GP model of the dynamics. A summary of the proposed algorithm is shown in
Algorithm 1.

Algorithm 1 Sample efficient path integral control under uncertain dynamics

1: Initialization: Apply random controls û0,..,T to the physical system (1), record data.
2: repeat
3: for t=0:T do
4: Incorporate transition sample to learn GP dynamics model.
5: repeat
6: Approximate inference for predictive distributions using uoldt,..,T = ût,..,T , see (10).
7: Backward computation of optimal control updates δût,..,T , see (13)(14)(9).
8: Update optimal controls ût,..,T = uoldt,..,T + δût,..,T .
9: until Convergence.

10: Apply optimal control ût to the system. Move one step forward and record data.
11: end for
12: until Task learned.

3.2 Generalization to unlearned tasks without sampling

In this section we describe how to generalize the learned controllers for new (unlearned) tasks with-
out any interaction with the real system. The proposed approach is based on the compositionality
theory [26] in linearly solvable optimal control (LSOC). We use superscripts to denote previously
learned task indexes. Firstly we define a distance measure between the new target x̄d and old targets
xdk, k = 1, ..,K, i.e., a Gaussian kernel

ωk = exp
(
− 1

2
(x̄d − xdk)TP(x̄d − xdk)

)
, (15)

where P is a diagonal matrix (kernel width). The composite terminal cost q̄(xT ) for the new task
becomes

q̄(xT ) = −λ log

(∑K
k=1 ω

k exp(− 1
λq

k(xT ))∑K
k=1 ω

k

)
, (16)

where qk(xT ) is the terminal cost for old tasks. For conciseness we define a normalized distance
measure ω̃k = ωk∑K

k=1 ω
k , which can be interpreted as a probability weight. Based on (16) we have

the composite terminal desirability for the new task which is a linear combination of Ψk
T

Ψ̄T = exp
(
− 1

λ
q̄(xT )

)
=

K∑
k=1

ω̃kΨk
T . (17)

Since Ψk
t is the solution to the linear Chapman-Kolmogorov PDE (7), the linear combination of

desirability (17) holds everywhere from t to T as long as it holds on the boundary (terminal time
step). Therefore we obtain the composite control

ūt =

K∑
k=1

ω̃kΨk
t∑K

k=1 ω̃
kΨk

t

ûkt . (18)

The composite control law in (18) is essentially different from an interpolating control law[26]. It
enables sample-free controllers that constructed from learned controllers for different tasks. This
scheme can not be adopted in policy search or trajectory optimization methods such as [10, 11,
14, 17, 19, 20, 21, 22]. Alternatively, generalization can be achieved by imposing task-dependent
policies [27]. However, this approach might restrict the choice of optimal controls given the assumed
structure of control policy.
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4 Experiments and Analysis

We consider 3 simulated RL tasks: cart-pole (CP) swing up, double pendulum on a cart (DPC)
swing up, and PUMA-560 robotic arm reaching. The CP and DPC systems consist of a cart and a
single/double-link pendulum. The tasks are to swing-up the single/double-link pendulum from the
initial position (point down). Both CP and DPC are under-actuated systems with only one control
acting on the cart. PUMA-560 is a 3D robotic arm that has 12 state dimensions, 6 degrees of
freedom with 6 actuators on the joints. The task is to steer the end-effector to the desired position
and orientation.

In order to demonstrate the performance, we compare the proposed control framework with three
related methods: iterative path integral control [18] with known dynamics model, PILCO [17] and
PDDP [19]. Iterative path integral control is a sampling-based stochastic control method. It is
based on importance sampling using controlled diffusion process rather than passive dynamics used
in standard path integral control [5, 6, 7]. Iterative PI control is used as a baseline with a given
dynamics model. PILCO is a model-based policy search method that features state-of-the-art data
efficiency in terms of number of trials required to learn a task. PILCO requires an extra optimizer
(such as BFGS) for policy improvement. PDDP is a Gaussian belief space trajectory optimization
approach. It performs dynamic programming based on local approximation of the learned dynamics
and value function. Both PILCO and PDDP are applied with unknown dynamics. In this work we do
not compare our method with model-free PI-related approaches such as [10, 11, 12, 14] since these
methods would certainly cost more samples than model-based methods such as PILCO and PDDP.
The reason for choosing these two methods for comparison is that our method adopts a similar model
learning scheme while other state-of-the-art methods, such as [20] is based on a different model.

In experiment 1 we demonstrate the sample efficiency of our method using the CP and DPC tasks.
For both tasks we choose T = 1.2 and dt = 0.02 (60 time steps per rollout). The iterative PI
[18] with a given dynamics model uses 103/104 (CP/DPC) sample rollouts per iteration and 500
iterations at each time step. We initialize PILCO and the proposed method by collecting 2/6 sample
rollouts (corresponding to 120/360 transition samples) for CP/DPC tasks respectively. At each trial
(on the true dynamics model), we use 1 sample rollout for PILCO and our method. PDDP uses
4/5 rollouts (corresponding to 240/300 transition samples) for initialization as well as at each trial
for the CP/DPC tasks. Fig. 1 shows the results in terms of ΨT and computational time. For both
tasks our method shows higher desirability (lower terminal state cost) at each trial, which indicates
higher sample efficiency for task learning. This is mainly because our method performs online re-
optimization at each time step. In contrast, the other two methods do not use this scheme. However
we assume partial information of the dynamics (G matrix) is given. PILCO and PDDP perform
optimization on entirely unknown dynamics. In many robotic systems G corresponds to the inverse
of the inertia matrix, which can be identified based on data as well. In terms of computational effi-
ciency, our method outperforms PILCO since we compute the optimal control update analytically,
while PILCO solves large scale nonlinear optimization problems to obtain policy parameters. Our
method is more computational expensive than PDDP because PDDP seeks local optimal controls
that rely on linear approximations, while our method is a global optimal control approach. Despite
the relatively higher computational burden than PDDP, our method offers reasonable efficiency in
terms of the time required to reach the baseline performance.

In experiment 2 we demonstrate the generalizability of the learned controllers to new tasks using
the composite control law (18) based on the PUMA-560 system. We use T = 2 and dt = 0.02
(100 time steps per rollout). First we learn 8 independent controllers using Algorithm 1. The target
postures are shown in Fig. 2. For all tasks we initialize with 3 sample rollouts and 1 sample at each
trial. Blue bars in Fig. 2b shows the desirabilities ΨT after 3 trials. Next we use the composite law
(18) to construct controllers without re-sampling using 7 other controllers learned using Algorithm
1. For instance the composite controller for task#1 is found as ū1

t =
∑8
k=2

ω̃kΨkt∑8
k=2 ω̃

kΨkt
ûkt . The

performance comparison of the composite controllers with controllers learned from trials is shown in
Fig. 2. It can be seen that the composite controllers give close performance as independently learned
controllers. The compositionality theory [26] generally does not apply to policy search methods and
trajectory optimizers such as PILCO, PDDP, and other recent methods [20, 21, 22]. Our method
benefits from the compositionality of control laws that can be applied for multi-task control without
re-sampling.
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Figure 1: Comparison in terms of sample efficiency and computational efficiency for (a) cart-pole
and (b) double pendulum on a cart swing-up tasks. Left subfigures show the terminal desirability ΨT

(for PILCO and PDDP, ΨT is computed using terminal state costs) at each trial. Right subfigures
show computational time (in minute) at each trial.
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Figure 2: Resutls for the PUMA-560 tasks. (a) 8 tasks tested in this experiment. Each number
indicates a corresponding target posture. (b) Comparison of the controllers learned independently
from trials and the composite controllers without sampling. Each composite controller is obtained
(18) from 7 other independent controllers learned from trials.

5 Conclusion and Discussion

We presented an iterative learning control framework that can find optimal controllers under uncer-
tain dynamics using very small number of samples. This approach is closely related to the family
of path integral (PI) control algorithms. Our method is based on a forward-backward optimiza-
tion scheme, which differs significantly from current PI-related approaches. Moreover, it combines
the attractive characteristics of probabilistic model-based reinforcement learning and linearly solv-
able optimal control theory. These characteristics include sample efficiency, optimality and gen-
eralizability. By iteratively updating the control laws based on probabilistic representation of the
learned dynamics, our method demonstrated encouraging performance compared to the state-of-
the-art model-based methods. In addition, our method showed promising potential in performing
multi-task control based on the compositionality of learned controllers. Besides the assumed struc-
tural constraint between control cost weight and uncertainty of the passive dynamics, the major
limitation is that we have not taken into account the uncertainty in the control matrix G. Future
work will focus on further generalization of this framework and applications to real systems.
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