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Abstract

Metric learning seeks a transformation of the feature space that enhances predic-
tion quality for a given task. In this work we provide PAC-style sample complexity
rates for supervised metric learning. We give matching lower- and upper-bounds
showing that sample complexity scales with the representation dimension when
no assumptions are made about the underlying data distribution. In addition, by
leveraging the structure of the data distribution, we provide rates fine-tuned to a
specific notion of the intrinsic complexity of a given dataset, allowing us to relax
the dependence on representation dimension. We show both theoretically and em-
pirically that augmenting the metric learning optimization criterion with a simple
norm-based regularization is important and can help adapt to a dataset’s intrin-
sic complexity yielding better generalization, thus partly explaining the empirical
success of similar regularizations reported in previous works.

1 Introduction

In many machine learning tasks, data is represented in a high-dimensional Euclidean space. The
L, distance in this space is then used to compare observations in methods such as clustering and
nearest-neighbor classification. Often, this distance is not ideal for the task at hand. For example,
the presence of uninformative or mutually correlated measurements arbitrarily inflates the distances
between pairs of observations. Metric learning has emerged as a powerful technique to learn a
metric in the representation space that emphasizes feature combinations that improve prediction
while suppressing spurious measurements. This has been done by exploiting class labels [1, 2] or
other forms of supervision [3] to find a Mahalanobis distance metric that respects these annotations.

Despite the popularity of metric learning methods, few works have studied how problem complexity
scales with key attributes of the dataset. In particular, how do we expect generalization error to
scale—both theoretically and practically—as one varies the number of informative and uninforma-
tive measurements, or changes the noise levels? In this work, we develop two general frameworks
for PAC-style analysis of supervised metric learning. The distance-based metric learning frame-
work uses class label information to derive distance constraints. The objective is to learn a metric
that yields smaller distances between examples from the same class than those from different classes.
Algorithms that optimize such distance-based objectives include Mahalanobis Metric for Clustering
(MMC) [4], Large Margin Nearest Neighbor (LMNN) [1] and Information Theoretic Metric Learn-
ing (ITML) [2]. Instead of using distance comparisons as a proxy, however, one can also optimize
for a specific prediction task directly. The second framework, the classifier-based metric learning
framework, explicitly incorporates the hypotheses associated with the prediction task to learn effec-
tive distance metrics. Examples in this regime include [5] and [6].



Our analysis shows that in both frameworks, the sample complexity scales with a dataset’s represen-
tation dimension (Theorems 1 and 3), and this dependence is necessary in the absence of assump-
tions about the underlying data distribution (Theorems 2 and 4). By considering any Lipschitz loss,
our results improve upon previous sample complexity results (see Section 6) and, for the first time,
provide matching lower bounds.

In light of our observation that data measurements often include uninformative or weakly informa-
tive features, we expect a metric that yields good generalization performance to de-emphasize such
features and accentuate the relevant ones. We thus formalize the metric learning complexity of a
given dataset in terms of the intrinsic complexity d of the optimal metric. For Mahalanobis metrics,
we characterize intrinsic complexity by the norm of the matrix representation of the metric. We
refine our sample complexity results and show a dataset-dependent bound for both frameworks that
relaxes the dependence on representation dimension and instead scales with the dataset’s intrinsic
metric learning complexity d (Theorem 7).

Based on our dataset-dependent result, we propose a simple variation on the empirical risk min-
imizing (ERM) algorithm that returns a metric (of complexity d) that jointly minimizes the ob-
served sample bias and the expected intra-class variance for metrics of fixed complexity d. This
bias-variance balancing criterion can be viewed as a structural risk minimizing algorithm that pro-
vides better generalization performance than an ERM algorithm and justifies norm-regularization
of weighting metrics in the optimization criteria for metric learning, partly explaining empirical
success of similar objectives [7, 8]. We experimentally validate how the basic principle of norm-
regularization can help enhance the prediction quality even for existing metric learning algorithms
on benchmark datasets (Section 5). Our experiments highlight that norm-regularization indeed helps
learn weighting metrics that better adapt to the signal in data in high-noise regimes.

2 Preliminaries

In this section, we define our notation, and explicitly define the distance-based and classifier-based
learning frameworks. Given a D-dimensional representation space X = RP, we want to learn a
weighting, or a metric' M* on X that minimizes some notion of error on data drawn from a fixed
unknown distribution D on X x {0,1}:

M* := argmin,; .\, err(M, D),

where M is the class of weighting metrics M := {M | M € RP*D. Omax (M) = 1} (we constrain
the maximum singular value o, to remove arbitrary scalings). For supervised metric learning,
this error is typically label-based and can be defined in two intuitive ways.

The distance-based framework prefers metrics M that bring data from the same class closer to-
gether than those from opposite classes. The corresponding distance-based error then measures how
the distances amongst data violate class labels:

err?l\ist(Mﬂ D) = ]E($1,y1),(3:2,y2)~D |:¢)\ ( Pu (xlv x2)v Y)} )

where ¢*(p,,,Y) is a generic distance-based loss function that computes the degree of violation
between weighted distance p,, (71, 22) := || M (21 —2)]||? and the label agreement Y := 1[y; = y5]
and penalizes it by factor A. For example, ¢ could penalize intra-class distances that are more than
some upper limit U and inter-class distances that are less than some lower limit L > U:

A ) min{1,\p,, -U].} ifY =1
¢L,U(PM7Y) = { min{l,)\[LM— pM]tr} otherwise ’ M

'Note that we are looking at the linear form of the metric M; usually the corresponding quadratic form
MT M is discussed in the literature, which is necessarily positive semi-definite.



where [A], := max{0, A}. MMC optimizes an efficiently computable variant of Eq. (1) by con-
straining the aggregate intra-class distances while maximizing the aggregate inter-class distances.
ITML explicitly includes the upper and lower limits with an added regularization on the learned M
to be close to a pre-specified metric of interest M.

While we will discuss loss-functions ¢ that handle distances between pairs of observations, it is easy
to extend to relative distances among triplets:

min{1, A T1,To) — T1,T ify; =y
(bt)\riple(pM (1'1,332),01“(53171'3)7(yl,y2,y3)) = {O { [pM( ' 2) pM( ! 3)]+} Othtl‘,I'WiSCQ
LMNN is a popular variant, in which instead of looking at all triplets, it focuses on triplets in local
neighborhoods, improving the quality of local distance comparisons.

The classifier-based framework prefers metrics M that directly improve the prediction quality for
a downstream task. Let H represent a real-valued hypothesis class associated with the prediction
task of interest (each h € H : X — [0, 1]), then the corresponding classifier-based error becomes:

ertiypon(M, D) i= inf Eirgpp | 1[1(M2) — y] = 1/2]].

Example classifier-based methods include [5], which minimizes ranking errors for information re-
trieval and [6], which incorporates network topology constraints for predicting network connectivity
structure.

3 Metric Learning Sample Complexity: General Case

In any practical setting, we estimate the ideal weighting metric M* by minimizing the empirical
version of the error criterion from a finite size sample from D. Let S,, denote a sample of size
m, and err(M, S,,) denote the corresponding empirical error. We can then define the empirical
risk minimizing metric based on m samples as M}, := argmin,, err(M, S,,), and compare its
generalization performance to that of the theoretically optimal M *, that is,

err(M),, D) — err(M™, D). (2)

m?

Distance-Based Error Analysis. Given an ii.d. sequence of observations zj,za,... from

D, z; = (x;,v;), we can pair the observations together to form a paired sample? Spair
{(#1,22)s- -, (Zam—1, 22m)} = {(214,22.)}, of size m, and define the sample-based distance
error induced by a metric M as

air 1 -
errgy (M, SP) = - Y "M (o (w10, m2.4), Lyri = ya.)-
=1

Then for any B-bounded-support distribution D (that is, each (x,y) ~ D, ||z|| < B), we have the
following.3*

Theorem 1 Let ¢* be a distance-based loss function that is \-Lipschitz in the first argument. Then
with probability at least 1 — 0 over an i.i.d. draw of 2m samples from an unknown B-bounded-

support distribution D paired as Shy", we have

sup [errhy (M, D)— erry (M, SP1)] < O (AB%/D In(1/9) /m).
MeM

>While we pair 2m samples into m independent pairs, it is common to consider all O(m?) possibly depen-
dent pairs. By exploiting independence we provide a simpler analysis yielding O(mfl/ %) sample complexity
rates, which is similar to the dependent case.

3We only present the results for paired comparisons; the results are easily extended to triplet comparisons.

4 All the supporting proofs are provided in Appendix A.

# Y3



This implies a bound on our key quantity of interest, Eq. (2). To achieve estimation error rate e,
m = Q((AB?/e)2D1n(1/6)) samples are sufficient, showing that one never needs more than a
number proportional to D examples to achieve the desired level of accuracy with high probability.

Since many applications involve high-dimensional data, we next study if such a strong dependency
on D is necessary. It turns out that even for simple distance-based loss functions like qbg v (c.f. Eq.
1), there are data distributions for which one cannot ensure good estimation error with fewer than
linear in D samples.

Theorem 2 Let A be any algorithm that, given an i.i.d. sample Sy, (of size m) from a fixed unknown
bounded support distribution D, returns a weighting metric from M that minimizes the empirical
error with respect to distance-based loss function q%,U. There exist A\ > 0,0 < U < L (indep. of

D), s.t. forall0 < €,0 < 6—14, there exists a bounded support distribution D, such that if m < 537112,

Ps,, errj‘ist(A(Sm),D) - errj\isl(M*7D) > €| > 0.

While this strong dependence on D may seem discouraging, note that here we made no assump-
tions about the underlying structure of the data distribution. One may be able to achieve a more
relaxed dependence on D in settings in which individual features contain varying amounts of useful
information. This is explored in Section 4.

Classifier-Based Error Analysis. In this setting, we consider an i.i.d. set of observations 21, 22, . . .
from D to obtain the unpaired sample S,,, = {z;}1", of size m. To analyze the generalization-ability
of weighting metrics optimized w.r.t. underlying real-valued hypothesis class H, we must measure
the classification complexity of H. The scale-sensitive version of VC-dimension, the fat-shattering
dimension, of a hypothesis class (denoted Fat, (#)) encodes the right notion of classification com-
plexity and provides a way to relate generalization error to the empirical error at a margin -y [9].

In the context of metric learning with respect to a fixed hypothesis class, define the empirical error
at a margin v as erry . (M, Sp) = infren 1 2 (i i)es.,, HMargin(h(Mz;),y;) < 7], where
Margin(g, y) := (2y — 1)(g — 1/2).

Theorem 3 Let H be a \-Lipschitz base hypothesis class. Pick any 0 < v < 1/2, and let m >
Fat,/16(H) > 1. Then with probability at least 1 — § over an i.i.d. draw of m samples S, from an
unknown B-bounded-support distribution D (e := min{~/2,1/2AB})

1 1 D2 D Fat,16(H m
sup |:errhyP0th(Ma D) - errk?ypoth(M7 Sm):| <0 (\/m In g + E In— + M In ()) .

MeMm €0 m 0

As before, this implies a bound on Eq. (2). To achieve estimation error rate €, m =
Q((D?*In(ADB/~) + Fat, 16(#) In(1/6))/€*) samples suffices. Note that the task of finding an
optimal metric only additively increases sample complexity over that of finding the optimal hypoth-
esis from the underlying hypothesis class. In contrast to the distance-based framework (Theorem 1),
here we get a quadratic dependence on D. The following shows that a strong dependence on D is
necessary in the absence of assumptions on the data distribution and base hypothesis class.

Theorem 4 Pick any 0 < v < 1/8. Let H be a base hypothesis class of A-Lipschitz functions that is
closed under addition of constants (i.e, h € H = h' € H, where h' : x — h(z) + ¢, forall c)
s.t. each h € H maps into the interval [1/2 — 4~,1/2 + 4| after applying an appropriate theshold.

Then for any metric learning algorithm A, and for any B > 1, there exists A > 0, for all 0 < €, <
1/64, there exists a B-bounded-support distribution D s.t. if m In®m < O (%)

Ps,, ~p[erthypon (M™, D) > erry oy (A(Sim), D) + €] >4,
where d := Fatzgs (H) is the fat-shattering dimension of H at margin 768~.



4 Sample Complexity for Data with Un- and Weakly Informative Features

We introduce the concept of the metric learning complexity of a given dataset. Our key observa-
tion is that a metric that yields good generalization performance should emphasize relevant features
while suppressing the contribution of spurious features. Thus, a good metric reflects the quality of
individual feature measurements of data and their relative value for the learning task. We can lever-
age this and define the metric learning complexity of a given dataset as the intrinsic complexity d
of the weighting metric that yields the best generalization performance for that dataset (if multiple
metrics yield best performance, we select the one with minimum d). A natural way to characterize
the intrinsic complexity of a weighting metric M is via the norm of the matrix M. Using metric
learning complexity as our gauge for feature-set richness, we now refine our analysis in both canoni-
cal frameworks. We will first analyze sample complexity for norm-bounded metrics, then show how
to automatically adapt to the intrinsic complexity of the unknown underlying data distribution.

4.1 Distance-Based Refinement

We start with the following refinement of the distance-based metric learning sample complexity for
a class of Frobenius norm-bounded weighting metrics.

Lemma 5 Let M be any class of weighting metrics on the feature space X = R”, and define
d :=sup e ||MTM|2. Let ¢* be any distance-based loss function that is \-Lipschitz in the first
argument. Then with probability at least 1 — § over an i.i.d. draw of 2m samples from an unknown

B-bounded-support distribution D paired as Sfffir, we have

sup [erry (M, D)— erryy (M, S| < O (ABQ\/dln(l /5) /m) .
MeM

Observe that if our dataset has a low metric learning complexity d < D, then considering an appro-
priate class of norm-bounded weighting metrics M can help sharpen the sample complexity result,
yielding a dataset-dependent bound. Of course, a priori we do not know which class of metrics is
appropriate; We discuss how to automatically adapt to the right complexity class in Section 4.3.

4.2 Classifier-Based Refinement

Effective data-dependent analysis of classifier-based metric learning requires accounting for poten-
tially complex interactions between an arbitrary base hypothesis class and the distortion induced
by a weighting metric to the unknown underlying data distribution. To make the analysis tractable
while still keeping our base hypothesis class H general, we assume that H is a class of two-layer
feed-forward networks.’> Recall that for any smooth target function f*, a two-layer feed-forward
neural network (with appropriate number of hidden units and connection weights) can approximate
f* arbitrarily well [10], so this class is flexible enough to include most reasonable target hypotheses.

More formally, define the base hypothesis class of two-layer feed-forward neural network with K
hidden units as H27 := {z Zfilwl oV(v; - x) | ||lwlli €1, ||v]l1 < 1}, where 07 : R —
[—1, 1] is a smooth, strictly monotonic, y-Lipschitz activation function with o7 (0) = 0. Then, for
generalization error w.r.t. any classifier-based \-Lipschitz loss function ¢*,

err}/l\ypoth(Ma D) = heig-ltg‘"e‘ ]E(z,y)ND [(b/\ (h(M"E), y)] )
o

we have the following.®

SWe only present the results for two-layer networks in Lemma 6; the results are easily extended to multi-
layer feed-forward networks.

8Since we know the functional form of the base hypothesis class H (i.e., a two layer feed-forward neural
net), we can provide a more precise bound than leaving it as Fat(H).



Lemma 6 Let M be any class of weighting metrics on the feature space X = RP, and define
d = Suppre HMTMHi For any v > 0, let H2" be a two layer feed-forward neural network
base hypothesis class (as defined above) and ¢* be a classifier-based loss function that \-Lipschitz
in its first argument. Then with probability at least 1 — § over an i.i.d. draw of m samples S,,, from
an unknown B-bounded support distribution D, we have

[ertypon (M, D)~ ety (M, S)] < O (BAyy/dIn(D/3)/m)

sup
MeM

4.3 Automatically Adapting to Intrinsic Complexity

While Lemmas 5 and 6 provide a sample complexity bound tuned to the metric learning complexity
of a given dataset, these results are not directly useful since one cannot select the correct norm-
bounded class M a priori, as the underlying distribution D is unknown. Fortunately, by considering
an appropriate sequence of norm-bounded classes of weighting metrics, we can provide a uniform
bound that automatically adapts to the intrinsic complexity of the unknown underlying data distri-
bution D.

Theorem 7 Define M := {M | ||[MTM|% < d}, and consider the nested sequence of weighting

metric classes M' C M? C ---. Let pg be any non-negative measure across the sequence M¢
such that )", g =1 (ford =1,2,---). Then for any X > 0, with probability at least 1 — § over an
i.i.d. draw of sample Sy, from an unknown B-bounded-support distribution D, foralld = 1,2, - - -,
and all M? € M?,

[er (M, D) — er* (MY, S,,,)] < O (C~B)\ dln(l/éud)/m) : 3)
where C := B for distance-based error, or C := v\/In D for classifier-based error (for H>7').

In particular, for a data distribution D that has metric learning complexity at most d € N, if there
are m > Q0 (d(CBX)?In(1/6pq)/€®) samples, then with probability at least 1 — §

[err* (M, D) — err™(M*,D)] < O(e),

for Mrrgg = a;/lgrﬂin [GHA(M’ Sm) + Alvfdl\/l]’ AJVI::CBA ]n(&udM)*l/m ’ dM = H|MTM||3:| '
€

The measure jiq above encodes our prior belief on the complexity class M? from which a target
metric is selected by a metric learning algorithm given the training sample S,,. In absence of any
prior beliefs, pi4 can be set to 1/D (for d = 1,..., D) for scale constrained weighting metrics
(0max = 1). Thus, for an unknown underlying data distribution D with metric learning complexity
d, with number of samples just proportional to d, we can find a good weighting metric.

This result also highlights that the generalization error of any weighting metric returned by an al-
gorithm is proportional to the (smallest) norm-bounded class to which it belongs (cf. Eq. 3). If two
metrics M; and My have similar empirical errors on a given sample, but have different intrinsic
complexities, then the expected risk of the two metrics can be considerably different. We expect the
metric with lower intrinsic complexity to yield better generalization error. This partly explains the
observed empirical success of norm-regularized optimization for metric learning [7, 8].

Using this as a guiding principle, we can design an improved optimization criteria for metric learning
that jointly minimizes the sample error and a Frobenius norm regularization penalty. In particular,
. T2

jnin - err(M, Sm) 4+ A MM @
for any error criteria ‘err’ used in a downstream prediction task and a regularization parameter A.
Similar optimizations have been studied before [7, 8], here we explore the practical efficacy of
this augmented optimization on existing metric learning algorithms in high noise regimes where a
dataset’s intrinsic dimension is much smaller than its representation dimension.
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Figure 1: Nearest-neighbor classification performance of LMNN and ITML metric learning algorithms with-
out regularization (dashed red lines) and with regularization (solid blue lines) on benchmark UCI datasets. The
horizontal dotted line is the classification error of random label assignment drawn according to the class pro-
portions, and solid gray line shows classification error of k-NN performance with respect to identity metric (no
metric learning) for baseline reference.

5 Empirical Evaluation

Our analysis shows that the generalization error of metric learning can scale with the representation
dimension, and regularization can help mitigate this by adapting to the intrinsic metric learning
complexity of the given dataset. We want to explore to what degree these effects manifest in practice.

We select two popular metric learning algorithms, LMNN [1] and ITML [2], that are used to find
metrics that improve nearest-neighbor classification quality. These algorithms have varying degrees
of regularization built into their optimization criteria: LMNN implicitly regularizes the metric via its
“large margin” criterion, while ITML allows for explicit regularization by letting the practitioners
specify a “prior” weighting metric. We modified the LMNN optimization criteria as per Eq. (4) to
also allow for an explicit norm-regularization controlled by the trade-off parameter A.

We can evaluate how the unregularized criteria (i.e., unmodified LMNN, or ITML with the prior
set to the identity matrix) compares to the regularized criteria (i.e., modified LMNN with best A, or
ITML with the prior set to a low-rank matrix).

Datasets. We use the UCI benchmark datasets for our experiments: IRIS (4 dim., 150 samples),
WINE (13 dim., 178 samples) and [ONOSPHERE (34 dim., 351 samples) datasets [11]. Each dataset
has a fixed (unknown, but low) intrinsic dimension; we can vary the representation dimension by
augmenting each dataset with synthetic correlated noise of varying dimensions, simulating regimes
where datasets contain large numbers of uninformative features. Each UCI dataset is augmented
with synthetic D-dimensional correlated noise as detailed in Appendix B.

Experimental setup. Each noise-augmented dataset was randomly split between 70% training, 10%
validation, and 20% test samples. We used the default settings for each algorithm. For regularized
LMNN, we picked the best performing trade-off parameter A from {0,0.1,0.2, ..., 1} on the valida-
tion set. For regularized ITML, we seeded with the rank-one discriminating metric, i.e., we set the
prior as the matrix with all zeros, except the diagonal entry corresponding to the most discriminating
coordinate set to one. All the reported results were averaged over 20 runs.

Results. Figure 1 shows the nearest-neighbor performance (with £k = 3) of LMNN and ITML on
noise-augmented UCI datasets. Notice that the unregularized versions of both algorithms (dashed
red lines) scale poorly when noisy features are introduced. As the number of uninformative features
grows, the performance of both algorithms quickly degrades to that of classification performance in
the original unweighted space with no metric learning (solid gray line), showing poor adaptability
to the signal in the data.

The regularized versions of both algorithms (solid blue lines) significantly improve the classification
performance. Remarkably, regularized ITML shows almost no degradation in classification perfor-



mance, even in very high noise regimes, demonstrating a strong robustness to noise. These results
underscore the value of regularization in metric learning, showing that regularization encourages
adaptability to the intrinsic complexity and improved robustness to noise.

6 Discussion and Related Work

Previous theoretical work on metric learning has focused almost exclusively on analyzing upper-
bounds on the sample complexity in the distance-based framework, without exploring any intrinsic
properties of the input data. Our work improves these results and additionally analyzes the classifier-
based framework. It is, to best of our knowledge, the first to provide lower bounds showing that the
dependence on D is necessary. Importantly, it is also the first to provide an analysis of sample
rates based on a notion of intrinsic complexity of a dataset, which is particularly important in metric
learning, where we expect the representation dimension to be much higher than intrinsic complexity.

[12] studied the norm-regularized convex losses for stable algorithms and showed an upper-bound
sublinear in /D, which can be relaxed by applying techniques from [13]. We analyze the ERM
criterion directly (thus no assumptions are made about the optimization algorithm), and provide a
precise characterization of when the problem complexity is independent of D (Lm. 5). Our lower-
bound (Thm. 2) shows that the dependence on D is necessary for ERM in the assumption-free case.

[14] and [15] analyzed the ERM criterion, and are most similar to our results providing an upper-
bound for the distance-based framework. [14] shows a O(m~'/2) rate for thresholds on bounded
convex losses for distance-based metric learning without explicitly studying the dependence on
D. Our upper-bound (Thm. 1) improves this result by considering arbitrary (possibly non-convex)
distance-based Lipschitz losses and explicitly revealing the dependence on D. [15] provides an alter-
nate ERM analysis of norm-regularized metrics and parallels our norm-bounded analysis in Lemma
5. While they focus on analyzing a specific optimization criterion (thresholds on the hinge loss with
norm-regularization), our result holds for general Lipschitz losses. Our Theorem 7 extends it further
by explicitly showing when we can expect good generalization performance from a given dataset.

[16] provides an interesting analysis for robust algorithms by relying upon the existence of a partition
of the input space where each cell has similar training and test losses. Their sample complexity
bound scales with the partition size, which in general can be exponential in D.

It is worth emphasizing that none of these closely related works discuss the importance of or lever-
age the intrinsic structure in data for the metric learning problem. Our results in Section 4 formalize
an intuitive notion of dataset’s intrinsic complexity for metric learning, and show sample complex-
ity rates that are finely tuned to this metric learning complexity. Our lower bounds indicate that
exploiting the structure is necessary to get rates that don’t scale with representation dimension D.

The classifier-based framework we discuss has parallels with the kernel learning and similarity learn-
ing literature. The typical focus in kernel learning is to analyze the generalization ability of linear
separators in Hilbert spaces [17, 18]. Similarity learning on the other hand is concerned about find-
ing a similarity function (that does not necessarily has a positive semidefinite structure) that can best
assist in linear classification [19, 20]. Our work provides a complementary analysis for learning
explicit linear transformations of the given representation space for arbitrary hypotheses classes.

Our theoretical analysis partly justifies the empirical success of norm-based regularization as well.
Our empirical results show that such regularization not only helps in designing new metric learning
algorithms [7, 8], but can even benefit existing metric learning algorithms in high-noise regimes.
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