
A Proof of Theorem 1

Before we prove the main result, we provide a couple of useful lemmas. The first shows that �(t, y)
is an upper bound on L(t, y).
Lemma 9. For any t 2 Rd, y 2 [`], we have �(t, y) � L(t, y).

Proof. We have,

max

�2[k]

�
L(�, y)�

⌦
pred

�1

(�
y

)� pred

�1

(�), t
↵�

� L(pred(t), y)�
⌦
pred

�1

(�
y

)� pred

�1

(pred(t)), t
↵

� L(t, y).

Note that the last step is by the similarity maximization property of pred�1

(pred(t)).

The next lemma proves a key self-bounding property of the derivative of �(t, y), w.r.t. t, that is
crucial for the analysis of the generalized perceptron algorithm to go through.
Lemma 10. Fix a t 2 Rd, y 2 [`] such that L(t, y) > 0. Then, we have

kr
t

�(t, y)k2
2

 4

cL
L(t, y)

Proof. Note that r
t

�(t, y) is
pred

�1

(�̃
t,y

)� pred

�1

(�
y

)

where
�̃
t,y

= argmax

�2[k]

�
L(�, y)�

⌦
pred

�1

(�
y

)� pred

�1

(�), t
↵�

So, kr
t

�(t, y)k2
2

 (k pred�1

(�̃
t,y

)k
2

+ k pred�1

(�
y

)k
2

)

2  4. On the other hand, on a mistake
round, L(t, y) � cL.

Finally, the lemma below states that if t gets large enough margin on a label y then �(t, y) is zero.
Lemma 11. If t 2 Rd

has margin � � CL on y, then �(t, y) = 0.

Proof. Note that for any � /2 ⌃

y

,

L(�, y)�
⌦
pred

�1

(�
y

)� pred

�1

(�), t
↵
 L(�, y)� �  L(�, y)� CL  0

For any �0
y

2 ⌃

y

, we have L(�0
y

, y) = 0 and
⌦
pred

�1

(�
y

), t
↵
=

⌦
pred

�1

(�0
y

), t
↵
= max

�

⌦
pred

�1

(�), t
↵
.

Therefore, �(t, y) = 0.

Now we have all the ingredients to prove the main result.

Proof of Theorem 1. Recall that a mistake round is one where L(W
⌧

X
⌧

, Y
⌧

) > 0. Define the fol-
lowing sequence of convex functions:

f
⌧

(W ) =

⇢
0 on non-mistake round
W 7! �(WX

⌧

, Y
⌧

) on mistake round

Consider online gradient descent (OGD) updates: W
⌧+1

= W
⌧

� ⌘rf
⌧

(W
⌧

). Standard OGD
analysis (see, e.g., [6, Eq. (2.15)]) implies that, for any W (we will deal with the issue of choosing
⌘ shortly):

nX

⌧=1

f
⌧

(W
⌧

) 
nX

⌧=1

f
⌧

(W ) +

⌘

2

nX

⌧=1

kr
⌧

k2
F

+

kWk2
F

2⌘
(3)
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where r
⌧

= r
W

f
⌧

(W
⌧

).

On non-mistake rounds, the gradient as well as loss, are both zero. On mistake rounds, the gradient
is

r
⌧

= r
W

f
⌧

(W
⌧

) = r
t

�(W
⌧

X
⌧

, Y
⌧

)X>
⌧

and therefore
kr

⌧

k2
F

 4

cL
R2L(W

⌧

X
⌧

, Y
⌧

)

by the self-bounding property (Lemma 10) and boundedness of X
⌧

. Therefore, we have

⌘

2

nX

⌧=1

kr
⌧

k2
F

 2⌘R2

cL

nX

⌧=1

L(W
⌧

X
⌧

, Y
⌧

) (4)

On non-mistake rounds, f
⌧

as well as loss, are both zero. On mistake rounds,

f
⌧

(W
⌧

) = �(W
⌧

X
⌧

, Y
⌧

) � L(W
⌧

X
⌧

, Y
⌧

)

by upper bound property of � (Lemma 9). So we also have
nX

⌧=1

L(W
⌧

X
⌧

, Y
⌧

) 
nX

⌧=1

f
⌧

(W
⌧

) (5)

Now plugging in (5) and (4) into (3), we get
nX

⌧=1

L(W
⌧

X
⌧

, Y
⌧

) 
nX

⌧=1

f
⌧

(W ) +

2⌘R2

cL

nX

⌧=1

L(W
⌧

X
⌧

, Y
⌧

) +

kWk2
F

2⌘

By assumption, the sequence (X
⌧

, y
⌧

) is linearly separable with margin �. That is, there exists a
W ? with margin � on (X

⌧

, y
⌧

). By the scaling property of margin, this means that W = CLW
?/�

has margin CL on (X
⌧

, y
⌧

). For this W , by Lemma 11, we have
P

n

⌧=1

f
⌧

(W ) = 0. Since kWk2
F


C2

L/�
2, we have the bound

✓
1� 2⌘R2

cL

◆
nX

⌧=1

L(W
⌧

X
⌧

, Y
⌧

)  C2

L

2�2⌘

and choosing ⌘ = cL/(4R
2

) gives the bound
nX

⌧=1

L(W
⌧

X
⌧

, Y
⌧

)  4R2C2

L

cL�2

B Algorithm Variants

We provide two variants of Predtron. First, we present Predtron.LD, a loss driven version that uses a
surrogate that is not dependent on the loss but incorporates the loss in the stepsize. Then, we present
Predtron.Link, a version that allows for margin to be defined w.r.t. an arbitrary norm and uses an
appropriate link function in its updates.

B.1 Choice of Surrogate

Consider using the surrogate:

�
1

(t, y) = max{0, 1 + max

�/2⌃

y

⌦
pred

�1

(�), t
↵
�
⌦
pred

�1

(�
y

), t
↵
}

For any y, �
1

(t, y) is obviously non-negative and convex in t. Moreover, when a mistake is made
this surrogate is at least 1.
Lemma 12. Suppose t, y are such that L(t, y) > 0. Then �

1

(t, y) � 1.
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Proof. Since L(t, y) > 0, there exists � /2 ⌃

y

such that
⌦
pred

�1

(�), t
↵
= max

�

0
⌦
pred

�1

(�0
), t
↵
.

Therefore, we have
max

�/2⌃

y

⌦
pred

�1

(�), t
↵
�
⌦
pred

�1

(�
y

), t
↵

and therefore �
1

(t, y) � 1.

The surrogate �
1

is also zero given large enough margin.
Lemma 13. If t 2 Rd

has margin � � 1 on y, then �
1

(t, y) = 0.

Proof. Note that for any � /2 ⌃

y

,

1�
⌦
pred

�1

(�
y

)� pred

�1

(�), t
↵
 1� �  0.

Therefore,
1 + max

�/2⌃

y

⌦
pred

�1

(�), t
↵
�
⌦
pred

�1

(�
y

), t
↵
 0

and hence �
1

(t, y) = 0.

Algorithm 2 Predtron.LD: A Loss Driven Version of Predtron
1: W

1

 0
2: for ⌧ = 1, 2, . . . do
3: Receive X

⌧

2 Rp

4: Predict �
⌧

= pred(W
⌧

X
⌧

) 2 [k]
5: Receive label y

⌧

2 [`]
6: if L(�

⌧

, y
⌧

) > 0 then
7: (t, y) = (W

⌧

X
⌧

, y
⌧

)

8: �̃
⌧

= argmax

�/2⌃

y

⌦
pred

�1

(�), t
↵
2 [k]

9: r
⌧

= (pred

�1

(�̃
⌧

)� pred

�1

(�
y

)) ·X>
⌧

2 Rd⇥p

10: W
⌧+1

= W
⌧

� ⌘L(�
⌧

, y
⌧

) ·r
⌧

11: else
12: W

⌧+1

= W
⌧

13: end if
14: end for

Theorem 14. Suppose the dataset (X
1

, y
1

), . . . , (X
n

, y
n

) is linearly separable with margin �. Then

the sequence W
⌧

generated by Algorithm 2 with ⌘ = 1/(4CLR
2

) satisfies the loss bound

nX

⌧=1

L(W
⌧

X
⌧

, y
⌧

)  4R2CL

�2

where kX
⌧

k
2

 R for all ⌧ .

Proof. As before, let a mistake round be one where L(W
⌧

X
⌧

, Y
⌧

) > 0. Let L
⌧

= L(W
⌧

X
⌧

, y
⌧

).
Define the following sequence of convex functions:

f
⌧

(W ) = L
⌧

· �
1

(WX
⌧

, y
⌧

).

Algorithm 2 is simply running online gradient descent (OGD) updates: W
⌧+1

= W
⌧

�rf
⌧

(W
⌧

).
This is trivial to see for non-mistake round. On mistake rounds, observe that the outer maximum in
the definition of �

1

is not achieved at 0 and hence the gradient is given by

r
t

�(t, y) = pred

�1

(�̃)� pred

�1

(�
y

)

where
�̃ = argmax

�/2⌃

y

⌦
pred

�1

(�), t
↵
.
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Setting r
⌧

= r
W

f
⌧

(W
⌧

) and using standard OGD analysis (see, e.g., [6, Eq. (2.15)]) we get that,
for any W :

nX

⌧=1

f
⌧

(W
⌧

) 
nX

⌧=1

f
⌧

(W ) +

⌘

2

nX

⌧=1

kr
⌧

k2
F

+

kWk2
F

2⌘


nX

⌧=1

f
⌧

(W ) +

⌘

2

nX

⌧=1

L2

⌧

· kr
t

�
1

(X
⌧

W
⌧

, y
⌧

)k2
2

· kX
⌧

k2
2

+

kWk2
F

2⌘


nX

⌧=1

f
⌧

(W ) +

⌘

2

nX

⌧=1

CL · L
⌧

· 4 ·R2

+

kWk2
F

2⌘

=

nX

⌧=1

f
⌧

(W ) + 2⌘CLR
2

nX

⌧=1

L
⌧

+

kWk2
F

2⌘
.

By Lemma 12, we know that L
⌧

 f
⌧

(W
⌧

). Further, by assumption, the sequence (X
⌧

, y
⌧

) is
linearly separable with margin �. That is, there exists a W ? with margin � on (X

⌧

, y
⌧

). By the
scaling property of margin, this means that W = W ?/� has margin 1 on (X

⌧

, y
⌧

). For this W , by
Lemma 13, we have

P
n

⌧=1

f
⌧

(W ) = 0. Since kWk2
F

 1/�2, we have the bound

�
1� 2⌘CLR

2

� nX

⌧=1

L
⌧

 1

2�2⌘

and choosing ⌘ = 1/(4CLR
2

) gives the bound
nX

⌧=1

L(W
⌧

X
⌧

, Y
⌧

)  4R2CL

�2
.

B.2 Choice of Norm

Algorithm 3 Predtron.Link: Predtron with a Link Function (r )�1

1: ⇥

1

 0;W
1

= (r )�1

(⇥

1

)

2: for ⌧ = 1, 2, . . . do
3: Receive X

⌧

2 Rp

4: Predict �
⌧

= pred(W
⌧

X
⌧

) 2 [k]
5: Receive label y

⌧

2 [`]
6: if L(�

⌧

, y
⌧

) > 0 then
7: (t, y) = (W

⌧

X
⌧

, y
⌧

)

8: �̃
⌧

= argmax

�2[k]

�
L(�, y)�

⌦
pred

�1

(�
y

)� pred

�1

(�), t
↵�
2 [k]

9: r
⌧

= (pred

�1

(�̃
⌧

)� pred

�1

(�
y

)) ·X>
⌧

2 Rd⇥p

10: ⇥

⌧+1

= ⇥

⌧

� ⌘r
⌧

; W
⌧+1

= (r )�1

(⇥

⌧+1

)

11: else
12: ⇥

⌧+1

= ⇥

⌧

; W
⌧+1

= W
⌧

13: end if
14: end for

Let k · k be a norm and  (W ) =

1

2

kWk2 be ↵-strongly convex w.r.t. k · k. Note that  (0) = 0 and
r (cW ) = cr (W ) for c > 0. Consider Algorithm 3, a version of Algorithm 1 that uses inverse
of the mapping r to generate iterates. Since  is strongly convex, the mapping r is indeed
invertible. Let k · k

?

be the norm dual to k · k. Since the gradients r
⌧

are rank one, we need one
additional property. Suppose there exists a norm |||·||| such that, for any u 2 Rd, v 2 Rp, we have

kuv>k
?

 kuk
2

· |||v||| (6)

We can now prove a loss bound for Algorithm 3.
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Theorem 15. Suppose  , k · k, k · k
?

, |||·||| are as above. In particular, let  be ↵-strongly convex

w.r.t. k · k. Suppose the dataset (X
1

, y
1

), . . . , (X
n

, y
n

) is linearly separable by a unit norm W ?

(kW ?k = 1), by margin �. Then, Algorithm 3 with ⌘ = ↵cL/(4R
2

) satisfies the loss bound

nX

⌧=1

L(W
⌧

X
⌧

, Y
⌧

)  4R2C2

L

↵cL�2

where |||X
⌧

|||  R.

Proof. Recall that a mistake round is one where L(W
⌧

X
⌧

, Y
⌧

) > 0. Define the following sequence
of convex functions:

f
⌧

(W ) =

⇢
0 on non-mistake round
W 7! �(WX

⌧

, Y
⌧

) on mistake round

Consider online mirror descent (OMD) updates: r (W
⌧+1

) = r (W
⌧

) � ⌘rf
⌧

(W
⌧

). Standard
OMD analysis (see, e.g., [6, Theorem 2.21]) implies that, for any W (we will deal with the issue of
choosing ⌘ shortly):

nX

⌧=1

f
⌧

(W
⌧

) 
nX

⌧=1

f
⌧

(W ) +

⌘

2↵

nX

⌧=1

kr
⌧

k2
?

+

kWk2

2⌘
(7)

where r
⌧

= r
W

f
⌧

(W
⌧

).

On non-mistake rounds, the gradient as well as loss, are both zero. On mistake rounds, the gradient
is

r
⌧

= r
W

f
⌧

(W
⌧

) = r
t

�(W
⌧

X
⌧

, Y
⌧

)X>
⌧

and therefore

kr
⌧

k2
?

 kr
t

�(W
⌧

X
⌧

, Y
⌧

)k2
2

· |||X
⌧

|||2  4

cL
R2L(W

⌧

X
⌧

, Y
⌧

)

by the inequality (6), the self-bounding property (Lemma 10), and boundedness of X
⌧

. Therefore,
we have

⌘

2↵

nX

⌧=1

kr
⌧

k2
F

 2⌘R2

↵cL

nX

⌧=1

L(W
⌧

X
⌧

, Y
⌧

) (8)

On non-mistake rounds, f
⌧

as well as loss, are both zero. On mistake rounds,
f
⌧

(W
⌧

) = �(W
⌧

X
⌧

, Y
⌧

) � L(W
⌧

X
⌧

, Y
⌧

)

by upper bound property of � (Lemma 9). So we also have
nX

⌧=1

L(W
⌧

X
⌧

, Y
⌧

) 
nX

⌧=1

f
⌧

(W
⌧

) (9)

Now plugging in (9) and (8) into (7), we get
nX

⌧=1

L(W
⌧

X
⌧

, Y
⌧

) 
nX

⌧=1

f
⌧

(W ) +

2⌘R2

↵cL

nX

⌧=1

L(W
⌧

X
⌧

, Y
⌧

) +

kWk2

2⌘

By assumption, the sequence (X
⌧

, y
⌧

) is linearly separable with margin �. That is, there exists a
W ? with margin � on (X

⌧

, y
⌧

). By the scaling property of margin, this means that W = CLW
?/�

has margin CL on (X
⌧

, y
⌧

). For this W , by Lemma 11, we have
P

n

⌧=1

f
⌧

(W ) = 0. Since kWk2 
C2

L/�
2, we have the bound

✓
1� 2⌘R2

↵cL

◆
nX

⌧=1

L(W
⌧

X
⌧

, Y
⌧

)  C2

L

2�2⌘

and choosing ⌘ = ↵cL/(4R
2

) gives the bound
nX

⌧=1

L(W
⌧

X
⌧

, Y
⌧

)  4R2C2

L

↵cL�2
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C Details of Results in Section 3

C.1 Classification with REJECT option

We note that the separability requirement to allow REJECT option is more stringent than the standard
classification in the following sense. If a dataset is linearly separable with margin � for the standard
classification, it may no longer be linearly separable with the same margin � if we allow REJECT
option. The other way, however, holds true. This is observed by examining the definition of margin
requirement in Section 2.2. Consider 1 � �

1

� �
2

> 0. Then, a score t 2 R2 has a margin � > 0

on label y = 1, iff pred(t) = 1 and t
1

� max

�
t
2

, t

1

+t

2p
2

�
+ �, and a margin � > 0 on label y = 2,

iff pred(t) = 2 and t
2

� max

�
t
1

, t

1

+t

2p
2

�
+ �. For the case �

2

= 0 (i.e. instance of class 2 can be
predicted as REJECT without penalty), then a score t 2 R2 has a margin � > 0 on label y = 2, iff
pred(t) 2 {2, REJECT} and t

1

 min

�
t
2

, t

1

+t

2p
2

�
� �.

C.2 Subset losses for Multilabel learning

For a given y and t, using the definition of rep in Section 3 for multilabel learning, the surrogate (2)
for a given loss L can be expressed as:

�(t, y) = �
⌦
pred

�1

(�
y

), t
↵
+ max

v2{+1,�1}m

L(v, y) + hv, ti .

Clearly, we can compute the surrogate (and its gradient) efficiently if we can compute the max

efficiently. Define the indicator function I(P ) = 1 if predicate P is true or 0 otherwise. Let:

a =

X

i

I(v
i

= 1)I(i 2 y), b =
X

i

I(v
i

= 1)I(i 62 y),

c =
X

i

I(v
i

= �1)I(i 2 y), d =

X

i

I(v
i

= �1)I(i 62 y).

In the following, we show that the max in the surrogate can be computed in time O(m2

), for any
loss which can be expressed as a function of a, b, c and d, i.e.

max

v2{+1,�1}m

f(a, b, c, d) + hv, ti .

The three subset losses listed in main text take this form: LIsErr(v, y) = I(b = 0)I(c = 0),
LHam(v, y) = b + c, and LErrSetSize(v, y) = bc. The key idea is that though the max itself is

over 2m quantities, there are only O(m2

) possible values for C =


a b
c d

�
— note that fixing a

(where 0  a  m) also fixes c = |y| � a, and similarly fixing d (where 0  d  m) also fixes
b = m� |y|� d. For any fixed C (i.e. fixing a, b, c and d), let V

abcd

denote the set of vectors v that
yield C. We can compute maxv2V

C

hv, ti in closed form, because the objective to be maximized is
linear. Let I

pos

denote the classes in y sorted in decreasing order of t. Let I
neg

denote the classes
not in y sorted in decreasing order of t. Now, for v to be optimal, we set the values corresponding
to the first a indices in I

pos

to 1, the remaining indices in I
pos

to -1, the last d indices in I
neg

to�1,
and the remaining indices in I

neg

to +1.

The procedure can be implemented with two for loops, where in the innermost for loop, we will
set v⇤

C

that maximizes maxv2V
C

hv, ti, compute J
C

= f(a, b, c, d) + hv⇤
C

, ti and keep track of the
best J

C

so far. Finally we note that faster implementations can be obtained for specific functions
f(a, b, c, d).

D Proofs for Results in Section 4

Proof of Lemma 3. Both the surrogate as well as its gradient (w.r.t. t) can be computed if we can
compute

�̃
t,y

= argmax

�2[k]

�
L(�, y)�

⌦
pred

�1

(�
y

)� pred

�1

(�), t
↵�
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Let L(�, y) be a loss derived from an NDCG type gain function. That is, let

L(�, y) = 1� 1

W (y)

mX

i=1

F (y(i))

G(�(i))

for some monotonically increasing functions F,G and

W (r) = max

�

mX

i=1

F (y(i))

G(�(i))
.

Note that W (r) can be computed easily by sorting y. Since rep(�) = pred

�1

(�) = f(�)/Z, where
Z =

pP
i

f2

(i), we have,

�̃
t,y

= argmax

�2[k]

�
L(�, y)�

⌦
pred

�1

(�
y

)� pred

�1

(�), t
↵�

= argmax

�2[k]

�
L(�, y) +

⌦
pred

�1

(�), t
↵�

= argmax

�2[k]

 
1� 1

W (y)

mX

i=1

F (y(i))

G(�(i))
+

1

Z

mX

i=1

f(�(i))t
i

!

= argmax

�2[k]

 
mX

i=1

�F (y(i))

W (y)G(�(i))
+

f(�(i))t
i

Z

!
.

This is a linear assignment problem where the cost C(i, j) of assigning item i to position j is

C(i, j) =
�F (y(i))

W (y)G(j)
+

f(j)t
i

Z

which can be solved, e.g., using the O(m3

) time complexity Hungarian algorithm (also known as
Munkres’ algorithm).

Proof of Lemma 4. Note that y is sorted in decreasing order with relevance grade changes at posi-
tions i

1

, . . . , i
N

. That is, the entries of y obey the following ordering:
y(1) = . . . = y(i1 � 1) > y(i1) = . . . = y(i2 � 1) > y(i2) = [. . .] = y(iN � 1) > y(iN ) = . . . = y(m)

Define N +1 sets G
j

= {i
j

, . . . , i
j+1

� 1} for j 2 {0, . . . , k} where i
0

= 1 and i
N+1

= m+1 to
handle boundary cases. If t has margin � on y, it has to be first of all compatible with y. So entries
of t in group j � 1 should be equal to each other and larger than the entries in group j:

t
i

j�1

= . . . = t
i

j

�1

> t
i

j

= . . . = t
i

j+1

�1

for j 2 [N ]. Moreover, we should have
min

�2⌃

y

hf(�), ti � max

�

0
/2⌃

y

hf(�), ti+ �0

where �0 = �Z and Z is the normalization needed so that f(�)/Z is a unit vector.

Note that �0 /2 ⌃

y

means that there is at least one “bad” pair (i, i0) such that y(i) > y(i0) (and
hence t

i

> t
i

0 ) and yet �0
(i) > �0

(i0). We now claim that the maximum on the RHS is achieved at a
�0 /2 ⌃

y

with exactly one such bad pair. This is because, if we swap a bad pair in �00 to get a new �0

then hf(�00
), ti < hf(�0

), ti. So we can eliminate all bad pairs but one. This keeps us outside of ⌃
y

and increases hf(�0
), ti. We further claim that if there is exactly one bad pair (i, i0) then i, i0 have to

be in adjacent groups with one of them right next to a group boundary. This is because, otherwise,
there will have to be bad pairs other than (i, i0).

Let the bad pair be in groups j � 1 and j, i.e. i 2 G
j�1

, i0 2 G
j

and �(i) = i0,�(i0) = i. The
margin condition then says that,

f(i)t
i

j

�1

+ f(i0)t
i

j

� f(i0)t
i

j

�1

+ f(i)t
i

j

+ �0

which means
t
i

j

�1

� t
i

j

� max

i2G

j�1

,i

02G

j

�0

f(i)� f(i0)

Since f is strictly decreasing, the worst case is when i = i
j

�1, i0 = i
j

. This proves the lemma.
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Proof of Corollary 5. The condition kX
⌧

k
op

arises because the form of r
⌧

in the subset ranking
setting implies kr

⌧

k
2

 2 kX
⌧

k
op

. For L = L
NDCG

, CL = 1 and cL can be computed as follows.
Let y be sorted in decreasing order of its entries. Minimum non-zero loss occurs if the last two
documents are relevant and irrelevant get ranked incorrectly (errors higher up in the ranking will
only incur more loss). So the minimum possible non-zero loss for a given y is

2

y(m�1)�1

log

2

(1+m�1)

+

2

y(m)�1

log

2

(1+m)

�
⇣

2

y(m�1)�1

log

2

(1+m)

+

2

y(m)�1

log

2

(1+m�1)

⌘

P
m

i=1

2

y(i)�1

log

2

(1+i)

�
1

log

2

m

� 1

log

2

(m+1)

(2

Y

max � 1)

P
m

i=1

1

log

2

(1+i)

=

log

2

(1+1/m)

log

2

m·log
2

(m+1)

(2

Y

max � 1)

P
m

i=1

1

log

2

(1+i)

�
1

2m·log2

2

(m+1)

(2

Y

max � 1) · m

log

2

2

=

1

2(2

Y

max � 1)m2

log

2

2

(m+ 1)

.

Therefore, the bound in Theorem 1 becomes

4C2

LR
2

cL�2
 2

Y

max

+3m2

log

2

2

(2m)R2

�2
.

Proof of Corollary 6. We use Theorem 15 with  (w) = kwk2
r

where r = log p
0

/(log p
0

� 1). For
such an r, kwk

r

 kwk
1

 3kwk
r

. Also, k · k = k · k
r

, k · k
?

= k · k
q

where q = log p
0

. Note that
 is (r � 1)-strongly convex w.r.t. k · k

r

(see, e.g., [17]). Since

kX>uk
q

 3kX>uk1  3kX>k
2!1kuk2

the norm |||·||| is simply 3kX>k
2!1 where kX>k

2!1 = max

j=1,...,p

kX
j

k
2

(X
j

’s are columns of
X). Since kw?k

r

 kw?k
1

there obviously exists a unit `
r

norm vector that has margin at least �
on the dataset. The bound in Theorem 15 then becomes

4(3R)

2C2

L

(r � 1)cL�2
 36R2

log p
0

C2

L

cL�2
.

Corollary nows follows by using the bounds for CL, cL from proof of Corollary 5.

E Proofs for Results in Section 5

Proof of Corollary 7. Corollary follows immediately from Theorem 1 and the CL, cL calculations
in the proof of Corollary 5.

Proof of Corollary 8. We use Theorem 15 with  (w) = kWk2
2,r

where r = log p/(log p� 1). For
such an r, kWk

2,r

 kWk
2,1

 3kWk
2,r

. Also, k · k = k · k
2,r

, k · k
?

= k · k
2,q

where q = log p.
Note that  is (r � 1)-strongly convex w.r.t. k · k

2,r

(see, e.g., [17]). Since

kuv>k
2,q

 3kuv>k
2,1 = 3kuk

2

kvk1
the norm |||·||| is simply 3k · k1. Since kW ?k

2,r

 kW ?k
2,1

there obviously exists a unit group
(2, r)-norm matrix that has margin at least � on the dataset. The bound in Theorem 15 then becomes

4(3R)

2C2

L

(r � 1)cL�2
 36R2

log p C2

L

cL�2
.

Corollary nows follows by using the bounds for CL, cL from proof of Corollary 5.
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