
Winner-Take-All Autoencoders

Alireza Makhzani, Brendan Frey
University of Toronto

makhzani, frey@psi.toronto.edu

Abstract

In this paper, we propose a winner-take-all method for learning hierarchical sparse
representations in an unsupervised fashion. We first introduce fully-connected
winner-take-all autoencoders which use mini-batch statistics to directly enforce a
lifetime sparsity in the activations of the hidden units. We then propose the convo-
lutional winner-take-all autoencoder which combines the benefits of convolutional
architectures and autoencoders for learning shift-invariant sparse representations.
We describe a way to train convolutional autoencoders layer by layer, where in
addition to lifetime sparsity, a spatial sparsity within each feature map is achieved
using winner-take-all activation functions. We will show that winner-take-all au-
toencoders can be used to to learn deep sparse representations from the MNIST,
CIFAR-10, ImageNet, Street View House Numbers and Toronto Face datasets,
and achieve competitive classification performance.

1 Introduction

Recently, supervised learning has been developed and used successfully to produce representations
that have enabled leaps forward in classification accuracy for several tasks [1]. However, the ques-
tion that has remained unanswered is whether it is possible to learn as “powerful” representations
from unlabeled data without any supervision. It is still widely recognized that unsupervised learning
algorithms that can extract useful features are needed for solving problems with limited label infor-
mation. In this work, we exploit sparsity as a generic prior on the representations for unsupervised
feature learning. We first introduce the fully-connected winner-take-all autoencoders that learn to
do sparse coding by directly enforcing a winner-take-all lifetime sparsity constraint. We then intro-
duce convolutional winner-take-all autoencoders that learn to do shift-invariant/convolutional sparse
coding by directly enforcing winner-take-all spatial and lifetime sparsity constraints.

2 Fully-Connected Winner-Take-All Autoencoders

Training sparse autoencoders has been well studied in the literature. For example, in [2], a “lifetime
sparsity” penalty function proportional to the KL divergence between the hidden unit marginals (ρ̂)
and the target sparsity probability (ρ) is added to the cost function: λKL(ρ‖ρ̂). A major drawback
of this approach is that it only works for certain target sparsities and is often very difficult to find
the right λ parameter that results in a properly trained sparse autoencoder. Also KL divergence
was originally proposed for sigmoidal autoencoders, and it is not clear how it can be applied to
ReLU autoencoders where ρ̂ could be larger than one (in which case the KL divergence can not be
evaluated). In this paper, we propose Fully-Connected Winner-Take-All (FC-WTA) autoencoders to
address these concerns. FC-WTA autoencoders can aim for any target sparsity rate, train very fast
(marginally slower than a standard autoencoder), have no hyper-parameter to be tuned (except the
target sparsity rate) and efficiently train all the dictionary atoms even when very aggressive sparsity
rates (e.g., 1%) are enforced.

1

(a) MNIST, 10% (b) MNIST, 5% (c) MNIST, 2%

Figure 1: Learnt dictionary (decoder) of FC-WTA with 1000 hidden units trained on MNIST

Sparse coding algorithms typically comprise two steps: a highly non-linear sparse encoding oper-
ation that finds the “right” atoms in the dictionary, and a linear decoding stage that reconstructs
the input with the selected atoms and update the dictionary. The FC-WTA autoencoder is a non-
symmetric autoencoder where the encoding stage is typically a stack of several ReLU layers and
the decoder is just a linear layer. In the feedforward phase, after computing the hidden codes of
the last layer of the encoder, rather than reconstructing the input from all of the hidden units, for
each hidden unit, we impose a lifetime sparsity by keeping the k percent largest activation of that
hidden unit across the mini-batch samples and setting the rest of activations of that hidden unit to
zero. In the backpropagation phase, we only backpropagate the error through the k percent non-zero
activations. In other words, we are using the min-batch statistics to approximate the statistics of
the activation of a particular hidden unit across all the samples, and finding a hard threshold value
for which we can achieve k% lifetime sparsity rate. In this setting, the highly nonlinear encoder of
the network (ReLUs followed by top-k sparsity) learns to do sparse encoding, and the decoder of
the network reconstructs the input linearly. At test time, we turn off the sparsity constraint and the
output of the deep ReLU network will be the final representation of the input. In order to train a
stacked FC-WTA autoencoder, we fix the weights and train another FC-WTA autoencoder on top of
the fixed representation of the previous network.

The learnt dictionary of a FC-WTA autoencoder trained on MNIST, CIFAR-10 and Toronto Face
datasets are visualized in Fig. 1 and Fig 2. For large sparsity levels, the algorithm tends to learn
very local features that are too primitive to be used for classification (Fig. 1a). As we decrease
the sparsity level, the network learns more useful features (longer digit strokes) and achieves better
classification (Fig. 1b). Nevertheless, forcing too much sparsity results in features that are too global
and do not factor the input into parts (Fig. 1c). Section 4.1 reports the classification results.

Winner-Take-All RBMs. Besides autoencoders, WTA activations can also be used in Restricted
Boltzmann Machines (RBM) to learn sparse representations. Supposeh and v denote the hidden and
visible units of RBMs. For training WTA-RBMs, in the positive phase of the contrastive divergence,
instead of sampling from P (hi|v), we first keep the k% largest P (hi|v) for each hi across the
mini-batch dimension and set the rest of P (hi|v) values to zero, and then sample hi according to
the sparsified P (hi|v). Filters of a WTA-RBM trained on MNIST are visualized in Fig. 3. We
can see WTA-RBMs learn longer digit strokes on MNIST, which as will be shown in Section 4.1,
improves the classification rate. Note that the sparsity rate of WTA-RBMs (e.g., 30%) should not be
as aggressive as WTA autoencoders (e.g., 5%), since RBMs are already being regularized by having
binary hidden states.

(a) Toronto Face Dataset (48× 48) (b) CIFAR-10 Patches (11× 11)

Figure 2: Dictionaries (decoder) of FC-WTA autoencoder with 256 hidden units and sparsity of 5%

2

(a) Standard RBM (b) WTA-RBM (sparsity of 30%)

Figure 3: Features learned on MNIST by 256 hidden unit RBMs.

3 Convolutional Winner-Take-All Autoencoders

There are several problems with applying conventional sparse coding methods on large images.
First, it is not practical to directly apply a fully-connected sparse coding algorithm on high-resolution
(e.g., 256 × 256) images. Second, even if we could do that, we would learn a very redundant
dictionary whose atoms are just shifted copies of each other. For example, in Fig. 2a, the FC-
WTA autoencoder has allocated different filters for the same patterns (i.e., mouths/noses/glasses/face
borders) occurring at different locations. One way to address this problem is to extract random image
patches from input images and then train an unsupervised learning algorithm on these patches in
isolation [3]. Once training is complete, the filters can be used in a convolutional fashion to obtain
representations of images. As discussed in [3, 4], the main problem with this approach is that if the
receptive field is small, this method will not capture relevant features (imagine the extreme of 1× 1
patches). Increasing the receptive field size is problematic, because then a very large number of
features are needed to account for all the position-specific variations within the receptive field. For
example, we see that in Fig. 2b, the FC-WTA autoencoder allocates different filters to represent the
same horizontal edge appearing at different locations within the receptive field. As a result, the learnt
features are essentially shifted versions of each other, which results in redundancy between filters.
Unsupervised methods that make use of convolutional architectures can be used to address this
problem, including convolutional RBMs [5], convolutional DBNs [6, 5], deconvolutional networks
[7] and convolutional predictive sparse decomposition (PSD) [4, 8]. These methods learn features
from the entire image in a convolutional fashion. In this setting, the filters can focus on learning the
shapes (i.e., “what”), because the location information (i.e., “where”) is encoded into feature maps
and thus the redundancy among the filters is reduced.

In this section, we propose Convolutional Winner-Take-All (CONV-WTA) autoencoders that learn
to do shift-invariant/convolutional sparse coding by directly enforcing winner-take-all spatial and
lifetime sparsity constraints. Our work is similar in spirit to deconvolutional networks [7] and convo-
lutional PSD [4, 8], but whereas the approach in that work is to break apart the recognition pathway
and data generation pathway, but learn them so that they are consistent, we describe a technique for
directly learning a sparse convolutional autoencoder.

A shallow convolutional autoencoder maps an input vector to a set of feature maps in a convolu-
tional fashion. We assume that the boundaries of the input image are zero-padded, so that each
feature map has the same size as the input. The hidden representation is then mapped linearly to the
output using a deconvolution operation (Appendix A.1). The parameters are optimized to minimize
the mean square error. A non-regularized convolutional autoencoder learns useless delta function
filters that copy the input image to the feature maps and copy back the feature maps to the output.
Interestingly, we have observed that even in the presence of denoising[9]/dropout[10] regulariza-
tions, convolutional autoencoders still learn useless delta functions. Fig. 4a depicts the filters of a
convolutional autoencoder with 16 maps, 20% input and 50% hidden unit dropout trained on Street
View House Numbers dataset [11]. We see that the 16 learnt delta functions make 16 copies of the
input pixels, so even if half of the hidden units get dropped during training, the network can still
rely on the non-dropped copies to reconstruct the input. This highlights the need for new and more
aggressive regularization techniques for convolutional autoencoders.

The proposed architecture for CONV-WTA autoencoder is depicted in Fig. 4b. The CONV-WTA
autoencoder is a non-symmetric autoencoder where the encoder typically consists of a stack of
several ReLU convolutional layers (e.g., 5 × 5 filters) and the decoder is a linear deconvolutional
layer of larger size (e.g., 11 × 11 filters). We chose to use a deep encoder with smaller filters (e.g.,
5×5) instead of a shallow one with larger filters (e.g., 11×11), because the former introduces more

3

(a) Dropout CONV Autoencoder (b) WTA-CONV Autoencoder

Figure 4: (a) Filters and feature maps of a denoising/dropout convolutional autoencoder, which
learns useless delta functions. (b) Proposed architecture for CONV-WTA autoencoder with spatial
sparsity (128conv5-128conv5-128deconv11).

non-linearity and regularizes the network by forcing it to have a decomposition over large receptive
fields through smaller filters. The CONV-WTA autoencoder is trained under two winner-take-all
sparsity constraints: spatial sparsity and lifetime sparsity.

3.1 Spatial Sparsity

In the feedforward phase, after computing the last feature maps of the encoder, rather than recon-
structing the input from all of the hidden units of the feature maps, we identify the single largest
hidden activity within each feature map, and set the rest of the activities as well as their derivatives
to zero. This results in a sparse representation whose sparsity level is the number of feature maps.
The decoder then reconstructs the output using only the active hidden units in the feature maps and
the reconstruction error is only backpropagated through these hidden units as well.

Consistent with other representation learning approaches such as triangle k-means [3] and deconvo-
lutional networks [7, 12], we observed that using a softer sparsity constraint at test time results in
a better classification performance. So, in the CONV-WTA autoencoder, in order to find the final
representation of the input image, we simply turn off the sparsity regularizer and use ReLU con-
volutions to compute the last layer feature maps of the encoder. After that, we apply max-pooling
(e.g., over 4 × 4 regions) on these feature maps and use this representation for classification tasks
or in training stacked CONV-WTA as will be discussed in Section 3.3. Fig. 5 shows a CONV-WTA
autoencoder that was trained on MNIST.

0 5 10 15 20 25

0

5

0

5

0

5

0 10 20 30 40

0

10

20

30

40

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 50 100 150

0

5

0

5

Figure 5: The CONV-WTA autoencoder with 16 first layer filters and 128 second layer filters trained
on MNIST: (a) Input image. (b) Learnt dictionary (deconvolution filters). (c) 16 feature maps while
training (spatial sparsity applied). (d) 16 feature maps after training (spatial sparsity turned off). (e)
16 feature maps of the first layer after applying local max-pooling. (f) 48 out of 128 feature maps of
the second layer after turning off the sparsity and applying local max-pooling (final representation).

4

(a) Spatial sparsity only (b) Spatial & lifetime sparsity 20% (c) Spatial & lifetime sparsity 5%

Figure 6: Learnt dictionary (deconvolution filters) of CONV-WTA autoencoder trained on MNIST
(64conv5-64conv5-64conv5-64deconv11).

3.2 Lifetime Sparsity

Although spatial sparsity is very effective in regularizing the autoencoder, it requires all the dictio-
nary atoms to contribute in the reconstruction of every image. We can further increase the sparsity
by exploiting the winner-take-all lifetime sparsity as follows. Suppose we have 128 feature maps and
the mini-batch size is 100. After applying spatial sparsity, for each filter we will have 100 “winner”
hidden units corresponding to the 100 mini-batch images. During feedforward phase, for each filter,
we only keep the k% largest of these 100 values and set the rest of activations to zero. Note that
despite this aggressive sparsity, every filter is forced to get updated upon visiting every mini-batch,
which is crucial for avoiding the dead filter problem that often occurs in sparse coding.

Fig. 6 and Fig. 7 show the effect of the lifetime sparsity on the dictionaries trained on MNIST
and Toronto Face dataset. We see that similar to the FC-WTA autoencoders, by tuning the lifetime
sparsity of CONV-WTA autoencoders, we can aim for different sparsity rates. If no lifetime sparsity
is enforced, we learn local filters that contribute to every training point (Fig. 6a and 7a). As we
increase the lifetime sparsity, we can learn rare but useful features that result in better classification
(Fig. 6b). Nevertheless, forcing too much lifetime sparsity will result in features that are too diverse
and rare and do not properly factor the input into parts (Fig. 6c and 7b).

3.3 Stacked CONV-WTA Autoencoders

The CONV-WTA autoencoder can be used as a building block to form a hierarchy. In order to train
the hierarchical model, we first train a CONV-WTA autoencoder on the input images. Then we pass
all the training examples through the network and obtain their representations (last layer of the en-
coder after turning off sparsity and applying local max-pooling). Now we treat these representations
as a new dataset and train another CONV-WTA autoencoder to obtain the stacked representations.
Fig. 5(f) shows the deep feature maps of a stacked CONV-WTA that was trained on MNIST.

3.4 Scaling CONV-WTA Autoencoders to Large Images

The goal of convolutional sparse coding is to learn shift-invariant dictionary atoms and encoding
filters. Once the filters are learnt, they can be applied convolutionally to any image of any size,
and produce a spatial map corresponding to different locations at the input. We can use this idea
to efficiently train CONV-WTA autoencoders on datasets containing large images. Suppose we
want to train an AlexNet [1] architecture in an unsupervised fashion on ImageNet, ILSVRC-2012

(a) Spatial sparsity only (b) Spatial and lifetime sparsity of 10%

Figure 7: Learnt dictionary (deconvolution filters) of CONV-WTA autoencoder trained on the
Toronto Face dataset (64conv7-64conv7-64conv7-64deconv15).

5

(a) Spatial sparsity (b) Spatial and lifetime sparsity of 10%

Figure 8: Learnt dictionary (deconvolution filters) of CONV-WTA autoencoder trained on ImageNet
48× 48 whitened patches. (64conv5-64conv5-64conv5-64deconv11).

(224x224). In order to learn the first layer 11 × 11 shift-invariant filters, we can extract medium-
size image patches of size 48 × 48 and train a CONV-WTA autoencoder with 64 dictionary atoms
of size 11 on these patches. This will result in 64 shift-invariant filters of size 11 × 11 that can
efficiently capture the statistics of 48× 48 patches. Once the filters are learnt, we can apply them in
a convolutional fashion with the stride of 4 to the entire images and after max-pooling we will have
a 64 × 27 × 27 representation of the images. Now we can train another CONV-WTA autoencoder
on top of these feature maps to capture the statistics of a larger receptive field at different location
of the input image. This process could be repeated for multiple layers. Fig. 8 shows the dictionary
learnt on the ImageNet using this approach. We can see that by imposing lifetime sparsity, we could
learn very diverse filters such as corner, circular and blob detectors.

4 Experiments

In all the experiments of this section, we evaluate the quality of unsupervised features of WTA
autoencoders by training a naive linear classifier (i.e., SVM) on top them. We did not fine-tune the
filters in any of the experiments. The implementation details of all the experiments are provided in
Appendix A (in the supplementary materials). An IPython demo for reproducing important results
of this paper is publicly available at http://www.comm.utoronto.ca/˜makhzani/.

4.1 Winner-Take-All Autoencoders on MNIST

The MNIST dataset has 60K training points and 10K test points. Table 1 compares the performance
of FC-WTA autoencoder and WTA-RBMs with other permutation-invariant architectures. Table 2a
compares the performance of CONV-WTA autoencoder with other convolutional architectures. In
these experiments, we have used all the available training labels (N = 60000 points) to train a linear
SVM on top of the unsupervised features.

An advantage of unsupervised learning algorithms is the ability to use them in semi-supervised sce-
narios where labeled data is limited. Table 2b shows the semi-supervised performance of a CONV-
WTA where we have assumed only N labels are available. In this case, the unsupervised features are
still trained on the whole dataset (60K points), but the SVM is trained only on the N labeled points
where N varies from 300 to 60K. We compare this with the performance of a supervised deep con-
vnet (CNN) [17] trained only on the N labeled training points. We can see supervised deep learning
techniques fail to learn good representations when labeled data is limited, whereas our WTA algo-
rithm can extract useful features from the unlabeled data and achieve a better classification. We also
compare our method with some of the best semi-supervised learning results recently obtained by

Error Rate

Shallow Denoising/Dropout Autoencoder (20% input and 50% hidden units dropout) 1.60%
Stacked Denoising Autoencoder (3 layers) [9] 1.28%
Deep Boltzmann Machines [13] 0.95%
k-Sparse Autoencoder [14] 1.35%
Shallow FC-WTA Autoencoder, 2000 units, 5% sparsity 1.20%
Stacked FC-WTA Autoencoder, 5% and 2% sparsity 1.11%

Restricted Boltzmann Machines 1.60%
Winner-Take-All Restricted Boltzmann Machines (30% sparsity) 1.38%

Table 1: Classification performance of FC-WTA autoencoder features + SVM on MNIST.

6

http://www.comm.utoronto.ca/~makhzani/

Error

Deep Deconvolutional Network [7, 12] 0.84%
Convolutional Deep Belief Network [5] 0.82%
Scattering Convolution Network [15] 0.43%
Convolutional Kernel Network [16] 0.39%
CONV-WTA Autoencoder, 16 maps 1.02%
CONV-WTA Autoencoder, 128 maps 0.64%
Stacked CONV-WTA, 128 & 2048 maps 0.48%

(a) Unsupervised features + SVM trained on
N = 60000 labels (no fine-tuning)

N CNN [17] CKN [16] SC [15] CONV-WTA

300 7.18% 4.15% 4.70% 3.47%
600 5.28% - - 2.37%
1K 3.21% 2.05% 2.30% 1.92%
2K 2.53% 1.51% 1.30% 1.45%
5K 1.52% 1.21% 1.03% 1.07%
10K 0.85% 0.88% 0.88 % 0.91%

60K 0.53% 0.39% 0.43% 0.48%

(b) Unsupervised features + SVM trained on few
labels N . (semi-supervised)

Table 2: Classification performance of CONV-WTA autoencoder trained on MNIST.

convolutional kernel networks (CKN) [16] and convolutional scattering networks (SC) [15]. We see
CONV-WTA outperforms both these methods when very few labels are available (N < 1K).

4.2 CONV-WTA Autoencoder on Street View House Numbers

The SVHN dataset has about 600K training points and 26K test points. Table 3 reports the classi-
fication results of CONV-WTA autoencoder on this dataset. We first trained a shallow and stacked
CONV-WTA on all 600K training cases to learn the unsupervised features, and then performed two
sets of experiments. In the first experiment, we used all the N=600K available labels to train an SVM
on top of the CONV-WTA features, and compared the result with convolutional k-means [11]. We
see that the stacked CONV-WTA achieves a dramatic improvement over the shallow CONV-WTA
as well as k-means. In the second experiment, we trained an SVM by using only N = 1000 la-
beled data points and compared the result with deep variational autoencoders [18] trained in a same
semi-supervised fashion. Fig. 9 shows the learnt dictionary of CONV-WTA on this dataset.

Accuracy

Convolutional Triangle k-means [11] 90.6%
CONV-WTA Autoencoder, 256 maps (N=600K) 88.5%
Stacked CONV-WTA Autoencoder, 256 and 1024 maps (N=600K) 93.1%

Deep Variational Autoencoders (non-convolutional) [18] (N=1000) 63.9%
Stacked CONV-WTA Autoencoder, 256 and 1024 maps (N=1000) 76.2%

Supervised Maxout Network [19] (N=600K) 97.5%

Table 3: CONV-WTA unsupervised features + SVM trained on N labeled points of SVHN dataset.

(a) Contrast Normalized SVHN (b) Learnt Dictionary (64conv5-64conv5-64conv5-64deconv11)

Figure 9: CONV-WTA autoencoder trained on the Street View House Numbers (SVHN) dataset.

4.3 CONV-WTA Autoencoder on CIFAR-10

Fig. 10a reports the classification results of CONV-WTA on CIFAR-10. We see when a small num-
ber of feature maps (< 256) are used, considerable improvements over k-means can be achieved.
This is because our method can learn a shift-invariant dictionary as opposed to the redundant dictio-
naries learnt by patch-based methods such as k-means. In the largest deep network that we trained,
we used 256, 1024, 4096 maps and achieved the classification rate of 80.1% without using fine-
tuning, model averaging or data augmentation. Fig. 10b shows the learnt dictionary on the CIFAR-
10 dataset. We can see that the network has learnt diverse shift-invariant filters such as point/corner
detectors as opposed to Fig. 2b that shows the position-specific filters of patch-based methods.

7

Accuracy

Shallow Convolutional Triangle k-means (64 maps) [3] 62.3%
Shallow CONV-WTA Autoencoder (64 maps) 68.9%
Shallow Convolutional Triangle k-means (256 maps) [3] 70.2%
Shallow CONV-WTA Autoencoder (256 maps) 72.3%

Shallow Convolutional Triangle k-means (4000 maps) [3] 79.6%
Deep Triangle k-means (1600, 3200, 3200 maps) [20] 82.0%
Convolutional Deep Belief Net (2 layers) [6] 78.9%
Exemplar CNN (300x Data Augmentation) [21] 82.0%
NOMP (3200,6400,6400 maps + Averaging 7 Models) [22] 82.9%
Stacked CONV-WTA (256, 1024 maps) 77.9%
Stacked CONV-WTA (256, 1024, 4096 maps) 80.1%

Supervised Maxout Network [19] 88.3%

(a) Unsupervised features + SVM (without fine-tuning) (b) Learnt dictionary (deconv-filters)

64conv5-64conv5-64conv5-64deconv7

Figure 10: CONV-WTA autoencoder trained on the CIFAR-10 dataset.

5 Discussion

Relationship of FC-WTA to k-sparse autoencoders. k-sparse autoencoders impose sparsity across
different channels (population sparsity), whereas FC-WTA autoencoder imposes sparsity across
training examples (lifetime sparsity). When aiming for low sparsity levels, k-sparse autoencoders
use a scheduling technique to avoid the dead dictionary atom problem. WTA autoencoders, however,
do not have this problem since all the hidden units get updated upon visiting every mini-batch no
matter how aggressive the sparsity rate is (no scheduling required). As a result, we can train larger
networks and achieve better classification rates.

Relationship of CONV-WTA to deconvolutional networks and convolutional PSD. Deconvolu-
tional networks [7, 12] are top down models with no direct link from the image to the feature maps.
The inference of the sparse maps requires solving the iterative ISTA algorithm, which is costly.
Convolutional PSD [4] addresses this problem by training a parameterized encoder separately to
explicitly predict the sparse codes using a soft thresholding operator. Deconvolutional networks and
convolutional PSD can be viewed as the generative decoder and encoder paths of a convolutional
autoencoder. Our contribution is to propose a specific winner-take-all approach for training a convo-
lutional autoencoder, in which both paths are trained jointly using direct backpropagation yielding
an algorithm that is much faster, easier to implement and can train much larger networks.

Relationship to maxout networks. Maxout networks [19] take the max across different channels,
whereas our method takes the max across space and mini-batch dimensions. Also the winner-take-all
feature maps retain the location information of the “winners” within each feature map and different
locations have different connectivity on the subsequent layers, whereas the maxout activity is passed
to the next layer using weights that are the same regardless of which unit gave the maximum.

6 Conclusion

We proposed the winner-take-all spatial and lifetime sparsity methods to train autoencoders that
learn to do fully-connected and convolutional sparse coding. We observed that CONV-WTA autoen-
coders learn shift-invariant and diverse dictionary atoms as opposed to position-specific Gabor-like
atoms that are typically learnt by conventional sparse coding methods. Unlike related approaches,
such as deconvolutional networks and convolutional PSD, our method jointly trains the encoder and
decoder paths by direct back-propagation, and does not require an iterative EM-like optimization
technique during training. We described how our method can be scaled to large datasets such as
ImageNet and showed the necessity of the deep architecture to achieve better results. We performed
experiments on the MNIST, SVHN and CIFAR-10 datasets and showed that the classification rates
of winner-take-all autoencoders are competitive with the state-of-the-art.

Acknowledgments

We would like to thank Ruslan Salakhutdinov and Andrew Delong for the valuable comments. We
also acknowledge the support of NVIDIA with the donation of the GPUs used for this research.

8

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks.,” in NIPS, vol. 1, p. 4, 2012.

[2] A. Ng, “Sparse autoencoder,” CS294A Lecture notes, vol. 72, 2011.

[3] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised
feature learning,” in International Conference on Artificial Intelligence and Statistics,
2011.

[4] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu, and Y. LeCun,
“Learning convolutional feature hierarchies for visual recognition.,” in NIPS, vol. 1, p. 5,
2010.

[5] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations,” in Proceedings of the 26th
Annual International Conference on Machine Learning, pp. 609–616, ACM, 2009.

[6] A. Krizhevsky, “Convolutional deep belief networks on cifar-10,” Unpublished, 2010.

[7] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional networks,” in
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 2528–
2535, IEEE, 2010.

[8] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun, “Pedestrian detection with
unsupervised multi-stage feature learning,” in Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on, pp. 3626–3633, IEEE, 2013.

[9] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion,” The Journal of Machine Learning Research, vol. 11, pp. 3371–3408, 2010.

[10] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Im-
proving neural networks by preventing co-adaptation of feature detectors,” arXiv preprint
arXiv:1207.0580, 2012.

[11] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in
natural images with unsupervised feature learning,” in NIPS workshop on deep learning
and unsupervised feature learning, vol. 2011, p. 5, Granada, Spain, 2011.

[12] M. D. Zeiler and R. Fergus, “Differentiable pooling for hierarchical feature learning,”
arXiv preprint arXiv:1207.0151, 2012.

[13] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in International Con-
ference on Artificial Intelligence and Statistics, pp. 448–455, 2009.

[14] A. Makhzani and B. Frey, “k-sparse autoencoders,” International Conference on Learning
Representations, ICLR, 2014.

[15] J. Bruna and S. Mallat, “Invariant scattering convolution networks,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 35, no. 8, pp. 1872–1886, 2013.

[16] J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid, “Convolutional kernel networks,” in
Advances in Neural Information Processing Systems, pp. 2627–2635, 2014.

[17] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. Lecun, “Unsupervised learning of invari-
ant feature hierarchies with applications to object recognition,” in Computer Vision and
Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pp. 1–8, IEEE, 2007.

[18] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised learning
with deep generative models,” in Advances in Neural Information Processing Systems,
pp. 3581–3589, 2014.

[19] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout net-
works,” ICML, 2013.

[20] A. Coates and A. Y. Ng, “Selecting receptive fields in deep networks.,” in NIPS, 2011.

[21] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox, “Discriminative unsuper-
vised feature learning with convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, pp. 766–774, 2014.

[22] T.-H. Lin and H. Kung, “Stable and efficient representation learning with nonnegativity
constraints,” in Proceedings of the 31st International Conference on Machine Learning
(ICML-14), pp. 1323–1331, 2014.

9

