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1 Equivalence of kernel and embedding characterizations

We wish to show that for any U with K = U TU, we have
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We observe that the LHS is equivalent (with unit vector constraints implicit) to
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Now, let w = 2tc, and note t> = ||w||?/4. Further, c'u; = w'u,;/(2t). Hence, the original
problem is equivalent to
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We form the Lagrange dual. The Lagrangian is then,
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We set the gradient to zero.
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This gives w = 2 Zz;l a;u;. Hence, the dual problem is a maximization over
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*This work was performed when the author was affiliated with Chalmers University of Technology.




which can be rewritten as, with K = U U,
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Note that this argument extends to the node-weighted version, either by a variable substitution u} =
u;/+/0; or by a simple modification of the derivation.

2 Formulation as semidefinite program

Consider the kernel characterization of the fully weighted theta function
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This can, by the results in the previous section, be written as an on optimization problem over a set
of orthogonal representations,
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Similar to the previous section, we may rewrite the above problem as
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Now, consider the matrix (n + 1) x (n + 1) matrix X where
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It is easy to see that X = U'U where U is a matrix with columns [u;/\/771, ..., U, /\/Tp, C].
Consequently, X is positive semidefinite. Now, it is also plain to see that the optimization in (T3) is
equivalent to the one above.
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