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A Proof of Proposition 6

PROOF: In the following, we consider a fixed arm k, and to lighten the notation, we drop the explicit
dependency on k.

Let T be the time budget. Let δ denote the probability for the concentration inequality to hold.

By assumption, we have ϕ(n) = 1/nα for some α ≤ 1

The objective is to find the best parameter β ≥ 1, such that pulling the arm at a rate τβ(n) = O(nβ),
given the probability δ and the time budget T , leads to the tightest possible concentration inequality.
As specified previously, we only look at the orders of magnitude of this quantity with respect to T .

(The case β < 1 is of no interest because it would require to pull the arm several times at once,
which is impossible in our current model.)

Note that with this rate of sampling, the arm is pulled n = τ−1β (T ) = O(T 1/β) times. The problem
we have to handle can be formulated as follows:

arg min
β≥1

√
log(δ)(1 +

∑n
i=1 ϕ(τ(i)))2

τ−1β (T )

which is equivalent to
arg max

β≥1

n

log(δ)(1 +
∫ n

i=1
ϕ(τ(i)))2

.

We now have three cases to consider:

• βα < 1
n

log(δ)(1 +
∑n
i=1 ϕ(τ(i)))2

= O

(
n

log(δ)(
∫ n

i=0
ϕ(τ(i)))2

)

= O
(

T 1/β

log(δ)n−2βα+2

)
= O

(
T 1/β

log(δ)T−2α+2/β

)
= O

(
T 2α−1/β/ log(δ)

)
= O

(
Tα−ε/ log(δ)

)
,
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where in the last line, we used that α = 1/β − ε for some ε > 0.
• ∀βα > 1

n

log(δ)(1 +
∑n
i=1 ϕ(τ(i)))2

= O (n/ log(δ))

= O
(
T 1/β/ log(δ) = Tα−ε/ log(δ)

)
,

where we successively used that the 1/nαβ are summable, and α = 1/β + ε for some
ε > 0.

• β = 1/α

n

log(δ)(1 +
∑n
i=1 ϕ(τ(i)))2

= O

(
n

log(δ)(
∫ n

i=0
ϕ(τ(i)))2

)

= O
(

T 1/β

log(δ) log(n)2

)
= O

(
T 1/β

log(δ) log(T )2

)
= O

(
Tα

log(δ) log(T )2

)
= Θ̃

(
Tα

log(δ)

)
The optimal result is thus obtained for β = 1/α. This ends the proof of Proposition 6. �

B Proof of Theorem 2

Let us denote by

Ωk(n, δ, τ) =

√
2

(1 + 2
∑n
j=1 ϕk(τ(j)))2 log(1/δ)

n

the uncertainty of the value of arm k with probability 1/δ after n pulls at rate τ(·).

The following Lemma gives the length of the rounds used in Remix-UCB.

Lemma B.1. Let 1 < δ < 0 and θ > 0. Suppose that ϕk(n) = O(1/nαk) and τk = O(n1/αk ) with
0 < αk ≤ 1. Then Tk,δ,θ defined as

Tk,δ,θ = arg min{t ∈ N∗,Ωk(τ−1k (t), δ, τk) < θ}

satisfies
Tk,δ,θ = O(G

[
θ−2 log(δ)

]1/αk
)

where G is defined by G−1(x) = xα/(log(x))2.

PROOF: The proof is immediate by definition of Ωk, and the choice of τk, since we have√√√√2(1 + 2
∑Tαk,δ,θ
i=0 ϕ(τ(i))2 log(1/δ)

Tαk,δ,θ
≤ θ

i.e.
2 log(Tk,δ,θ)

2 log(δ)

Tαk,δ,θ
= O(θ2) or

Tαk,δ,θ
log(Tk,δ,θ)2

= O(θ−2 log(δ))

hence the conclusion. �

2



It is important to note that the length of the epoch is almost O(θ−2/β).

We also define, for any arm k,

mk = min {m ∈ N, ∆k > θm} ,

and m∗ = maxk(mk).

Using Lemma B.1, we can compute the time budget

Ts
.
= max

k
Tk,δs,θs

necessary to obtain, at the end of epoch s, that the uncertainty on the values of all the remaining arms
is lower than θs with probability δs. The consequence of this result for Remix-UCB is summarized
in the following corollary:

Corollary B.1. At the end of each step s in the Remix-UCB Algorithm, we have

1.
Ts = Θ̃((θ−2s log(δs))

1/α)

2. ∀s ≥ 0, ∀k a selected arm at step s, we have

P(µ̂k ≤ µk + θs) ≥ 1− δs

and
P(µ̂k ≥ µk − θs) ≥ 1− δs

This corollary contains the main ingredients of the proof to upper bound the regret. We use the same
proof structure o as the one used in [3]. The Case 1 and 2 follow the same lines as the original proof,
and give the same order of regret, but the Case 3 differs greatly due to the waiting arm.

Case 1 : There exists k such that a suboptimal arm k is not eliminated at step mk, while the
optimal arm has not been eliminated

This happens only if 
µ̂i ≥ µi + Ω(τ−1k (Tk,δ,θ), δmk , τk)

or

µ̂∗ ≤ µ∗ − Ω(τ−1∗ (T∗,δ,θ), δmk , τk)

(1)

The probability of both of these events are controlled by δm thanks to Corollary B.1 and the concen-
tration inequality, thus the probability of this case to occur is lower than

O(
2

Tθ2mi
),

and the total regret is upper bounded by

O

(∑
i

32

∆i

)
= O

(
1

∆∗

)
.

Case 2 : The optimal arm is eliminated at step s, but during all the previous steps, the
suboptimal arms k with mk < s were correctly eliminated

The proof in this specific case can be following the same line as in [3], using Corollary B.1 as in
Case 1, since the idea is to control the probability of the event to happen. The regret of this case is
upper bounded by:

O
(

1

∆∗

)
.
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Case 3 : At step s, the optimal arm is still present, and during all the previous steps, the
suboptimal arms k with mk < s were correctly eliminated

This step is different from the regular Improved-UCB analysis. There are indeed two sources of
regret to take into account: the regret coming from drawing each of the remaining suboptimal arm
k in the evaluation phase, and the regret incurred by pulling the ”waiting” arm.

From Corollary B.1, we know that the time budget necessary to complete round s is

Ts = Θ̃((θ−2s log(δs))
1/α)

Hence, we can estimate the number of times Ns a non-waiting arm is pulled up to step s,

Ns = Θ̃(θ−2s log(δs)) (2)

With this, it is easy to obtain that the first part of the regret in this case is upper bounded by

Θ̃

(
1

∆2
∗

(log(T ))

)
For the second part of the regret, it is important to note that the waiting arm is drawn O(T −
minα T

α∧1) times. Then, either ∀i αi ≥ 1, and thus the waiting arm is never pulled, leading to no
additional regret, or ∃i such that αi < 1.

In the latter case, at each step s, the waiting arm ks is pulled Ts times, but we also know that
mks > s, thus pulling the waiting arm does not generate more than 2θs regret.

So the regret coming from the waiting arm at step s is upper bounded (in order of magnitude) by:

Tsθs = 2−sΘ̃(22s/α log(T2−2s)1/α)

= Θ̃(2(2s−α)/α log(T2−2s)1/α)

Note that after stepm∗, no additional regret is created by the waiting arm since only the optimal arm
remains as a candidate. So the total regret for the waiting arm is upper bounded by:

m∗∑
s=1

Tsθs = Θ̃
(

2m∗(2/α−1) log(T )1/α
)

= Θ̃
(

exp(− log2(∆∗) log(2)(2− α)/α) log(T )1/α
)

= Θ̃

(
1

∆∗

(2−α)/α
log(T )1/α

)
,

since m∗ = − log2(∆∗).

Therefore, the final term of the regret is

Θ̃

(
1

∆∗

(2−α)/α
log(T )1/α

)
,

hence the conclusion. �
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