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Abstract

Biclustering (also known as submatrix localization) is a problem of high prac-
tical relevance in exploratory analysis of high-dimensional data. We develop a
framework for performing statistical inference on biclusters found by score-based
algorithms. Since the bicluster was selected in a data dependent manner by a
biclustering or localization algorithm, this is a form of selective inference. Our
framework gives exact (non-asymptotic) confidence intervals and p-values for the
significance of the selected biclusters.

1 Introduction

Given a matrix X ∈ Rm×n, biclustering or submatrix localization is the problem of identifying a
subset of the rows and columns of X such that the bicluster or submatrix consisting of the selected
rows and columns are “significant” compared to the rest of X . An important application of bi-
clustering is the identification of significant genotype-phenotype associations in the (unsupervised)
analysis of gene expression data. The data is usually represented by an expression matrix X whose
rows correspond to genes and columns correspond to samples. Thus genotype-phenotype associa-
tions correspond to salient submatrices of X . The location and significance of such biclusters, in
conjunction with relevant clinical information, give preliminary results on the genetic underpinnings
of the phenotypes being studied.

More generally, given a matrix X ∈ Rm×n whose rows correspond to variables and columns corre-
spond to samples, biclustering seeks sample-variable associations in the form of salient submatrices.
Without loss of generality, we consider square matrices X ∈ Rn×n of the form

X = M + Z, Zij ∼ N (0, σ2)

M = µeI0e
T
J0 , µ ≥ 0, I0, J0 ⊂ [n].

(1.1)

The components of eI , I ⊂ [n] are given by

(eI)i =

{
1 i ∈ I
0 otherwise

.

For our theoretical results, we assume the size of the embedded submatrix |I0| = |J0| = k and the
noise variance σ2 is known.

The biclustering problem, due to its practical relevance, has attracted considerable attention. Most
previous work focuses on finding significant submatrices. A large class of algorithms for biclustering
are score-based, i.e. they search for submatrices that maximize some score function that measures
the “significance” of a submatrix. In this paper, we focus on evaluating the significance of subma-
trices found by score-based algorithms for biclustering. More precisely, let I(X), J(X) ⊂ [n] be a
(random) pair output by a biclustering algorithm. We seek to test whether the localized submatrix
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XI(X),J(X) contains any signal, i.e. test the hypothesis

H0 :
∑

i∈I(X)
j∈J(X)

Mij = 0. (1.2)

Since the hypothesis depends on the (random) output of the biclustering algorithm, this is a form
of selective inference. The distribution of the test statistic

∑
i∈I(X)
j∈J(X)

Xij depends on the specific

algorithm, and is extremely difficult to derive for many heuristic biclustering algorithms.

Our main contribution is to test whether a biclustering algorithm has found a statistically significant
bicluster. The tests and confidence intervals we construct are exact, meaning that in finite samples
the type 1 error is exactly α.

This paper is organized as follows. First, we review recent work on biclustering and related prob-
lems. Then, in section 2, we describe our framework for performing inference in the context of a
simple biclustering algorithm based on a scan statistic. We show

1. the framework gives exact (non-asymptotic) Unif(0, 1) p-values underH0, and the p-values
can be “inverted” to form confidence intervals for the amount of signal in XI(X),J(X).

2. under the minimax signal-to-noise ratio (SNR) regime µ &
√

logn
k , the test has full asymp-

totic power .

In section 4, we show the framework handles more computationally tractable biclustering algo-
rithms, including a greedy algorithm originally proposed by Shabalin et al. [12]. In the supplemen-
tary materials, we discuss the problem in the more general setting where there are multiple emnbed-
ded submatrices. Finally, we present experimental validation of the various tests and biclustering
algorithms.

1.1 Related work

A slightly easier problem is submatrix detection: test whether a matrix has an embedded submatrix
with nonzero mean [1, 4]. This problem was recently studied by Ma and Wu [11] who characerized
the minimum signal strength µ for any test and any computationally tractable test to reliably detect
an embedded submatrix.

We emphasize that the problem we consider is not the submatrix detection problem, but a comple-
mentary problem. Submatrix detection asks whether there are any hidden row-column associations
in a matrix. We ask whether a submatrix selected by a biclustering algorithm captures the hidden
association(s). In practice, given a matrix, a practitioner might perform (in order)

1. submatrix detection: check for a hidden submatrix with elevated mean.
2. submatrix localization: attempt to find the hidden submatrix.
3. selective inference: check whether the selected submatrix captures any signal.

We focus on the third step in the pipeline. Results on evaluating the significance of selected sub-
matrices are scarce. The only result we know of is by Bhamidi, Dey and Nobel, who characterized
the asymptotic distribution of the largest k × k average submatrix in Gaussian random matrices [6].
Their result may be used to form an asymptotic test of (1.2).

The submatrix localization problem, due to its practical relevance, has attracted considerable at-
tention [5, 2, 3]. Most prior work focuses on finding significant submatrices. Broadly speaking,
submatrix localization procedures fall into one of two types: score-based search procedures and
spectral algorithms. The main idea behind the score-based approach to submatrix localization is
significant submatrices should maximize some score that measures the “significance” of a subma-
trix, e.g. the average of its entries [12] or the goodness-of-fit of a two-way ANOVA model [8, 9].
Since there are exponentially many submatrices, many score-based search procedure use heuristics
to reduce the search space. Such heuristics are not guaranteed to succeed, but often perform well in
practice. One of the purposes of our work is to test whether a heuristic algorithm has identified a
significant submatrix.
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The submatrix localization problem exhibits a statistical and computational trade-off that was first
studied by Balakrishnan et al. [5]. They compare the SNR required by several computationally
efficient algorithms to the minimax SNR. Recently, Chen and Xu [7] study the trade-off when there
are several embedded submatrices. In this more general setting, they show the SNR required by
convex relaxation is smaller than the SNR required by entry-wise thresholding. Thus the power of
convex relaxation is in separating clusters/submatrices, not in identifying one cluster/submatrix.

2 A framework for evaluating the significance of a submatrix

Our main contribution is a framework for evaluating significance of a submatrix selected by a bi-
clustering algorithm. The framework allows us to perform exact (non-asymptotic) inference on the
selected submatrix. In this section, we develop the framework on a (very) simple score-based al-
gorithm that simply outputs the largest average submatrix. At a high level, our framework consists
of characterizing the selection event {(I(X), J(X)) = (I, J)} and applying the key distributional
result in [10] to obtain a pivotal quantity.

2.1 The significance of the largest average submatrix

To begin, we consider performing inference on output of the simple algorithm that simply returns
the k × k submatrix with largest sum. Let S be the set of indices of all k × k submatrices of X ,
i.e. S = {(I, J) | I, J ⊂ [n], |I| = |J | = k}. The Largest Average Submatrix (LAS) algorithm
returns a pair (ILAS(X), JLAS(X))

(ILAS(X), JLAS(X)) = arg max
(I,J)∈S

eTI XeJ

The optimal value S(1) = tr
(
eJLAS(X)e

T
ILAS(X)X

)
is distributed like the maxima of

(
n
k

)2
(corre-

lated) normal random variables. Although results on the asymptotic distribution (k fixed, n growing)
of S(1) (under H0 : µ = 0) are known (e.g. Theorem 2.1 in [6]), we are not aware of any results that
characterizes the finite sample distribution of the optimal value. To avoid this pickle, we condition
on the selection event

ELAS(I, J) = {(ILAS(X), JLAS(X)) = (I, J)} (2.1)

and work with the distribution of X | {(ILAS(X), JLAS(X)) = (I, J)} .
We begin by making a key observation. The selection event given by (2.1) is equivalent to X
satisfying a set of linear inequalities given by

tr
(
eJe

T
I X
)
≥ tr

(
eJ′eTI′X

)
for any (I ′, J ′) ∈ S \ (I, J). (2.2)

Thus the selection event is equivalent to X falling in the polyhedral set

CLAS(I, J) =
{
X ∈ Rn×n | tr

(
eJe

T
I X
)
≥ tr

(
eJ′eTI′X

)
for any (I ′, J ′) ∈ S \ (I, J)

}
. (2.3)

Thus, X | {(ILAS(X), JLAS(X)) = (I, J)} = X | {X ∈ CLAS(I, J)} is a constrained Gaussian
random variable.

Recall our goal was to perform inference on the amount of signal in the selected submatrix
XILAS(X),JLAS(X). This task is akin to performing inference on the mean parameter1 of a con-
strained Gaussian random variable, namely X | {X ∈ CLAS(I, J)} . We apply the selective infer-
ence framework by Lee et al. [10] to accomplish the task.

Before we delve into the details of how we perform inference on the mean parameter of a constrained
Gaussian random variable, we review the key distribution result in [10] concerning constrained
Gaussian random variables.
Theorem 2.1. Consider a Gaussian random variable y ∈ Rn with mean ν ∈ Rn and covariance
Σ ∈ Sn×n++ constrained to a polyhedral set

C = {x ∈ Rp | Ay ≤ b} for some A ∈ Rm×n, b ∈ Rm.

1The mean parameter is the mean of the Gaussian prior to truncation.
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Let η ∈ Rn represent a linear function of y. Define α = AΣη
ηTΣη

and

V+(y) = sup
j:αj<0

1

αj
(bj − (Ay)j + αjη

T y) (2.4)

V−(y) = inf
j:αj>0

1

αj
(bj − (Ay)j + αjη

T y) (2.5)

V 0(y) = inf
j:αj=0

bj − (Ay)j (2.6)

F (x, ν, σ2, a, b) =
Φ
(
x−ν
σ

)
− Φ

(
a−ν
σ

)
Φ
(
b−ν
σ

)
− Φ

(
a−ν
σ

) . (2.7)

The expression F (ηT y, ηT ν, ηTΣη,V−(y),V+(y)) is a pivotal quantity with a Unif(0, 1) distribu-
tion, i.e.

F
(
ηT y, ηT ν, ηTΣη,V−(y),V+(y)

)
| {Ay ≤ b} ∼ Unif(0, 1). (2.8)

Remark 2.2. The truncation limits V+(y) and V−(y) (and V 0(y)) depend on η and the polyhedral
set C. We omit the dependence to keep our notation manageable.

Recall X | {ELAS(I, J)} is a constrained Gaussian random variable (constrained to the polyhedral
set CLAS(I, J) given by (2.3)). By Theorem 2.1 and the characterization of the selection event
ELAS(I, J), the random variable

F
(
S(1), tr

(
eJe

T
IM

)
, σ2k2,V−(X),V+(X)

)
| {ELAS(I, J)} ,

where V+(X) and V−(X) (and V 0(X)) are evaluated on the polyhedral set CLAS(I, J), is uni-
formly distributed on the unit interval. The mean parameter tr

(
eJe

T
IM

)
is the amount of signal

captured by XI,J :
tr
(
eJe

T
IM

)
= |I ∩ I0| |J ∩ J0|µ.

What are V+(X) and V−(X)? Let EI′,J′ = e′Ie
′T
J for any I ′, J ′ ⊂ [n]. For convenience, we index

the constraints (2.2) by the pairs (I ′, J ′). The term αI′,J′ is given by αI′,J′ =
|I∩I′||J∩J′|−k2

k2 .
Since |I ∩ I ′| |J ∩ J ′| < k2, αI′,J′ is negative for any (I ′, J ′) ∈ Sn,k \ (I, J), and the upper
truncation limit V+(X) is∞. The lower truncation limit V−(X) simplifies to

V−(X) = max
(I′,J′):αI′,J′<0

tr
(
ETI,JX

)
−
k2 tr

(
(EI,J − EI′,J′)

T
X
)

k2 − |I ∩ I ′| |J ∩ J ′|
. (2.9)

We summarize the developments thus far in a corollary.
Corollary 2.3. We have

F
(
S(1), tr

(
eJe

T
IM

)
, k2σ2,V−(X),∞

)
| {ELAS(I, J)} ∼ Unif (0, 1) (2.10)

V−(X) = max
(I′,J′):αI′,J′<0

tr
(
ETI,JX

)
−
k2 tr

(
(EI,J − EI′,J′)

T
X
)

k2 − |I ∩ I ′| |J ∩ J ′|
(2.11)

Under the hypothesis
H0 : tr

(
eJLAS(X)e

T
ILAS(X)M

)
= 0, (2.12)

we expect
F
(
S(1), 0, k

2σ2,V−(X),∞
)
| {ELAS(I, J)} ∼ Unif (0, 1)

Thus 1 − F
(
S(1), 0, k

2σ2,V−(X),∞
)
is a p-value for the hypothesis (2.12). Under the al-

ternative, we expect the selected submatrix to be (stochastically) larger than under the null.
Thus rejecting H0 when the p-value is smaller than α is an exact α level test for H0; i.e.
Pr0 (reject H0 | {ELAS(I, J)}) = α. Since the test controls Type I error at α for all possible se-
lection events (i.e. all possible outcomes of the LAS algorithm), the test also controls Type I error
unconditionally:

Pr0 (reject H0) =
∑

I,J⊂[n]

Pr0 (reject H0 | {ELAS(I, J)})Pr0 ({ELAS(I, J)})

≤ α
∑

I,J⊂[n]

Pr0 ({ELAS(I, J)}) = α.

Thus the test is an exact α-level test of H0. We summarize the result in a Theorem.
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Theorem 2.4. The test that rejects when

F
(
S(1), 0, k

2σ2,V−(X),∞
)
≥ 1− α

V−(X),= max
(I′,J′):αI′,J′<0

tr
(
ETILAS(X),JLAS(X)

X
)
−
k2 tr

((
EILAS(X),JLAS(X)

− EI′,J′
)T
X
)

k2 −
∣∣ILAS(X) ∩ I ′

∣∣ ∣∣JLAS(X) ∩ J ′
∣∣ ,

is a valid α-level test for H0 :
∑

i∈I(X)
j∈J(X)

Mij = 0.

To obtain confidence intervals for the amount of signal in the selected submatrix, we “invert” the
pivotal quantity given by (2.10). By Corollary 2.3, the interval{

ν ∈ R :
α

2
≤ F

(
S(1), ν, k

2σ2,V−(X),∞
)
≤ 1− α

2

}
(2.13)

is an exact 1 − α confidence interval for
∑

i∈I(X)
j∈J(X)

Mij . When (ILAS(X), JLAS(X)) = (I0, J0),

(2.13) is a confidence interval for µ. Like the test given by Lemma 2.4, the confidence intervals
given by (2.13) are also valid unconditionally.

2.2 Power under minimax signal-to-noise ratio

In section 2, we derived an exact (non-asymptotically valid) test for the hypothesis (2.12). In this
section, we study the power of the test. Before we delve into the details, we review some relevant
results to place our result in the correct context.

Balakrishnan et al. [5] show µmust be at least Θ

(
σ
√

log(n−k)
k

)
for any algorithm to succeed (find

the embedded submatrix) with high probability. They also show the LAS algorithm is minimax
rate optimal; i.e. the LAS algorithm finds the embedded submatrix with probability 1− 4

n−k when

µ ≥ 4σ
√

2 log(n−k)
k . We show that the test given by Theorem 2.4 has asymptotic full power under

the same signal strength. The proof is given in the appendix.

Theorem 2.5. Let µ = C
√

2 log(n−k)
k . When C > max

(
1√

α log(n−k)(
√
k−5/4)

, 4 + 4
√

log 2
α

log(n−k)

)
and k ≤ n

2 , the α-level test given by Corollary 2.3 has power at least 1− 5
n−k ; i.e.

Pr(reject H0) ≥ 1− 5
n−k .

Further, for any sequence (n, k) such that n→∞, when C > 4, and k ≤ n
2 , Pr(reject H0)→ 1.

3 General scan statistics

Although we have elected to present our framework in the context of biclustering, the framework
readily extends to scan statistics. Let z ∼ N (µ,Σ), where E[z] has the form

E[zi] =

{
µ i ∈ S
0 otherwise

for some µ > 0 and S ⊂ [n ].

The set S belongs to a collection C = {S1, . . . , SN}. We decide which index set in C generated the
data by

Ŝ = arg maxS∈C
∑
i∈S zi. (3.1)

Given Ŝ, we are interested in testing the null hypothesis

H0 : E[zŜ ] = 0. (3.2)

To perform exact inference for the selected effect µŜ , we must first characterize the selection event.
We observe that the selection event {Ŝ = S} is equivalent to X satisfying a set of linear inequalities
given by

eTSz ≥ eTS′z for any S′ ∈ C \ S. (3.3)

5



Given the form of the constraints (3.3),

aS′ =
(eS′ − eS)T eS

eTSeS
=

1

|S|
(|S ∩ S′| − |S|) for any S′ ∈ C \ S.

Since |S ∩ S′| ≤ |S| , we have aS′ ∈ [−1, 0], which implies V+(z) = ∞. The term V−(z) also
simplifies:

V−(z) = sup
S′

1

aS′
((eS − eS′)T z + aS′eTSz) = eTSz + sup

S′

1

aS′
((eS − eS′)T z).

Let y(1), y(2) be the largest and second largest scan statistics. We have

V−(z) ≤ z(1) + sup
S′

((eS′ − eS)T z) = z(1) + z(2) − z(1) = z(2).

Intuitively, the pivot will be large (the p-value will be small), when eTSz exceeds the lower truncation
limit V− by a large margin. Since the second largest scan statistic is an upper bound for the lower
truncation limit, the test will reject when y(1) exceeds y(2) by a large margin.
Theorem 3.1. The test that rejects when

F
(
z(1), 0, k

2σ2,V−(z),∞
)
≥ 1− α

where V−(X) = eT
Ŝ
z + supS′

1
aS′

((eŜ − eS′)T z), is a valid α-level test for H0 : eT
Ŝ
µ = 0.

To our knowledge, most precedures for obtaining valid inference on scan statistics require careful
characterization of the asymptotic distribution of eT

Ŝ
z. Such results are usually only valid when

the components of z are independent with identical variances (e.g. see [6]), and can only be used
to test the global null: H0 : E[z] = 0. Our framework not only relaxes the independence and
homeoskedastic assumption, but also allows us to for confidence intervals for the selected effect
size.

4 Extensions to other score-based approaches

Returning to the submatrix localization problem, we note that the framework described in section 2
also readily handles other score-based approaches, as long as the scores are affine functions of the
entries. The main idea is to partition Rn×n into non-overlapping regions that corresponding to a
possible outcomes of the algorithm; i.e. the event that the algorithm outputs a particular submatrix
is equivalent to X falling in the corresponding region of Rn×n. In this section, we show how to
perform exact inference on biclusters found by more computationally tractable algorithms.

4.1 Greedy search

Searching over all
(
n
k

)2
submatrices to find the largest average submatrix is computationally in-

tractable for all but the smallest matrices. Here we consider a family of heuristics based on a greedy
search algorithm proposed by Shabalin et al. [12] that looks for “local” largest average submatrices.
Their approach is widely used to discover genotype-phenotype associations in high-dimensional
gene expression data. Here the score is simply the sum of the entries in a submatrix.

Algorithm 1 Greedy search algorithm

1: Initialize: select J0 ⊂ [n].
2: repeat
3: I l+1 ← the indices of the rows with the largest column sum in J l
4: J l+1 ← the indices of the columns with the largest row sum in I l+1

5: until convergence

To adapt the framework laid out in section 2 to the greedy search algorithm, we must characterize
the selection event. Here the selection event is the “path” of the greedy search:

EGrS = EGrS

(
(I1, J1), (I2, J2), . . .

)
6



is the event the greedy search selected (I1, J1) at the first step, (I2, J2) at the second step, etc.

In practice, to ensure stable performance of the greedy algorithm, Shabalin et al. propose to run the
greedy search with random initialization 1000 times and select the largest local maximum. Suppose
the m?-th greedy search outputs the largest local maximum. The selection event is

EGrS,1 ∩ · · · ∩ EGrS,1000 ∩
{
m? = arg max

m=1,...,1000
eTIGrS,m(X)XeJGrS,m(X)

}
where

EGrS,m = EGrS

(
(I1
m, J

1
m), (I2

m, J
2
m), . . .

)
,m = 1, . . . , 1000

is the event the m-th greedy search selected (I1
m, J

1
m) at the first step, (I2

m, J
2
m) at the second step,

etc.

An alternative to running the greedy search with random initialization many times and picking the
largest local maximum is to initialize the greedy search intelligently. Let Jgreedy(X) be the output
of the intelligent initialization. The selection event is given by

EGrS ∩
{
Jgreedy(X) = J0

}
, (4.1)

where EGrS is the event the greedy search selected (I1, J1) at the first step, (I2, J2) at the second
step, etc. The intelligent initialization selects J0 when

eT[n]Xej ≥ e
T
[n]Xej′ for any j ∈ J0, j′ ∈ [n] \ J0, (4.2)

which corresponds to selecting the k columns with largest sum. Thus the selection event is equiva-
lent to X falling in the polyhedral set

CGrS ∩
{
X ∈ Rn×n | tr

(
eje

T
[n]X

)
≥ tr

(
ej′e

T
[n]X

)
for any j ∈ J0, j′ ∈ [n] \ J0

}
,

where CGrS is the constraint set corresponding to the selection event EGrS (see Appendix for an
explicit characteriation).

4.2 Largest row/column sum test

An alternative to running the greedy search is to use a test statistic based off choosing the k rows and
columns with largest sum. The largest row/column sum test selects a subset of columns J0 when

eT[n]Xej ≥ e
T
[n]Xej′ for any j ∈ J0, j′ ∈ [n] \ J0 (4.3)

which corresponds to selecting the k columns with largest sum. Similarly, it selects rows I0 with
largest sum. Thus the selection event for initialization at (I0, J0) is equivalent to X falling in the
polyhedral set{

X ∈ Rn×n | tr
(
eje

T
[n]X

)
≥ tr

(
ej′e

T
[n]X

)
for any j ∈ J0, j′ ∈ [n] \ J0

}
∩
{
X ∈ Rn×n | tr

(
eie

T
[n]X

)
≥ tr

(
ei′e

T
[n]X

)
for any i ∈ I0, i′ ∈ [n] \ I0

}
. (4.4)

The procedure of selecting the k largest rows/columns was analyzed in [5]. They proved that when
µ ≥ 4/k

√
n log(n− k) the procedure recovers the planted submatrix. We show a similar result for

the test statistic based off the intelligent initialization

F
(

tr
(
eJ0(X)e

T
I0(X)X

)
, 0, σ2k2, V −(X), V +(X)

)
. (4.5)

Under the null of µ = 0, the statistic (4.5) is uniformly distributed, so type 1 error is controlled at
level α. The theorem below shows that this computationally tractable test has power tending to 1 for
µ > 4

k

√
n log(n− k).

Theorem 4.1. Let µ = C
k

√
n log(n− k). Assume that n ≥ 2 exp(1) and n ≥ k

2 . When C >

max

(
4
√

1 + 1
4n2 + 2

n ,
2 log 2/α√
log(n−k)

+
√

2
n

)
, the α-level test given by Corollary 2.3 has power at

least 1− 9
n−k ; i.e.

Pr(reject H0) ≥ 1− 9
n−k .

Further, for any sequence (n, k) such that n→∞, when C > 4, and k ≤ n
2 , Pr(reject H0)→ 1.
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Figure 1: Random initialization with 10 restarts
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Figure 2: Intelligent initialization

In practice, we have found that initializing the greedy algorithm with the rows and columns identified
by the largest row/column sum test stabilizes the performance of the greedy algorithm and preserves
power. By intersecting the selection events from the largest row/column sum test and the greedy
algorithm, the test also controls type 1 error. Let (Iloc(X), Jloc(X)) be the pair of indices returned
by the greedy algorithm initialized with (I0, J0) from the largest row/column sum test. The test
statistic is given by

F
(

tr
(
eJloc(X)

eTIloc(X)X
)
, 0, σ2k2, V −(X), V +(X)

)
, (4.6)

where V +(X), V −(X) are now computed using the intersection of the greedy and the largest
row/column sum selection events. This statistic is also uniformly distributed under the null.

We test the performance of three of the biclustering algorithms: Algorithm 1 with the intelligent
initialization in (4.4) and Algorithm 1 with 10 random restarts. We generate data from the model
(1.1) for various values of n and k. We only test the power of each procedure, since all of the
algorithms discussed provably control type 1 error.

The results are in Figures 1, and 2. The y-axis shows power (the probability of rejecting) and the

x-axis is rescaled signal strength µ
/√

2 log(n−k)
k . The tests were calibrated to control type 1 error

at α = .1, so any power over .1 is nontrivial. From the k = log n plot, we see that the intelligently
initialized greedy procedure outperforms the greedy algorithm with a single random initialization
and the greedy algorithm with 10 random initializations.

5 Conclusion

In this paper, we considered the problem of evaluating the statistical significance of the output of
several biclustering algorithms. By considering the problem as a selective inference problem, we
are able to devise exact significance tests and confidence intervals for the selected bicluster. We also
show how the framework generalizes to the more practical problem of evaluating the significance of
multiple biclusters. In this setting, our approach gives sequential tests that control family-wise error
rate in the strong sense.
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