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Abstract
Variational algorithms such as tree-reweighted belief propagation can provide de-
terministic bounds on the partition function, but are often loose and difficult to use
in an “any-time” fashion, expending more computation for tighter bounds. On the
other hand, Monte Carlo estimators such as importance sampling have excellent
any-time behavior, but depend critically on the proposal distribution. We propose
a simple Monte Carlo based inference method that augments convex variational
bounds by adding importance sampling (IS). We argue that convex variational
methods naturally provide good IS proposals that “cover” the target probability,
and reinterpret the variational optimization as designing a proposal to minimize an
upper bound on the variance of our IS estimator. This both provides an accurate
estimator and enables construction of any-time probabilistic bounds that improve
quickly and directly on state-of-the-art variational bounds, and provide certificates
of accuracy given enough samples relative to the error in the initial bound.

1 Introduction

Graphical models such as Bayesian networks, Markov random fields and deep generative models
provide a powerful framework for reasoning about complex dependency structures over many vari-
ables [see e.g., 14, 13]. A fundamental task is to calculate the partition function, or normalization
constant. This task is #P-complete in the worst case, but in many practical cases it is possible to
find good deterministic or Monte Carlo approximations. The most useful approximations should
give not only accurate estimates, but some form of confidence interval, so that for easy problems
one has a certificate of accuracy, while harder problems are identified as such. Broadly speaking,
approximations fall into two classes: variational optimization, and Monte Carlo sampling.

Variational inference [29] provides a spectrum of deterministic estimates and upper and lower
bounds on the partition function; these include loopy belief propagation (BP), which is often quite
accurate; its convex variants, such as tree reweighted BP (TRW-BP), which give upper bounds on the
partition function; and mean field type methods that give lower bounds. Unfortunately, these meth-
ods often lack useful accuracy assessments; although in principle a pair of upper and lower bounds
(such as TRW-BP and mean field) taken together give an interval containing the true solution, the
gap is often too large to be practically useful. Also, improving these bounds typically means using
larger regions, which quickly runs into memory constraints.

Monte Carlo methods, often based on some form of importance sampling (IS), can also be used
to estimate the partition function [e.g., 15]. In principle, IS provides unbiased estimates, with the
potential for a probabilistic bound: a bound which holds with some user-selected probability 1− δ.
Sampling estimates can also easily trade time for increased accuracy, without using more memory.
Unfortunately, choosing the proposal distribution in IS is often both crucial and difficult; if poorly
chosen, not only is the estimator high-variance, but the samples’ empirical variance estimate is also
misleading, resulting in both poor accuracy and poor confidence estimates; see e.g., [35, 1].
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We propose a simple algorithm that combines the advantages of variational and Monte Carlo meth-
ods. Our result is based on an observation that convex variational methods, including TRW-BP and
its generalizations, naturally provide good importance sampling proposals that “cover” the proba-
bility of the target distribution; the simplest example is a mixture of spanning trees constructed by
TRW-BP. We show that the importance weights of this proposal are uniformly bounded by the con-
vex upper bound itself, which admits a bound on the variance of the estimator, and more importantly,
allows the use of exponential concentration inequalities such as the empirical Bernstein inequality
to provide explicit confidence intervals. Our method provides several important advantages:

First, the upper bounds resulting from our sampling approach improve directly on the initial vari-
ational upper bound. This allows our bound to start at a state-of-the-art value, and be quickly and
easily improved in an any-time, memory efficient way. Additionally, using a two-sided concentration
bound provides a “certificate of accuracy” which improves over time at an easily analyzed rate. Our
upper bound is significantly better than existing probabilistic upper bounds, while our correspond-
ing lower bound is typically worse with few samples but eventually outperforms state-of-the-art
probabilistic bounds [11].

Our approach also results in improved estimates of the partition function. As in previous work [32,
34, 31], applying importance sampling serves as a “bias correction” to variational approximations.
Here, we interpret the variational bound optimization as equivalent to minimizing an upper bound
on the IS estimator’s variance. Empirically, this translates into estimates that can be significantly
more accurate than IS using other variational proposals, such as mean field or belief propagation.

Related Work. Importance sampling and related approaches have been widely explored in the
Bayesian network literature, in which the partition function corresponds to the probability of ob-
served evidence; see e.g., [8, 26, 33, 11] and references therein. Dagum and Luby [4] derive a
sample size to ensure a probabilistic bound with given relative accuracy; however, they use the
normalized Bayes net distribution as a proposal, leading to prohibitively large numbers of samples
when the partition function is small, and making it inapplicable to Markov random fields. Cheng [2]
refines this result, including a user-specified bound on the importance weights, but leaves the choice
of proposal unspecified.

Some connections between IS and variational methods are also explored in Yuan and Druzdzel
[32, 34], Wexler and Geiger [31], Gogate and Dechter [11], in which proposals are constructed
based on loopy BP or mean field methods. While straightforward in principle, we are not aware of
any prior work which uses variational upper bounds to construct a proposal, or more importantly,
analyzes their properties. An alternative probabilistic upper bound can be constructed using “per-
turb and MAP” methods [23, 12] combined with recent concentration results [22]; however, in our
experiments the resulting bounds were quite loose. Although not directly related to our work, there
are also methods that connect variational inference with MCMC [e.g., 25, 6].

Our work is orthogonal to the line of research on adaptive importance sampling, which refines the
proposal as more samples are drawn [e.g., 21, 3]; we focus on developing a good fixed proposal
based on variational ideas, and leave adaptive improvement as a possible future direction.

Outline. We introduce background on graphical models in Section 2. Our main result is presented
in Section 3, where we construct a tree reweighted IS proposal, discuss its properties, and propose
our probabilistic bounds based on it. We give a simple extension of our method to higher order
cliques based on the weighted mini-bucket framework in Section 4. We then show experimental
comparisons in Section 5 and conclude with Section 6.

2 Background

2.1 Undirected Probabilistic Graphical Models

Let x = [x1, . . . , xp] be a discrete random vector taking values in X def
= X1 × · · · × Xp; a proba-

bilistic graphical model on x, in an over-complete exponential family form, is

p(x;θ) =
f(x;θ)

Z(θ)
, with f(x;θ) = exp

(∑
α∈I

θα(xα)
)
, Z(θ) =

∑
x∈X

f(x;θ), (1)
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where I = {α} is a set of subsets of variable indices, and θα : Xα → R are functions of xα; we
denote by θ = {θα(xα) : ∀α ∈ I,xα ∈ Xα} the vector formed by the elements of θα(·), called
the natural parameters. Our goal is to calculate the partition function Z(θ) that normalizes the
distribution; we often drop the dependence on θ and write p(x) = f(x)/Z for convenience.

The factorization of p(x;θ) can be represented by an undirected graph G = (V,EG), called its
Markov graph, where each vertex k ∈ V is associated with a variable xk, and nodes k, l ∈ V are
connected (i.e., (kl) ∈ EG) iff there exists some α ∈ I that contains both k and l; then, I is a set of
cliques of G. A simple special case of (1) is the pairwise model, in which I = V ∪ E:

f(x;θ) = exp
(∑
i∈V

θk(xk) +
∑

(kl)∈EG

θkl(xk, xl)
)
. (2)

2.2 Monte Carlo Estimation via Importance Sampling

Importance sampling (IS) is at the core of many Monte Carlo methods for estimating the partition
function. The idea is to take a tractable, normalized distribution q(x), called the proposal, and
estimate Z using samples {xi}ni=1 ∼ q(x):

Ẑ =
1

n

n∑
i=1

w(xi), with w(xi) =
f(xi)

q(xi)
,

where w(x) is called the importance weight. It is easy to show that Ẑ is an unbiased estimator of Z,
in that EẐ = Z, if q(x) > 0 whenever p(x) > 0, and has a MSE of E(Ẑ − Z)2 = 1

nvar(w(x)).

Unfortunately, the IS estimator often has very high variance if the choice of proposal distribution is
very different from the target, especially when the proposal is more peaked or has thinner tails than
the target. In these cases, there exist configurations x such that q(x) � p(x), giving importance
weights w(x) = f(x)/q(x) with extremely large values, but very small probabilities. Due to
the low probability of seeing these large weights, a “typical” run of IS often underestimates Z in
practice, that is, Ẑ ≤ Z with high probability, despite being unbiased.

Similarly, the empirical variance of {w(xi)} can also severely underestimate the true variance
var(w(x)), and so fail to capture the true uncertainty of the estimator. For this reason, concen-
tration inequalities that make use of the empirical variance (see Section 3) also require that w, or its
variance, be bounded. It is thus desirable to construct proposals that are similar to, and less peaked
than, the target distribution p(x). The key observation of this work is to show that tree reweighted
BP and its generalizations provide a easy way to construct such good proposals.

2.3 Tree Reweighted Belief Propagation

Next we describe the tree reweighted (TRW) upper bound on the partition function, restricting to
pairwise models (2) for notational ease. In Section 4 we give an extension that includes both more
general factor graphs, and more general convex upper bounds.

Let T = {T} be a set of spanning trees T = (V,ET ) of G that covers G: ∪TET = EG. We assign
a set of nonnegative weights {ρT : T ∈ T } on T such that

∑
T ρ

T = 1. Let θT = {θT : T ∈ T }
be a set of natural parameters that satisfies

∑
T ρ

TθT = θ, and each θT respects the structure of T
(so that θTkl(xk, xl) ≡ 0 for ∀(kl) 6∈ ET ). Define

pT (x)
def
= p(x;θT ) =

f(x;θT )

Z(θT )
, with f(x;θT ) = exp

(∑
k∈V

θTk (xk) +
∑

(kl)∈ET

θTkl(xk, xl)
)

;

then pT (x) is a tree structured graphical model with Markov graph T . Wainwright et al. [30] use
the fact that logZ(θ) is a convex function of θ to propose to upper bound logZ(θ) by

logZtrw(θT ) =
∑
T∈T

ρT logZ(θT ) ≥ logZ(
∑
T∈T

ρTθT ) = logZ(θ),
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via Jensen’s inequality. Wainwright et al. [30] find the tightest bound via a convex optimization:

logZ∗trw(θ) = min
θT

{
logZtrw(θT ), s.t.

∑
T

ρTθT = θ

}
. (3)

Wainwright et al. [30] solve this optimization by a tree reweighted belief propagation (TRW-BP)
algorithm, and note that the optimality condition of (3) is equivalent to enforcing a marginal con-
sistency condition on the trees – a θT optimizes (3) if and only if there exists a set of common
singleton and pairwise “pseudo-marginals” {bk(xk), bkl(xk, xl)}, corresponding to the fixed point
of TRW-BP in Wainwright et al. [30], such that

b(xk, xl) = pT (xk, xl), ∀(kl) ∈ T, and b(xk) = pT (xk), ∀k ∈ V,

where pT (xk) and pT (xk, xl) are the marginals of pT (x). Thus, after running TRW-BP, we can
calculate pT (x) via

pT (x) = p(x ; θT ) =
∏
k∈V

bk(xk)
∏

kl∈ET

bkl(xk, xl)

bk(xk)bl(xl)
. (4)

Because TRW provides a convex upper bound, it is often well-suited to the inner loop of learning
algorithms [e.g., 28]. However, it is often far less accurate than its non-convex counterpart, loopy
BP; in some sense, this can be viewed as the cost of being a bound. In the next section, we show
that our importance sampling procedure can “de-bias” the TRW bound, to produce an estimator
that significantly outperforms loopy BP; in addition, due to the nice properties of our TRW-based
proposal, we can use an empirical Bernstein inequality to construct a non-asymptotic confidence
interval for our estimator, turning the deterministic TRW bound into a much tighter probabilistic
bound.

3 Tree Reweighted Importance Sampling

We propose to use the collection of trees pT (x) and weights ρT in TRW to form an importance
sampling proposal,

q(x;θT ) =
∑
T∈T

ρT pT (x), (5)

which defines an estimator Ẑ = 1
n

∑n
i=1 w(xi) with xi drawn i.i.d. from q(x;θT ). Our observation

is that this proposal is good due to the special convex construction of TRW. To see this, we note that
the reparameterization constraint

∑
T ρ

TθT = θ can be rewritten as

f(x;θ) = Ztrw(θT )
∏
T

[
pT (x)

]ρT
, (6)

that is, f(x;θ) is the {ρT }-weighted geometric mean of pT (x) up to a constant Ztrw; on the other
hand, q(x;θT ), by its definition, is the arithmetic mean of pT (x), and hence will always be larger
than the geometric mean by the AM-GM inequality, guaranteeing good coverage of the target’s prob-
ability. To be specific, we have q(x;θT ) is always no smaller than f(x;θ)/Ztrw(θT ), and hence
the importance weight w(x) is always upper bounded by Ztrw(θT ). Note that (5)–(6) immediately
implies that q(x;θT ) > 0 whenever f(x;θ) > 0. We summarize our result as follows.

Proposition 3.1. i) If
∑
T ρ

TθT = θ, ρT ≥ 0,
∑
T ρ

T = 1, then the importance weight w(x) =

f(x;θ)/q(x;θT ), with q(x;θT ) defined in (5), satisfies

w(x) ≤ Ztrw(θT ), ∀x ∈ X , (7)

that is, the importance weights of (5) are always bounded by the TRW upper bound; this reinterprets
the TRW optimization (3) as finding the mixture proposal in (5) that has the smallest upper bound
on the importance weights.

ii) As a result, we have max{var(w(x)), v̂ar(w(x))} ≤ 1
4Z

2
trw for x ∼ q(x;θT ), where v̂ar(w(x))

is the empirical variance of the weights. This implies that E(Ẑ − Z)2 ≤ 1
4nZ

2
trw.
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Proof. i) Directly apply AM-GM inequality on (5) and (6). ii) Note that E(w(x)) = Z and hence
var(w(x)) = E(w(x)2)− E(w(x))2 ≤ ZtrwZ − Z2 ≤ 1

4Z
2
trw.

Note that the TRW reparameterization (6) is key to establishing our results. Its advantage is two-fold:
First, it provides a simple upper bound on w(x); for an arbitrary q(·), establishing such an upper
bound may require a difficult combinatorial optimization over x. Second, it enables that bound to
be optimized over q(·), resulting in a good proposal.

Empirical Bernstein Confidence Bound. The upper bound of w(x) in Proposition 3.1 allows us
to use exponential concentration inequalities and construct tight finite-sample confidence bounds.
Based on the empirical Bernstein inequality in Maurer and Pontil [19], we have

Corollary 3.2 (Maurer and Pontil [19]). Let Ẑ be the IS estimator resulting from q(x) in (5). Define

∆ =

√
2v̂ar(w(x)) log(2/δ)

n
+

7Ztrw(θT ) log(2/δ)

3(n− 1)
, (8)

where v̂ar(w(x) is the empirical variance of the weights, then Ẑ+ = Ẑ + ∆ and Z− = Ẑ −∆ are
upper and lower bounds of Z with at least probability (1− δ), respectively, that is, Pr(Z ≤ Ẑ+) ≥
1− δ and Pr(Ẑ− ≤ Z) ≥ 1− δ.

The quantity ∆ is quite intuitive, with the first term proportional to the empirical standard deviation
and decaying at the classic 1/

√
n rate. The second term captures the possibility that the empiri-

cal variance is inaccurate; it depends on the boundedness of w(x) and decays at rate 1/n. Since
v̂ar(w) < Z2

trw, the second term typically dominates for small n, and the first term for large n.

When ∆ is large, the lower bound Ẑ−∆ may be negative; this is most common when n is small and
Ztrw is much larger than Z. In this case, we may replace Ẑ− with any deterministic lower bound, or
with Ẑδ, which is a (1 − δ) probabilistic bound by the Markov inequality; see Gogate and Dechter
[11] for more Markov inequality based lower bounds. However, once n is large enough, we expect
Ẑ− should be much tighter than using Markov’s inequality, since Ẑ− also leverages boundedness
and variance information.1 On the other hand, the Bernstein upper bound Ẑ+ readily gives a good
upper bound, and is usually much tighter than Ztrw even with a relatively small n.

For example, if Ẑ � Ztrw (e.g., the TRW bound is not tight), our upper bound Ẑ+ improves rapidly
on Ztrw at rate 1/n and passes Ztrw when n ≥ 7

3 log(2/δ) + 1 (for example, for δ = 0.025 used
in our experiments, we have Ẑ+ ≤ Ztrw by n = 12). Meanwhile, one can show that the lower
bound must be non-trivial (Ẑ− > 0) if n > 6(Ztrw/Ẑ) log(2/δ) + 1. During sampling, we can
roughly estimate the point at which it will become non-trivial, by finding n such that Ẑ ≥ ∆. More
rigorously, one can apply a stopping criterion [e.g., 5, 20] on n to guarantee a relative error ε with
probability at least 1 − δ, using the bound on w(x); roughly, the expected number of samples will
depend on Ztrw/Z, the relative accuracy of the variational bound.

4 Weighted Mini-bucket Importance Sampling

We have so far presented our results for tree reweighted BP on pairwise models, which approximates
the model using combinations of trees. In this section, we give an extension of our results to general
higher order models, and approximations based on combinations of low-treewidth graphs. Our
extension is based on the weighted mini-bucket framework [7, 17, 16], but extensions based on
other higher order generalizations of TRW, such as Globerson and Jaakkola [9], are also possible.
We only sketch the main idea in this section.

We start by rewriting the distribution using the chain rule along some order o = [x1, . . . , xp],

f(x) = Z
∏
k

p(xk|xpa(k)). (9)

1The Markov lower bounds by Gogate and Dechter [11] have the undesirable property that they may not
become tighter with increasing n, and may even decrease.
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where pa(k), called the induced parent set of k, is the set of variables adjacent to xk when it is
eliminated along order o. The largest parent size ω := maxk∈V |pa(k)| is called the induced width
of G along order o, and the computational complexity of exact variable elimination along order o is
O(exp(ω)), which is intractable when ω is large.

Weighted mini-bucket is an approximation method that avoids the O(exp(ω)) complexity by split-
ting each pa(k) into several smaller “mini-buckets” pa`(k), such that ∪`pa`(k) = pa(k), where
the size of the pa`(k) is controlled by a predefined number ibound ≥ |pa`(k)|, so that the ibound
trades off the computational complexity with approximation quality. We associate each pa`(k) with
a nonnegative weight ρk`, such that

∑
` ρk` = 1. The weighted mini-bucket algorithm in Liu [16]

then frames a convex optimization to output an upper bound Zwmb ≥ Z together with a set of
“pseudo-” conditional distributions bk`(xk|xpa`(k)

), such that

f(x) = Zwmb
∏
k

∏
`

bk`(xk|xpa`(k)
)ρk` , (10)

which, intuitively speaking, can be treated as approximating each conditional distribution
p(xk|xpa(k)) with a geometric mean of the bk`(xk|xpa`(k)); while we omit the details of weighted
mini-bucket [17, 16] for space, what is most important for our purpose is the representation (10).

Similarly to with TRW, we define a proposal distribution by replacing the geometric mean with an
arithmetic mean:

q(x) =
∏
k

∑
`

ρk` bk`(xk|xpa`(k)
). (11)

We can again use the AM-GM inequality to obtain a bound on w(x), that w(x) ≤ Zwmb.

Proposition 4.1. Let w(x) = f(x)/q(x), where f(x) and q(x) satisfy (10) and (11), with∑
` ρk` = 1, ρk` ≥ 0, ∀k, `. Then,

w(x) ≤ Zwmb, ∀x ∈ X .

Proof. Use the AM-GM inequality,
∏
` bk`(xk|xpa`(k)

)ρk` ≤
∑
` ρk` bk`(xk|xpa`(k)

), for each k.

Note that the form of q(x) makes it convenient to sample by sequentially drawing each variable xk
from the mixture

∑
` ρk` bk`(xk|xpa`(k)

) along the reverse order [xp, . . . , x1]. The proposal q(x)
also can be viewed as a mixture of a large number of models with induced width controlled by
ibound; this can be seen by expanding the form in (11),

q(x) =
∑
`1···`p

ρ`1···`pq`1···`p(x), where ρ`1···`p =
∏
k

ρk`k , q`1···`p(x) =
∏
k

bk`k(xk|xpa`(k)).

5 Experiments

We demonstrate our algorithm using synthetic Ising models, and real-world models from recent
UAI inference challenges. We show that our TRW proposal can provide better estimates than other
proposals constructed from mean field or loopy BP, particularly when it underestimates the partition
function; in this case, the proposal may be too peaked and fail to approach the true value even for
extremely large sample sizes n. Using the empirical Bernstein inequality, our TRW proposal also
provides strong probabilistic upper and lower bounds. When the model is relatively easy or n is
large, our upper and lower bounds are close, demonstrating the estimate has high confidence.

5.1 MRFs on 10× 10 Grids

We illustrate our method using pairwise Markov random fields (2) on a 10× 10 grid. We start with
a simple Ising model with θk(xk) = σsxk and θkl(xk, xl) = σpxkxl, xk ∈ {−1, 1}, where σs
represents the external field and σp the correlation. We fix σs = 0.01 and vary σp from−1.5 (strong
negative correlation) to 1.5 (strong positive correlation). Different σp lead to different inference
hardness: inference is easy when the correlation is either very strong (|σp| large) or very weak (|σp|
small), but difficult for an intermediate range of values, corresponding to a phase transition.
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Figure 1: Experiments on 10 × 10 Ising models with interaction strength σp ranging from strong
negative (-1.5) to strong positive (1.5).

We first run the standard variational algorithms, including loopy BP (LBP), tree reweighted BP
(TRW), and mean field (MF). We then calculate importance sampling estimators based on each
of the three algorithms. The TRW trees are chosen by adding random spanning trees until their
union covers the grid; we assign uniform probability ρT to each tree. The LBP proposal follows
Gogate [10], constructing a (randomly selected) tree structured proposal based on the LBP pseudo-
marginals. The MF proposal is q(x) =

∏
k∈V qk(xk), where the qk(xk) are the mean field beliefs.

Figure 1(a) shows the result of the IS estimates based on a relatively small number of importance
samples (n = 104). In this case the TRW proposal outperforms both the MF and LBP proposals;
all the methods degrade when σp ≈ ±.5, corresponding to inherently more difficult inference.
However, the TRW proposal converges to the correct values when the correlation is strong (e.g.,
|σp| > 1), while the MF and LBP proposals underestimate the true value, indicating that the MF and
LBP proposals are too peaked, and miss a significant amount of probability mass of the target.

Examining the deterministic estimates, we note that the LBP approximation, which can be shown to
be a lower bound on these models [27, 24], is also significantly worse than IS with the TRW pro-
posal, and slightly worse than IS based on the LBP proposal. The TRW and MF bounds, of course,
are far less accurate compared to either LBP or the IS methods, and are shown separately in Fig-
ure 1(b). This suggests it is often beneficial to follow the variational procedure with an importance
sampling process, and use the corresponding IS estimators instead of the variational approximations
to estimate the partition function.

Figure 1(b) compares the 95% confidence interval of the IS based on the TRW proposal (filled with
red), with the interval formed by the TRW upper bound and the MF lower bound (filled with green).
We can see that the Bernstein upper bound is much tighter than the TRW upper bound, although at
the cost of turning a deterministic bound into a (1 − δ) probabilistic bound. On the other hand, the
Bernstein interval fails to report a meaningful lower bound when the model is difficult (σp ≈ ±0.5),
because n = 104 is small relative to the difficulty of the model. As shown in Figure 1(c), our method
eventually produces both tight upper and lower bounds as sample size increases.

Figure 1(d) shows the Bernstein bound as we increase n on a fixed model with σp = −0.5, which
is relatively difficult according to Figure 1. Of the methods, our IS estimator becomes the most
accurate by around n = 103 samples. We also show the Markov lower bound Ẑmarkov = Ẑδ as
suggested by Gogate [10]; it provides non-negative lower bounds for all sample sizes, but does not
converge to the true value even with n→ +∞ (in fact, it converges to Zδ).

0.5 1 1.5 2
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0

0.1

0.2
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Ẑ
−

lo
g
Z

Pairwise Strength σp

  

IS(TRW) Bernstein
Loopy BP
IS (BP)

Figure 2: MRF with mixed interactions.

In addition to the simple Ising model, we also tested grid
models with normally distributed parameters: θk(xk) ∼
N (0, σ2

s) and θkl(xk, xl) ∼ N (0, σ2
p). Figure 2 shows

the results when σs = 0.01 and we vary σp. In this case,
LBP tends to overestimate the partition function, and IS
with the LBP proposal performs quite well (similarly to
our TRW IS); but with the previous example, this illus-
trates that it is hard to know whether BP will result in a
high- or low-variance proposal. On this model, mean field
IS is significantly worse and is not shown in the figure.
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Figure 3: The Bernstein interval on (a) BN 6 and (b) BN 11 using ibound = 1 and different sample
sizes n. These problems are relatively easy for variational approximations; we illustrate that our
method gives tight bounds despite using no more memory than the original model.
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Figure 4: Results on a harder instance, pedigree20, at ibound = 8, 15 and different n.

5.2 UAI Instances
We test the weighted mini-bucket (WMB) version of our algorithm on instances from past UAI
approximate inference challenges. For space reasons, we only report a few instances for illustration.

BN Instances. Figure 3 shows two Bayes net instances, BN 6 (true logZ = −58.41) and BN 11
(true logZ = −39.37). These examples are very easy for loopy BP, which estimates logZ nearly
exactly, but of course gives no accuracy guarantees. For comparison, we run our WMB IS estimator
using ibound = 1, e.g., cliques equal to the original factors. We find that we get tight confidence
intervals by around 104–105 samples. For comparison, the method of Dagum and Luby [4], using
the normalized distribution as a proposal, would require samples proportional to 1/Z: approximately
1025 and 1017, respectively.

Pedigree Instances. We next show results for our method on pedigree20, (logZ = −68.22,
induced width ω = 21). and various ibounds; Figure 4 shows the results for ibound 8 and 15.
For comparision, we also evaluate GBP, defined on a junction graph with cliques found in the same
way as WMB [18], and complexity controlled by the same ibound. Again, LBP and GBP generally
give accurate estimates; the absolute error of LBP (not shown) is about 0.7, reducing to 0.4 and
0.2 at ibound = 8 and 15, respectively. The initial WMB bounds overestimate by 6.3 and 2.4 at
ibound = 8 and 15, and are much less accurate. However, our method surpasses GBP’s accuracy
with a modest number of samples: for example, with ibound = 15 (Figure 4b), our IS estimator is
more accurate than GBP with fewer than 100 samples, and our 95% Bernstein confidence interval
passes GBP at roughly 1000 samples.

6 Conclusion
We propose a simple approximate inference method that augments convex variational bounds by
adding importance sampling. Our formulation allows us to frame the variational optimization as de-
signing a proposal that minimizes an upper bound on our estimator’s variance, providing guarantees
on the goodness of the resulting proposal. More importantly, this enables the construction of any-
time probabilistic bounds that improve quickly and directly on state-of-the-art variational bounds,
and provide certificates of accuracy given enough samples, relative to the error in the initial bound.
One potential future direction is whether one can adaptively improve the proposal during sampling.
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