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Abstract

We investigate the robust PCA problem of decomposing an observed matrix into
the sum of a low-rank and a sparse error matrices via convex programming Prin-
cipal Component Pursuit (PCP). In contrast to previous studies that assume the
support of the error matrix is generated by uniform Bernoulli sampling, we allow
non-uniform sampling, i.e., entries of the low-rank matrix are corrupted by er-
rors with unequal probabilities. We characterize conditions on error corruption of
each individual entry based on the local incoherence of the low-rank matrix, under
which correct matrix decomposition by PCP is guaranteed. Such a refined analy-
sis of robust PCA captures how robust each entry of the low rank matrix combats
error corruption. In order to deal with non-uniform error corruption, our technical
proof introduces a new weighted norm and develops/exploits the concentration
properties that such a norm satisfies.

1 Introduction
We consider the problem of robust Principal Component Analysis (PCA). Suppose a n-by-n1 data
matrix M can be decomposed into a low-rank matrix L and a sparse matrix S as

M = L+ S. (1)

Robust PCA aims to find L and S with M given. This problem has been extensively studied recently.
In [1, 2], Principal Component Pursuit (PCP) has been proposed to solve the robust PCA problem
via the following convex programming

PCP: minimize
L,S

kLk⇤ + �kSk
1

(2)

subject to M = L+ S,

where k · k⇤ denotes the nuclear norm, i.e., the sum of singular values, and k · k
1

denotes the l
1

norm i.e., the sum of absolute values of all entries. It was shown in [1, 2] that PCP successfully
recovers L and S if the two matrices are distinguishable from each other in properties, i.e., L is not
sparse and S is not low-rank. One important quantity that determines similarity of L to a sparse
matrix is the incoherence of L, which measures how column and row spaces of L are aligned with
canonical basis and between themselves. Namely, suppose that L is a rank-r matrix with SVD
L = U⌃V ⇤, where ⌃ is a r ⇥ r diagonal matrix with singular values as its diagonal entries, U is a
n⇥ r matrix with columns as the left singular vectors of L, V is a n⇥ r matrix with columns as the
right singular vectors of L, and V ⇤ denotes the transpose of V . The incoherence of L is measured

1In this paper, we focus on square matrices for simplicity. Our results can be extended to rectangular
matrices in a standard way.
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by µ = max{µ
0

, µ
1

}, where µ
0

and µ
1

are defined as

kU⇤e
i

k 
r

µ
0

r

n
, kV ⇤e

j

k 
r

µ
0

r

n
, for all i, j = 1, · · · , n (3)

kUV ⇤k1 
r

µ
1

r

n2

. (4)

Previous studies suggest that the incoherence crucially determines conditions on sparsity of S in
order for PCP to succeed. For example, Theorem 2 in [3] explicitly shows that the matrix L with
larger µ can tolerate only smaller error density to guarantee correct matrix decomposition by PCP.
In all previous work on robust PCA, the incoherence is defined to be the maximum over all column
and row spaces of L as in (3) and (4), which can be viewed as the global parameter for the entire
matrix L, and consequently, characterization of error density is based on such global (and in fact the
worst case) incoherence.

In fact, each (i, j) entry of the low rank matrix L can be associated with a local incoherence parame-
ter µ

ij

, which is less than or equal to the global parameter µ, and then the allowable entry-wise error
density can be potentially higher than that characterized based on the global incoherence. Thus,
the total number of errors that the matrix can tolerate in robust PCA can be much higher than that
characterized based on the global incoherence when errors are distributed accordingly. Motivated
by such an observation, this paper aims to characterize conditions on error corruption of each entry
of the low rank matrix based on the corresponding local incoherence parameter, which guarantee
success of PCP. Such conditions imply how robust each individual entry of L to resist error corrup-
tion. Naturally, the error corruption probability is allowed to be non-uniform over the matrix (i.e.,
locations of non-zero entries in S are sampled non-uniformly).

We note that the notion of local incoherence was first introduced in [4] for studying the matrix
completion problem, in which local incoherence determines the local sampling density in order to
guarantee correct matrix completion. Here, local incoherence plays a similar role, and determines
the maximum allowable error density at each entry to guarantee correct matrix decomposition. The
difference lies in that local incoherence here depends on both localized µ

0

and µ
1

rather than only
on localized µ

0

in matrix completion due to further difficulty of robust PCA, in which locations of
error corrupted entries are unknown, as pointed out in [1, 3].

Our Contribution. In this paper, we investigate a more general robust PCA problem, in which
entries of the low rank matrix are corrupted by non-uniformly distributed Bernoulli errors. We
characterize the conditions that guarantee correct matrix decomposition by PCP. Our result identifies
the local incoherence (defined by localized µ

0

and µ
1

for each entry of the low rank matrix) to
determine the condition that each local Bernoulli error corruption parameter should satisfy. Our
results provide the following useful understanding of the robust PCA problem:

• Our characterization provides a localized (and hence more refined) view of robust PCA, and
determines how robust each entry of the low rank matrix combats error corruption.

• Our results suggest that the total number of errors that the low-rank matrix can tolerate depends
on how errors are distributed over the matrix.

• Via cluster problems, our results provide an evidence that µ
1

is necessary in characterizing
conditions for robust PCA.

In order to deal with non-uniform error corruption, our technical proof introduces a new weighted
norm denoted by l

w(1)

, which involves the information of both localized µ
0

and µ
1

and is hence dif-
ferent from the weighted norms introduced in [4] for matrix completion. Thus, our proof necessarily
involves new technical developments associated with such a new norm.

Related Work. A closely related but different problem from robust PCA is matrix completion, in
which a low-rank matrix is partially observed and is to be completed. Such a problem has been
previously studied in [5–8], and it was shown that a rank-r n-by-n matrix can be provably recov-
erable by convex optimization with as few as ⇥(max{µ

0

, µ
1

}nr log2 n)2 observed entries. Later
on, it was shown in [4] that µ

1

does not affect sample complexity for matrix completion and hence
⇥(µ

0

nr log2 n) observed entries are sufficient for guaranteeing correct matrix completion. It was
further shown in [9] that a coherent low-rank matrix (i.e., with large µ

0

) can be recovered with
2f(n) 2 ⇥(g(n)) means k

1

· g(n)  f(n)  k
2

· g(n) for some positive k
1

, k
2

.
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⇥(nr log2 n) observations as long as the sampling probability is proportional to the leverage score
(i.e., localized µ

0

). Our problem can be viewed as its counterpart in robust PCA, where the differ-
ence lies in the local incoherence in our problem depends on both localized µ

0

and µ
1

.

Robust PCA aims to decompose an observed matrix into the sum of a low-rank matrix and a sparse
matrix. In [2, 10], robust PCA with fixed error matrix was studied, and it was shown that the max-
imum number of errors in any row or column should be bounded from above in order to guarantee
correct decomposition by PCP. Robust PCA with random error matrix was investigated in a number
of studies. It has been shown in [1] that such decomposition can be exact with high probability if
the percentage of corrupted entries is small enough, under the assumptions that the low-rank matrix
is incoherent and the support set of the sparse matrix is uniformly distributed. It was further shown
in [11] that if signs of nonzero entries in the sparse matrix are randomly chosen, then an adjusted
convex optimization can produce exact decomposition even when the percentage of corrupted en-
tries goes to one (i.e., error is dense). The problem was further studied in [1, 3, 12] for the case
with the error-corrupted low-rank matrix only partially observed. Our work provides a more refined
(i.e. entry-wise) view of robust PCA with random error matrix, aiming at understanding how local
incoherence affects susceptibility of each matrix entry to error corruption.

2 Model and Main Result
2.1 Problem Statement

We consider the robust PCA problem introduced in Section 1. Namely, suppose an n-by-n matrix
M can be decomposed into two parts: M = L+ S, where L is a low rank matrix and S is a sparse
(error) matrix. We assume that the rank of L is r, and the support of S is selected randomly but
non-uniformly. More specifically, let ⌦ denote the support of S and then ⌦ ✓ [n] ⇥ [n], where [n]
denotes the set {1, 2, . . . , n}. The event {(i, j) 2 ⌦} is independent across different pairs (i, j) and

P ((i, j) 2 ⌦) = ⇢
ij

, (5)

where ⇢
ij

represents the probability that the (i, j)-entry of L is corrupted by error. Hence, ⌦ is
determined by Bernoulli sampling with non-uniform probabilities.

We study both the random sign and fixed sign models for S. For the fixed sign model, we assume
signs of nonzero entries in S are arbitrary and fixed, whereas for the random sign model, we assume
that signs of nonzero entries in S are independently distributed Bernoulli variables, randomly taking
values +1 or �1 with probability 1/2 as follows:

[sgn(S)]
ij

=

8

<

:

1 with prob. ⇢
ij

/2
0 with prob. 1� ⇢

ij

�1 with prob. ⇢
ij

/2.

(6)

In this paper, our goal is to characterize conditions on ⇢
ij

that guarantees correct recovery of L and
S with observation of M .

We provide some notations that are used throughout this paper. A matrix X is associated with five
norms: kXk

F

denotes the Frobenius norm, kXk⇤ denotes the nuclear norm (i.e., the sum of singular
values), kXk denotes the spectral norm (i.e., the largest singular value), and kXk

1

and kXk1
represent respectively the l

1

and l1 norms of the long vector stacked by X . The inner product
between two matrices is defined as hX,Y i := trace(X⇤Y ). For a linear operator A that acts on the
space of matrices, kAk denotes the operator norm given by kAk = sup{kXkF=1} kAXk

F

.

2.2 Main Theorems

We adopt the PCP to solve the robust PCA problem. We define the following local incoherence
parameters, which play an important role in our characterization of conditions on entry-wise ⇢

ij

.

µ
0ij

:=

n

2r

�

kU⇤e
i

k2 + kV ⇤e
j

k2
�

, µ
1ij

:=

n2

([UV ⇤
]

ij

)

2

r
(7)

µ
ij

:= max{µ
0ij

, µ
1ij

}. (8)

It is clear that µ
0ij

 µ
0

and µ
1ij

 µ
1

for all i, j = 1, · · · , n. We note that although max

i,j

µ
ij

>
1, some µ

ij

might take values as small as zero.
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We first consider the robust PCA problem under the random sign model as introduced in Section
2.1. The following theorem characterizes the condition that guarantees correct recovery by PCP.
Theorem 1. Consider the robust PCA problem under the random sign model. If

1� ⇢
ij

� max

⇢

C
0

r

µ
ij

r

n
log n,

1

n3

�

for some sufficiently large constant C
0

and for all i, j 2 [n], then PCP yields correct matrix
recovery with � =

1

32

p
n logn

, with probability at least 1� cn�10 for some constant c.

We note that the term 1/n3 is introduced to justify dual certificate conditions in the proof (see Ap-
pendix A.2). We further note that satisfying the condition in Theorem 1 implies C

0

p

µr/n log n 
1, which is an essential bound required in our proof and coincides with the conditions in previ-
ous studies [1, 12]. Although we set � =

1

32

p
n logn

for the sake of proof, in practice � is often
determined via cross validation.

The above theorem suggests that the local incoherence parameter µ
ij

is closely related to how ro-
bust each entry of L to error corruption in matrix recovery. An entry corresponding to smaller µ

ij

tolerates larger error density ⇢
ij

. This is consistent with the result in [4] for matrix completion, in
which smaller local incoherence parameter requires lower local sampling rate. The difference lies in
that here both µ

0ij

and µ
1ij

play roles in µ
ij

whereas only µ
0ij

matters in matrix completion. The
necessity of µ

1ij

for robust PCA is further demonstrated in Section 2.3 via an example.

Theorem 1 also provides a more refined view for robust PCA in the dense error regime, in which
the error corruption probability approaches one. Such an interesting regime was previously studied
in [3, 11]. In [11], it is argued that PCP with adaptive � yields exact recovery even when the error
corruption probability approaches one if errors take random signs and the dimension n is sufficiently
large. In [3], it is further shown that PCP with a fixed � also yields exact recovery and the scaling
behavior of the error corruption probability is characterized. The above Theorem 1 further provides
the scaling behavior of the local entry-wise error corruption probability ⇢

ij

as it approaches one,
and captures how such scaling behavior depends on local incoherence parameters µ

ij

. Such a result
implies that robustness of PCP depends not only on the error density but also on how errors are
distributed over the matrix with regard to µ

ij

.

We next consider the robust PCA problem under the fixed sign model as introduced in Section 2.1.
In this case, non-zero entries of the error matrix S can take arbitrary and fixed values, and only
locations of non-zero entries are random.
Theorem 2. Consider the robust PCA problem under the fixed sign model. If

(1� 2⇢
ij

) � max

⇢

C
0

r

µ
ij

r

n
log n,

1

n3

�

for some sufficient large constant C
0

and for all i, j 2 [n], then PCP yields correct recovery with
� =

1

32

p
n logn

, with probability at least 1� cn�10 for some constant c.

Theorem 2 follows from Theorem 1 by adapting the elimination and derandomization arguments [1,
Section 2.2] as follows. Let ⇢ be the matrix with each (i, j)-entry being ⇢

ij

. If PCP yields exact
recovery with a certain probability for the random sign model with the parameter 2⇢, then it also
yields exact recovery with at least the same probability for the fixed sign model with locations of
non-zero entries sampled using Bernoulli model with the parameter ⇢.

We now compare Theorem 2 for robust PCA with non-uniform error corruption to Theorem 1.1 in [1]
for robust PCA with uniform error corruption. It is clear that if we set ⇢

i,j

= ⇢ for all i, j 2 [n],
then the two models are the same. It can then be easily checked that conditions

p

µr/n log n  ⇢
r

and ⇢  ⇢
s

in Theorem 1.1 of [1] implies the conditions in Theorem 2. Thus, Theorem 2 provides
a more relaxed condition than Theorem 1.1 in [1]. Such benefit of condition relaxation should be
attributed to the new golfing scheme introduced in [3, 12], and this paper provides a more refined
view of robust PCA by further taking advantage of such a new golfing scheme to analyze local
conditions.

More importantly, Theorem 2 characterizes relationship between local incoherence parameters and
local error corruption probabilities, which implies that different areas of the low-rank matrix have
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different levels of ability to resist errors: a more incoherent area (i.e., with smaller µ
ij

) can tolerate
more errors. Thus, Theorem 2 illustrates the following interesting fact. Whether PCP yields correct
recovery depends not only on the total number of errors but also on how errors are distributed. If
more errors are distributed to more incoherent areas (i.e, with smaller µ

ij

), then more errors in total
can be tolerated. However, if errors are distributed in an opposite manner, then only smaller number
of errors can be tolerated.

2.3 Implication on Cluster Matrix
In this subsection, we further illustrate our result when the low rank matrix is a cluster matrix.
Although robust PCA and even more sophisticated approaches have been applied to solve clustering
problems, e.g., [13–15], our perspective here is to demonstrate how local incoherence affects entry-
wise robustness to error corruption, which has not been illustrated in previous studies.

Suppose there are n elements to be clustered. We use a cluster matrix L to represent the clustering
relationship of these n elements with L

ij

= 1 if elements i and j are in the same cluster and L
ij

= 0

otherwise. Thus, with appropriate ordering of the elements, L is a block diagonal matrix with all
diagonal blocks containing all ‘1’s and off-diagonal blocks containing all ‘0’s. Hence, the rank r of
L equals the number of clusters, which is typically small compared to n. Suppose these entries are
corrupted by errors that flip entries from one to zero or from zero to one. This can be thought of as
adding a (possibly sparse) error matrix S to L so that the observed matrix is L + S. Then PCP can
be applied to recover the cluster matrix L.

We first consider an example with clusters having equal size n/r. We set n = 600 and r = 4 (i.e.,
four equal-size clusters). We apply errors to diagonal-block entries and off-diagonal-block entries
respectively with the probabilities ⇢

d

and ⇢
od

. In Fig. 1a, we plot recovery accuracy of PCP for
each pairs of (⇢

od

, ⇢
d

). It is clear from the figure that failure occurs for larger ⇢
od

than ⇢
d

, which
thus implies that off-diagonal blocks are more robust to errors than diagonal blocks. This can be
explained by Theorem 2 as follows. For a cluster matrix with equal cluster size n/r, the local
incoherence parameters are given by

µ
0ij

= 1 for all (i, j), and µ
1ij

=

⇢

r, (i, j) is in diagonal blocks
0, (i, j) is in off-diagonal blocks,

and thus

µ
ij

= max{µ
0ij

, µ
1ij

} =

⇢

r, (i, j) is in diagonal blocks
1, (i, j) is in off-diagonal blocks.

Off−diagonal−block error   ρ
od

D
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a
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o
r 

  
ρ

d
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0.5

(a) Diagonal-block error vs. off-diagonal-block
error. n = 600, r = 4 with equal cluster sizes

Cluster1 error ρ
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(b) Error vulnerability with respect to cluster sizes
500 vs. 100

Figure 1: Error vulnerability on different parts for cluster matrix. In both cases, for each probability pair, we
generate 10 trials of independent random error matrices and count the number of successes of PCP. We declare
a trial to be successful if the recovered ˆL satisfies kˆL � LkF /kLkF  10

�3. Color from white to black
represents the number of successful trials changes from 10 to 0.

Based on Theorem 2, it is clear that diagonal-block entries are more locally coherent and hence are
more vulnerable to errors, whereas off-diagonal-block entries are more locally incoherent and hence
are more robust to errors.
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Moreover, this example also demonstrates the necessity of µ
1

in the robust PCA problem. [4] showed
that µ

1

is not necessary for matrix completion and argued informally that µ
1

is necessary for robust
PCA by connecting the robust PCA problem to hardness of finding a small clique in a large random
graph. Here, the above example provides an evidence for such a fact. In the example, µ

0ij

are the
same over the entire matrix, and hence it is µ

1ij

that differentiates incoherence between diagonal
blocks and off-diagonal blocks, and thus differentiates their robustness to errors.

We then consider the case with two clusters that have different sizes: cluster1 size 500 versus cluster2
size 100. Hence, r = 2. We apply errors to block diagonal entries corresponding to clusters 1
and 2 respectively with the probabilities ⇢

1

and ⇢
2

. In Fig. 1b, we plot the recovery accuracy of
PCP for each pair of (⇢

1

, ⇢
2

). It is clear from the figure that failure occurs for larger ⇢
1

than ⇢
2

,
which thus implies that entries corresponding to the larger cluster are more robust to errors than
entries corresponding to smaller clusters. This can be explained by Theorem 2 because the local
incoherence of a block diagonal entry is given by µ

ij

=

n

2

rK

2 , where K is the corresponding cluster
size, and hence the error corruption probability should satisfy 1 � 2⇢

ij

> C
0

p
n

K

log n for correct
recovery. Thus, a larger cluster can resist denser errors. This also coincides with the results on graph
clustering in [13, 16].

2.4 Outline of the Proof of Theorem 1
The proof of Theorem 1 follows the idea established in [1] and further developed in [3, 12]. Our
main technical development lies in analysis of non-uniform error corruption based on local incoher-
ence parameters, for which we introduce a new weighted norm l

w(1)

, and establish concentration
properties and bounds associated with this norm. As a generalization of matrix infinity norm, l

w(1)

incorporates both µ
0ij

and µ
1ij

, and is hence different from the weighted norms l
µ(1)

and l
µ(1,2)

in [9] by its role in the analysis for the robust PCA problem. We next outline the proof here and the
detailed proofs are provided in Appendix A.

We first introduce some notations. We define the subspace T := {UX⇤
+ Y V ⇤

: X,Y 2 Rn⇥r},
where U, V are left and right singular matrix of L. Then T induces a projection operator P

T

given
by P

T

(M) = UU⇤M+MV V ⇤�UU⇤MV V ⇤. Moreover, T?, the complement subspace to T , in-
duces an orthogonal projection operator P

T

? with P
T

?(M) = (I�UU⇤
)M(I�V V ⇤

). We further
define two operators associated with Bernoulli sampling. Let ⌦

0

denote a generic subset of [n]⇥ [n].
We define a corresponding projection operator P

⌦0 as P
⌦0(M) =

P

ij

I{(i,j)2⌦0}hM, e
i

e⇤
j

ie
i

e⇤
j

,
where I{·} is the indicator function. If ⌦

0

is a random set generated by Bernoulli sampling with
P((i, j) 2 ⌦

0

) = t
ij

with 0 < t
ij

 1 for all i, j 2 [n], we further define a linear operator R
⌦0 as

R
⌦0(M) =

P

ij

1

tij
I{(i,j)2⌦0}hM, e

i

e⇤
j

ie
i

e⇤
j

.

We further note that throughout this paper “with high probability” means “with probability at least
1� cn�10”, where the constant c may be different in various contexts.

Our proof includes two main steps: establishing that existence of a certain dual certificate is suffi-
cient to guarantee correct recovery and constructing such a dual certificate. For the first step, we
establish the following proposition.

Proposition 1. If 1�⇢
ij

� max

n

C
0

q

µijr

n

log n, 1

n

3

o

, PCP yields a unique solution which agrees

with the correct (L, S) with high probability if there exists a dual certificate Y obeying

P
⌦

Y = 0, (9)

kY k1  �

4

, (10)

kP
T

?(� sgn(S) + Y )k  1

4

, (11)

kP
T

(Y + � sgn(S)� UV ⇤
)k

F

 �

n2

(12)

where � =

1

32

p
n logn

.

The proof of the above proposition adapts the idea in [1,12] for uniform errors to non-uniform errors.
In particular, the proof exploits the properties of R

⌦

associated with non-uniform errors, which are
presented as Lemma 1 (established in [9]) and Lemma 2 in Appendix A.1.
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Proposition 1 suggests that it suffices to prove Theorem 1 if we find a dual certificate Y that satisfies
the dual certificate conditions (9)-(12). Thus, the second step is to construct Y via the golfing
scheme. Although we adapt the steps in [12] to construct the dual certificate Y , our analysis requires
new technical development based on local incoherence parameters. Recall the following definitions
in Section 2.1: P((i, j) 2 ⌦) = ⇢

ij

and P((i, j) 2 �) = p
ij

, where � = ⌦

c and p
ij

= 1� ⇢
ij

.

Consider the golfing scheme with nonuniform sizes as suggested in [12] to establish bounds with
fewer log factors. Let � = �

1

[ �

2

[ · · · [ �

l

, where {�
k

} are independent random sets given by

P((i, j) 2 �

1

) =

p
ij

6

, P((i, j) 2 �

k

) = q
ij

, for k = 2, · · · , l.

Thus, if ⇢
ij

= (1� pij

6

)(1� q
ij

)

l�1, the two sampling strategies are equivalent. Due to the overlap
between {�

k

}, we have q
ij

� 5

6

pij

l�1

. We set l = b5 log n + 1c and construct a dual certificate Y in
the following iterative way:

Z
0

= P
T

(UV ⇤ � � sgn(S)) (13)
Z
k

= (P
T

� P
T

R
�kPT

)Z
k�1

, for k = 1, · · · , l (14)

Y =

l

X

k=1

R
�kZk�1

. (15)

It is then sufficient to show that such constructed Y satisfies the dual certificate conditions (9)-(12).
Condition (9) is due to the construction of Y . Condition (12) can be shown by a concentration
property of each iteration step (14) with k · k

F

characterized in Lemma 3 in Appendix A.1. In order
to show that Y satisfies conditions (10) and (11), we introduce the following weighted norm. Let
ŵ

ij

=

q

µijr

n

2 and w
ij

= max{ŵ
ij

, ✏}, where ✏ is the smallest nonzero ŵ
ij

. Here ✏ is introduced to
avoid singularity. Then for any matrix Z, define

kZk
w(1)

= max

i,j

|Z
ij

|
w

ij

. (16)

It is easy to verify k · k
w(1)

is a well defined norm. We can then show that each iteration step (14)
with k · k and k · k

w(1)

norms satisfies two concentration properties characterized respectively in
Lemmas 4 and 5, which are essential to prove conditions (10) and (11).

3 Numerical Experiments
In this section, we provide numerical experiments to demonstrate our theoretical results. In these
experiments, we adopt an augmented Lagrange multiplier algorithm in [17] to solve the PCP. We
set � = 1/

p
n log n. A trial of PCP (for a given realization of error locations) is declared to be

successful if ˆL recovered by PCP satisfies kˆL� Lk
F

/kLk
F

 10

�3.

We apply the following three models to construct the low rank matrix L.
• Bernoulli model: L = XX⇤ where X is n⇥r matrix with entries independently taking values
+1/

p
n and �1/

p
n equally likely.

• Gaussian model: L = XX⇤, where X is n ⇥ r matrix with entries independently sampled
from Gaussian distribution N (0, 1/n).

• Cluster model: L is a block diagonal matrix with r equal-size blocks containing all ‘1’s.
In order to demonstrate that the local incoherence parameter affects local robustness to error corrup-
tions, we study the following two types of error corruption models.

• Uniform error corruption: sgn(S
ij

) is generated as (6) with ⇢
ij

= ⇢ for all i, j 2 [n], and
S = sgn(S).

• Adaptive error corruption: sgn(S
ij

) is generated as (6) with ⇢
ij

= ⇢
n

2
p

1/µij
P

ij

p
1/µij

for all i, j 2

[n], and S = sgn(S).
It is clear in both cases, the error matrix has the same average error corruption percentage ⇢, but in
adaptive error corruption, the local error corruption probability is adaptive to the local incoherence.

Our first experiment demonstrates that robustness of PCP to error corruption not only depends on
the number of errors but also depends on how errors are distributed over the matrix. For all three
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(a) Bernoulli model
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(b) Gaussian model
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1

Error percentage ρ

F
a
ilu

re
 f
re

q
u
e
n
cy

 

 

uniform noise
adaptive noise

(c) Cluster model
Figure 2: Recovery failure of PCP versus error corruption percentage.

low rank matrix models, we set n = 1200 and rank r = 10. For each low rank matrix model,
we apply the uniform and adaptive error matrices, and plot the failure frequency of PCP versus the
error corruption percentage ⇢ in Fig. 2. For each value of ⇢, we perform 50 trials of independent
error corruption and count the number of failures of PCP. Each plot of Fig. 2 compares robustness
of PCP to uniform error corruption (the red square line) and adaptive error corruption (the blue
circle line). We observe that PCP can tolerate more errors in the adaptive case. This is because the
adaptive error matrix is distributed based on the local incoherence parameter, where error density is
higher in areas where matrices can tolerate more errors. Furthermore, comparison among the three
plots in Fig. 2 illustrates that the gap between uniform and adaptive error matrices is the smallest
for Bernoulli model and the largest for cluster model. Our theoretic results suggest that the gap is
due to the variation of the local incoherence parameter across the matrix, which can be measured
by the variance of µ

ij

. Larger variance of µ
ij

should yield larger gap. Our numerical calculation
of the variances for three models yield Var(µ

Bernoulli

) = 1.2109, Var(µ
Gaussian

) = 2.1678, and
Var(µ

cluster

) = 7.29, which confirms our explanation.
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(a) Bernoulli model
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(b) Gaussian model
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(c) Cluster model
Figure 3: Largest allowable error corruption percentage versus rank of L so that PCP yields correct
recovery.

We next study the phase transition in rank and error corruption probability. For the three low-rank
matrix models, we set n = 1200. In Fig. 3, we plot the error corruption percentage versus the rank
of L for both uniform and adaptive error corruption models. Each point on the curve records the
maximum allowable error corruption percentage under the corresponding rank such that PCP yields
correction recovery. We count a (r, ⇢) pair to be successful if nine trials out of ten are successful.
We first observe that in each plot of Fig. 3, PCP is more robust in adaptive error corruption due to
the same reason explained above. We further observe that the gap between the uniform and adaptive
error corruption changes as the rank changes. In the low-rank regime, the gap is largely determined
by the variance of incoherence parameter µ

ij

as we argued before. As the rank increases, the gap is
more dominated by the rank and less affected by the local incoherence. Eventually for large enough
rank, no error can be tolerated no matter how errors are distributed.

4 Conclusion
We characterize refined conditions under which PCP succeeds to solve the robust PCA problem.
Our result shows that the ability of PCP to correctly recover a low-rank matrix from errors is related
not only to the total number of corrupted entries but also to locations of corrupted entries, more
essentially to the local incoherence of the low rank matrix. Such result is well supported by our
numerical experiments. Moreover, our result has rich implication when the low rank matrix is a
cluster matrix, and our result coincides with state-of-the-art studies on clustering problems via low
rank cluster matrix. Our result may motivate the development of weighted PCP to improve recovery
performance similar to the weighted algorithms developed for matrix completion in [9, 18].
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