A Proof of Main Results for Matrix Sensing (Cont’d)

We continue with the proof of Theorem 3.4 for the alternating gradient and gradient descent algo-
rithms.

A.1 Proof of Theorem 3.4 (Alternating Gradient Descent)

Proof. Throughout the proof for alternating gradient descent, we define a sufficiently large constant
&. Moreover, we assume that at the ¢-th iteration, there exists a matrix factorization of M*
M* _ U*(t)v*(t)—r7

where U*(t)

€ R™** is an orthonormal matrix. We use the following projected oracle divergence
V(t+0.5) _ V*(t)
NV E0S) —V0]p >

The first lemma is parallel to Lemma 4.3 for alternating exact minimization.

D(V(t+0'5)7 V(t)7U(t)) _ <VV]:(U(t), V(t)) _ VV]:(U*(t), V(t))

Lemma A.1. Suppose that dop, ﬁ(t), and V) satisfy

V2(1 = Gop)or —(t) =) o2 ovk
Gop < v 2R T T <k and [V -V Op < ——. (Al
2k < Seho, l e < = and || [r < 5 (A.1)
Then we have
— 1456 — Tk
D09, v10,7) < EEBT T g0,
The proof of Lemma A.1 is provided in Appendix C.1. Lemma A.1 illustrates the projected oracle
divergence diminishes with the estimation error of U(t) , when ﬁ(t) and V) are sufficiently close to
7@ *(t)
U " and V*¥.
Lemma A.2. Suppose that the step size parameter 7 satisfies
1
= ) A2
=7 ~+ ok 4.2)

Then we have

||V(t+0.5) _ V*HF < \/@HV(I‘) _ V*HF + D(V(t+o‘5),V(”,U(t>).

1+ o

The proof of Lemma A.2 is in Appendix C.2. Lemma A.2 characterizes the progress of a gradient
descent step with a pre-specified fixed step size. A more practical option is adaptively selecting 7 using
the backtracking line search procedure, and similar results can be guaranteed. See [20] for details.
The following lemma characterizes the effect of the renormalization step using QR decomposition.

Lemma A.3. Suppose that V(#10-5) satisfies

. o
|[VEH05) _y*®)|p < Zk' (A.3)
Then there exists a factorization of M* = U *<t+1>V*“+” such that V*(tH) € R™*k is an orthonor-

mal matrix, and

(1) wx(t+1)
V==V

< 3||V(t+0'5) _ V*(t)”F
Ok ’

(t) ()

3 J—
[0® 0Dl < TV v O 400 [T7 T,
k

The proof of Lemma A.3 is provided in Appendix C.3. The next lemma quantifies the accuracy of the
initial solutions.

Lemma A.4. Suppose that do, satisfies

ap
02 < 19382k50" (AD
Then we have
2 2
+(0)  75x(0) Ok (0) #(0) (o 0’1\/E
— < — < < .
[0 U e < I€0? and ||V — Vg < Seor = 2
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(0)

The proof of Lemma A.4 is in Appendix C.4. Lemma A.4 indicates that the initial solutions U" ~ and

V() attain sufficiently small estimation errors.

Combining Lemmas A.1, A.2, 4.5, , we obtain the following corollary for a complete iteration of
updating V.
Corollary A.5. Suppose that 6oy, U(t), and V' satisfy
2 2
() 77+(0) Tk (t) _ =) Tk
v’ -U < , d |[VVW -V —
|| Ie < gomze and | I < 5

oy
Oop < —— 8
= 192€2k08°
We then have

(A.5)

0 2
(4 gy Th g o - e < O

v —k_
I = 4éo? = 20,

Moreover, we have
2 T
(V0D v Olle < /E [V v Ollp + =T =T, (A6)

R i T I T g||U“ -7, (A7)
3 0 6 — —
[ U D < ‘”O_— By Ot (F41) 0 -T . a8)

The proof of Corollary A.5 is provided in Appendix C.5. Since the alternating gradient descent
algorithm updates U and V' in a symmetric manner, we can establish similar results for a complete
iteration of updating U in the next corollary.

Corollary A.6. Suppose that oy, V(t+1), and U satisfy
of —(t41) (1) o2 o?
Oop < —HE — |V -V <k d |[U®D — Ut |lp < =2 (A9
2 < Tosaer | Ir < foupr and | Ir < geer (A9)
We then have
2 2
—(t+1) *(t+1 o . o
HU ||F < 4£k: and ||V(t+1) -V (t+1)||F < 2&};1_
Moreover, we have
* / #( 20k —(t+1)  —*(t+1
HU(t+0.5) —U (t-‘rl)HF S 52 ||U(t) U t+1)|| Tk”V( ) v ( )HF7 (AlO)
—(t4+1) (1 2\/(5 . 4 —(t+1)  —=(t+1
[T =T e < SO 0 e 7 T (A1)
3 \/6 6 _ .
||V(t+1) _ V*(t+1)||F < %”U(ﬁ _ U*(H_l)HF + (§ + 1) 01||V(t+1) v (t+1)HF-

(A.12)

The proof of Corollary A.6 directly follows Appendix C.5, and is therefore omitted..

Now we proceed with the proof of Theorem 3.4 for alternating gradient descent. Recall that Lemma
A.4 ensures that (A.5) of Corollary A.5 holds for U(O) and V(9 Then Corollary A.5 ensures that

(A.9) of Corollary A.6 holds for U(®) and V(l). By induction, Corollaries 4.7 and 4.8 can be applied
recursively for all T iterations. For notational simplicity, we write (A.6)-(A.12) as

VD) O < g [[VO = VOllp + 30 [T = T O, (A.13)

o [V 7D L < o[V — VO 4 oo [T = T, (A.14)
UEHD g < g [UD — U g 4o [T T (AL5)
[T =T e < aaUO U D g 4o [T T Al6)

||U(t) _ U*(t“)HF < %”V(t) _ V*(t)HF + 7501||U(t) — U*(t)HF, (A.17)

—x(t+1) ||F

VD y ) o < a6|U® — U D |p 4 ygo [V - T (A.18)
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Note that we have 5,6 € (1,2), but a1,...,a6, 71,..., and 74 can be sufficiently small as long as & is
sufficiently large. We then have

||U(t+1) . U*(t+2)”F (ig)a5||v(t+1) VD e + 75 Uan( +1) U*(t+1)||F
< 406U = U e+ agro [T 7 e 4350, [T T
(2)(0[5046 + ’Y5Ot4>HU(t) - U*(t+1)||F + (V57401 + 05V6)01||V(t+1) - V*(HI)HF
' (as6 +1500) [T — U e + (57201 + as36)asl| VO — VOl
+ (1501 + asr6)720 [T =T, (A.19)

where (i) comes from (A.17), (ii) comes from (A.18), (iii) comes from (A.16), and (iv) comes from
(A.14). Similarly, we can obtain

VD — v g < ag| U — U e + 9500 [V = VO

—(t —x(t
+’Y6’YzU1||U( LT )HF7 (A.20)

01||ﬁ(t+1) _ ﬁ*(tJrl)HF < a4HU(t) _ U*(t+1)||F + 74042||V(t) _ V*(t)HF
+ 99201 [T =T (A21)
||U(t+0~5) _ U*(tJrl)HF < a3|\U(t) _ U*(t+1)||F + 73042||V(t) _ V*(t)HF
+ 737201 [T =T . (A22)
For simplicity, we define
by = ||V(t+1) _ V*(t“)HF, bytos = ”V(tJrOo Vr® e, ¢ e = 01||V(t+1) *(t+1)H .
buin = ”U(t—H) . U*(t+2)HF7 buios = ||U(t+0.5) U*(t+1)HF g/F(M) _ 01\|U(t+1) U*(t—H)HF-

Then combining (A.13), (A.14) with (A.19)—(A.22), we obtain

max { y(+1), Py +0.5), P41, dye+n, Puros, Ppen ; < fmax {dyw, dyw, dgm |
(A.23)

where (3 is a contraction coefficient defined as
B = max{asag + Y504, a6, v, a3} + max{ay, az, (V57401 + a5%6), Yooz, Yacz, Y3z}

+ max{v1, 72, (157401 + a5Y6)72: V672, V42, V372 }-
Then we can choose ¢ as a sufficiently large constant such that 8 < 1. By recursively applying (A.23)
fort =0,...,T, we obtain

max {¢V(T) y ¢V(T—o.5) s ¢V(T) y ¢U(T) ; ¢U(T—0.5) s (,bﬁ(T) } < 5 max {¢V(T—1) 5 ¢U(T—1) 5 ¢U(T—l) }

< P max {py -2, dyr-2, ppa-a } < ... < B max {pyw, dyo, dpo }-
By Corollary A.5, we obtain

. 30102k . 6 —(0) (0
o — 0 < 2y v<°>||F+(£+1)01|U<>—U“||F

Vi ke (0,) o
o 1280} 2€oq 13 4€o0
(i) oy, 303 o} (E) o}
8203 2620, A€oy T 260y’
where (i) and (ii) come from Lemma A.4, and (iii) comes from the definition of £ and o1 > oy.
Combining (A.24) with Lemma A.4, we have

02 Uk
{(bV(o) s ¢U(0) > ¢ﬁ(0> } < max { 250’1 450’ }

(A.24)

Then we need at most
2 2 2

B ai o, Oi 0% 1 1,
T = {log<max{&‘1,250%;572&71}'6> 10g (5 1)—‘
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iterations such that

—(T —x 0’2 0'
L e e e

€
280, 4&a? 2’

2
UT _ e < 87 { o} o} } < £
I lp < 57 max 2601’ 450% — 204

We then follow similar lines to (4.9) in Appendix 4.1, and show || M (T) — pp llr < €, which completes
the proof. O

A.2 Proof of Theorem 3.4 (Gradient Descent)

Proof. The convergence analysis of the gradient descent algorithm is similar to that of the alternating
gradient descent. The only difference is that for updating U, the gradient descent algorithm employs

V= V(t) instead of V = V(Hl) to calculate the gradient at U = U®). Then everything else directly
follows Appendix A.1, and is therefore omitted.. O

B Lemmas for Theorem 3.4 (Alternating Exact Minimization)

B.1 Proof of Lemma 4.1

*(t)

Proof. For notational convenience, we omit the index tin U~ and V*(*), and denote them by U

and V* respectively. Then we define

s st

SO = = - with %) = ZAU 7T A
50 - sl
G%) thk) d

GO=| ¢ | wih GO =S ATLTL A
Gl -l |

for 1 < p,q < k. Note that S and G(*) are essentially the partial Hessian matrices V%,]-' (U(t), V)

and V.F (U", V) for a vectorized V, i.e., vec(V'). Before we proceed with the main proof, we first
introduce the following lemma.

Lemma B.1. Suppose that A(-) satisfies 2k-RIP with parameter do;. We then have
1 + 62]{,‘ Z JII]aX(S(t)) Z Unlin(S(t)) Z 1- 52k-

The proof of Lemma B.1 is provided in Appendix B.7. Note that Lemma B.1 is also applicable G ()
since G'*) shares the same structure with S(*). Given a fixed U, F (U, V) is a quadratic function of
V. Therefore we have

FO,V)Y=FU,V)+(VyFU,V), V' =V)
+ (vec(V') —vec(V), V3. F(U,V) (vec(V') — vec(V))),
which further implies implies
]:(U’ Vl) - ]:(Ua V) - <VV(U7 V)vv/ - V> < Umax(v2 (U ))HV/ - V”%‘
FUO V)= FO, V)~ (VU V),V = V) 2 00n(VEFT, V)|V~ V|3

F(U,
Then we can verify that V2 F (U, V) also shares the same structure with S®*). Thus applying Lemma
B.1 to the above two inequalities, we complete the proof. [
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B.2 Proof of Lemma 4.3

*(t)

Proof. For notational convenience, we omit the index ¢ in U and V*®) and denote them by U

and V' respectively. We define

t t
K I t
J® = with J(t) ZAU()
t t
/SRR
t t
K£1) ka) .
KO=| : - with K =000 1,
t t
K o Ky

for 1 < p,q < k. Before we proceed with the main proof, we first introduce the following lemmas.
Lemma B.2. Suppose that A(-) satisfies 2k-RIP with parameter do. We then have
ISOK® — JO|y < 60V 2k T — T s

The proof of Lemma B.2 is provided in Appendix B.8. Note that Lemma B.2 is also applicable to
GOK® — J® since G® and S® share the same structure.

Lemma B.3. Given F' € R¥** we define
Fil, - Fuly
F=: Lo
Fraly - Frely
For any V € R™"*¥ let v = vec(V), then we have ||Fv|jy = [|[FV T ||p.

Proof. By linear algebra, we have

[FV} 7,* ]* - ZFM‘/JZ - ZFZEI*KV*@

which completes the proof. O

We then proceed with the main proof. Since b; = tr(V*T A;U*), then we rewrite F (U, V') as
d d k k

FO,V)=1/2- (tr(VIAT) - b))’ =1/2- > <ZVJIAZ-U*J- - ZV;;TAiUIj)Q.

i=1 i=1 N j=1 J=1
For notational simplicity, we deﬁne v = vec(V). Since V #+9-%) minimizes F (U v, V), we have
vec(VU]:( V("JrO 5))) = SWyt+0:5) _ gMyx — 0,
Solving the above system of equations, we obtain
'U(t+0'5) — (S(t))_lJ(t)’U*. (B.1)
Meanwhile, we have
vec(VyF(U ", VIH0D))) = GH(t+05) _ Gy

=GW(SW)~LgWy* — GWy* = GO ((SO)~LT® — [1)v", (B.2)

where the second equality come from (B.1). By triangle inequality, (B.2) further implies
I((SO) 1T — Lo lla < I(E = Lue)o*[l2 + [[(S®) (IO = SOK O )o*]|y

O T . - )
<@ T = 1)V e + 1S 2l (TP = SOK D)o,

—(t) T === % _ «
< [TYTT = Ll |V s+ [(SD) " o)l (T = SO KOy, (B.3)
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where the second inequality comes from Lemma B.3. Plugging (B.3) into (B.2), we have
lvee(Vy F(@T, V) < |GDo[((SP) 71T = Lu)v* s

(i) —(t) T —x _
<1+ 62) (1 [T 7T = Lilla + (D) o |SDED — JD|0,VE)

(n) B O \fé kK —=(t)
<+ o) (IO =TT @ =T e+ 72510 =Tl

(111)

(f)

\/>(5 k t =% (iv) - 6 g
(14—@kyn(nU TR Y02 HU() tan) < (2?”k
where (i) comes from Lemma B.1 and ||V*H2 = ||[M*|| = o1 and |[V*||r = ||v*]|2 < o1VE, (ii)
comes from Lemmas B.1 and B.2, (iii) from Cauchy-Schwartz inequality, and (iv) comes from (4.1).
By Cauchy-Schwartz inequality again, we obtain

— —x 1-— 6 —x% f—
D09, 1509, T) < vy 7@ Vo) < L2007 g,

which completes the proof. O

1T =T lr,

B.3 Proof of Lemma 4.4

Proof. For notational convenience, we omit the index ¢ in ﬁ*(t) and V*(t), and denote them by U

and V* respectively. By the strong convexity of F (ﬁ*, -), we have
FO V)~ Loy
> F(U,VUH0D) 4 (Vy F(T, V0 v — yit0s)), (B.4)
By the strong convexity of F(U ", -) again, we have
FT V09 > FT V) 4+ (Vo O V), VS _ ya405)) 4 %HV(HM) V2

— 1-94
2 FO V) 4 =5 VD - v, ®5)

where the last inequality comes from the optimality condition of V* = argminy, F (U*7 V), ie
(Vy FU",V*), Ve _y=y > g
Meanwhile, since V (#+9-5) minimizes F (U (7(0 -), we have the optimality condition
(Vy F(U (f) V(t+0 5)) Vv — V(t+0.5)> >0,
which further implies
(VyF(O Vo) v — v

> (Vy F(U,VE09)) vy 7O, vH09) ye _y o)y (B
Combining (B.4) and (B.5) with (B.6), we obtain
||V(t+0.5) _ V*||2 S 1

— 02k
which completes the proof. O

D(V(t+045)7 y(t+0.5) 7 U(t))7

B.4 Proof of Lemma 4.5

Proof. Before we proceed with the proof, we first introduce the following Lemma

Lemma B.4. Suppose that A* € R"** is a rank k matrix. Let E € R™** satisfy || E|]2||A*T|2 < 1.
Then given a QR decomposition (A* + E) = QR, there exists a factorization of A* = Q*O* such
that Q* € R™** is an orthonormal matrix, and satisfies

V2| ATl || Bl
4;? — (;)* < ——W———,
| Ie < 1 —[|Bl2]|A*|l2

The proof of Lemma B.4 is provided in [26], therefore omitted.
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We then proceed with the main proof. We consider A* = V*(®) and E = V405 — y*(*) in Lemma
B.4 respectively. We can verify that

t+0.5) *(t

Ok 71

Then there exists a V*® = V"""V 0* such that V"' TV

—x(t+0.5)  —x(t+1) * . * 2 . *
|V -V HFSMV@Wﬂw”“ﬁwf@MS;gW“”“—V“wp

is an orthonormal matrix, and satisfies

Thus we conclude the proof. O

B.5 Proof of Lemma 4.6

Proof. We first introduce the following lemma.

Lemma B.5. Let b = A(M*) + &, M is a rank-k matrix, and A is a linear measurement operator
that satisfies 2k-RIP with constant o), < 1/3. Let X **1) be the (¢ + 1)-th step iterate of SVP, then
we have

X Y) =013 < AM™) = b3 + 262 ACX D) — b]13

The proof of Lemma B.5 is provided in [12], therefore omitted. We then explain the implication of
Lemma B.5. [12] show that X **1) is obtained by taking a projected gradient iteration over X ()
using step size ﬁ. Then taking X (©) = 0, we have

U(O)E(O)V
14 0k

Suppose that M * has a compact singular value decomposition M* = U*D*V*T. Then Lemma B.5
implies

)T
X(t+1) _

(0)2(0) or 2 SO
( - U*D*V*T> < 48 | A(U*D*V*T)|13. (B.7)
1+ 62]@ 2
Since A(+) satisfies 2k-RIP, (B.7) further implies
77(0)=(0)=(0)T
U ’'xv ~ o~ ~
—U*D*V*T || < 4695 (1 + 3021) || D* || (B.8)
1+ 52k F

We then project each column of U*D*V*T into the subspace spanned by {US-) k_,, and obtain
+=(0 0)T 4 * FT% Tk N
[TT TG D VT — T D VT < 66kl D .

LetU S_) denote the orthonormal complement of U(O) ie.,

77(0) T57(0) 70T

O =1,y anda TOVTTY?

T =
Then we have
652k k‘O’l

i
Thus there exists a unitary matrix O € R¥*¥ such that OO = I}, and

1T — T*0llr < V2TV T T*|r < 21/3000k - 2L
O

(0)+=(0)T i +=(0)T 27
> |(TVT - L)URE=IU U3

O _ U*O. Then combining the above inequality with (4.3), we have

||U(O) *(O)HF ( 62]6)076 .
- 46(1 + 52k)‘71

Moreover, we define V*(© = V* D*O. Then we have U *OyOT = 00T D*V* = M*. O

We define U
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B.6 Proof of Corollary 4.7

Proof. Since (4.4) ensures that (4.1) of Lemma 4.3 holds, then we have
||V(t+0-5) _ V*(t)HF < 15 D(V(t+0.5)7V(t+0.5)’U(t))
— 02k

(2 1 ) (1 *52k)0k

=) (D)
U =U e

T 1= do 2¢
@ 1 (—dmor (1—dw)os
T 1 — g 2¢ 4€(1 + dox) o1

(1 = doi )0k > (i) g,
< | =" < = B.9
- (862(14—52]@)01 ko= 4 ( )
where (i) comes from Lemma 4.4, (ii) comes from (4.4), and (iii) comes from the definition of £ and
oy < 1. Since (B.9) ensures that (4.2) of Lemma 4.5 holds for V(t+0'5), we obtain

HF (1 — (Sgk)dk
- 45(1 + 52k)0'1 ’
(B.10)
where (i) comes from (B.9), and (ii) comes from the definition of & and (4.4). O

—(t+1) (1 2 y

B.7 Proof of Lemma B.1

Proof. We consider an arbitrary W € R™*¥ such that | W||r = 1. Let w = vec(W). Then have

k k
w Bw=Y WlsOw, =S w (ZA (pR78 )W*q

p,q=1 p,q=1

d n
= (Z WA, U(t)> (Z W, A; U“’) =S (W TATY)
i=1 p=1 q= =1

Since A(-) satisfies 2k-RIP, then we have

d
St (WTATY)2 = (1= )T W T e = (1= 62) Wl = 1 — 6,
=1

d
> aW AT < (14 80T W e = (L4620 [W e = 1+ 6.
i=1
Since W is arbitrary, then we have
Omin(S) = min w'S®Ww >1—-dy and pa(SY) = max w'SOw < 14 dy.

llwll2=1 llwll2=1

Thus we conclude the proof. O

B.8 Proof of Lemma B.2

. . . . . =—=#(t
Proof. For notational convenience, we omit the index ¢ in U *(®)

and V'* respectively. We first introduce the following lemma.

Lemma B.6. Suppose A(-) satisfies 2k-RIP. For any U, U’ € R™** and V, V' € R"**, we have
[LAUVT), AU'VT)) = (UTU, VTV < 362 |UV T e - IUV'T e

and V*®)_ and denote them by U

The proof of Lemma B.6 is provided in [14], and hence omitted.

We now proceed with the proof. We consider arbitrary W, Z € R™** such that |W | = || Z]||r = 1.
Let w = vec(W) and z = vec(Z). Then have

k
w (SOED — JD)z = 3" W [SOKD - g0, Z,,.

p,q=1
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We consider a decomposition

k
t t t *(t)Ti*
[SOK® — j®, ZS(K)Kéq) - J,Sf} = Z Sz()z)U*e Usgln = ngfz)

k d d
S UL TS ATOT AT ZA U, 003000 AT - Z ATOT: AT
/=1 =1 i=1

d

S av0T, @ T —1,)A].
=1

which further implies

wT (SOK® — j1), = Z (ZA U(t) (f)U(t)T - ]n)AZ-T>Z a
p,q
S S WL ATYTL @ T 1A 2,
=1 p,q

d
=S uW AT u (274,07~ L)T).
=1

Therefore by 2k-RIP of A(-) and Lemma B.6, we obtain
w (SOK® — g®)4

< (@ @TYT - L) TOWT 2) + 60T W e | @V TYT - 1)T 27 ||
*T — —% = ——k
< oWV IT T @TOT — L) 627 Zlle < b ZRTY — T,

where the last inequality comes from (U(t)U(t)T - In)U(t) = 0. Since W and Z are arbitrary, we
have

Omax(SOWK® — g1y = max w (SOK® — JOYy < §op v/ 2k‘||U(t) —T|r,

[lwll2=1,[|z|l2=1
which completes the proof. -

C Lemmas for Theorem 3.4 (Alternating Gradient Descent)

C.1 Proof of Lemma A.1

*(t)

Proof. For notational convenience, we omit the index ¢ in U and V*®) and denote them by U

and V* respectively. We have

vec(Vy FT, V) = §Ou® — JOy* and vec(Vy FT", V®)) = GO0 — GOy,

Therefore, we further obtain
IV F@ V) = Yy FT VO s

= |(S® — T (u® —*) + (SO — JO)u* 4 (JO — GO (O —v*)|5

< IS — JOY WO — )+ 15 — SOl + 1T — GO — )

< ISP 2ll((S (t))flj(t) = L) (0" = 0|2

SO [((S) IO = Lol + G2 (GH) IO = L) (0 =) |2 (€D
Recall that Lemma B.2 is also applicable to G K(*) — J()_ Since we have

VO =V < VO = Ve = o) —v*[|2 < 01,
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following similar lines to Appendix B.2, we can show
\fé k
I(S0)290 = T)ola < o0 (10 - T + L2225 - 7)),
fégkk —(t) —x%
o -7,

1D TO — L) w0® — 02 < o (|U“> - U*H%

- " — \fé k: s
(5971 = L) 0 = ) < o0 (T = T + Y220 - 7)),
Combining the above three inequalities with (C.1), we have
Vv F@Y,vO) vy FOVO)||e
— fé k s
201+ 0)or (10 - T + Y2500 - T ). €2
Since U 62k, and ¢ satisfy (A.1), then (C.2) further implies
—(t — 14 0ok )oK \=(t) ==
19y F@ V) - vy O VO e < LTG0 e s
Therefore by Cauchy—Schwartz inequality, (C.3) implies
D409, 10, T) < [V 7@ V) - VoA O < EERIT T 5,
which completes the proof. O

C.2 Proof of Lemma A.2

Proof. For notational convenience, we omit the index ¢ in U*(t) and V*(®) and denote them by U
and V* respectively By the strong convexity of F (U*, -), we have

FU v — 52’“ — WO —vHE > FU VD) (Vy FO, V), v —v®)

=F(U", V<f)) +(VyF@,v®), vE0s) vy 4 (v, 7T, V), v — p o),
(C.4)

Meanwhile, we define
—=% —=% =% 1
QV;U VW) = FT V) + (Vv F(U V),V - v) + il VO

Since 7 satisfies (A.2) and F (U*, V) is strongly smooth in V for a fixed orthonormal U", we have
QiU VW) = F(U",v®).
Combining the above two inequalities, we obtain
FO VO 4 (Vy FU, V), vE+0s) )
— QY08 T )y QL V05 _ 02 > B[,y 09y ||V(t+0 5y,
! (C.5)

Moreover, by the strong convexity of F (U*, -) again, we have

s — — 1-4
]:(U 7‘/'(15-"-0.5)) > ]:(U ,V*) + <VV]:(U ,V*),V(t+0'5) _ V*> + 5 2k HV(t—&-Oﬁ) _ V*”%

— 1-6
> FO V) + = IV =V, (C6)

where the second equalities comes from the optimality condition of V* = argminy, F (U*, V),ie
(Vy FU" V"), v _y=y > g
Combining (C.4) and (C.5) with (C.6), we obtain
FUVO) 4 (Vy FU, V1), ytr05 _y®)

—x 1-90 1
= F(U V) 4 =5 VO Ve — o VO — VOl )
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On the other hand, since V (*+0-5) minimizes Q(V; U, V®), we have
0< <VQ<V(t+O.5);U*’ ‘/(t))7 v — V(t+0.5)>
<V FU,VO) v* — 09y (] 4 5oy (V0D _ (@) ey (405)y - (C.8)
Meanwhile, we have
(Vv F(T,v®), v -yt
_ (VVJ:(U(t), V(t)), V* — V(t+0.5)> _ D(V(t+0.5), V(t)7U(t))||V* _ y(t+0.5) B
> (14 G ) (VO — EH05) sy (t+05)y Dy (t+05), V(t),U(t))HV* — s,

:u+@wwwfvmwhwfvmmébwwfvwmwg

. D(V(t+0.5)) V(t),U(t))HV* _ V(t+0.5)H2. (C.9)
Combining (C.8) with (C.9), we obtain
VO — Y05y _ (1))
< (L= 0) [V = V3 = (1 = 00) [V 0D — V3
_ HV(t+o.5) _ V(t)Hg + D(V(t+0.5), V(t)7U(t))||V* _ V(t+o.5)”2_ (C.10)
Therefore, combining (C.7) with (C.10), we obtain
[V — VR < [vEeD — v £ v — v
_ Hv(t+0.5) _ V(t)HI%‘ + HV(t) _ V*H% + 2<V(t+0.5) _ V(t),v(t) — V)
< 2|V = VF[E = (1 = i) [V — V7
_ D(V(t+°'5), V(t)7U(t))||V* _ y/(t+0.5) 2.
Rearranging the above inequality, we obtain
V0D Ve < VBl VO = VOl + 5
which completes the proof. O

'D(V(t+0~5)7 V(t) , U(t))’

C.3 Proof of Lemma A.3

Proof. Before we proceed with the proof, we first introduce the following lemma.

Lemma C.1. For any matrix U, U € R™** and V,V € R™** we have
IOV —UVT e < U2V = VI + [V[2IU = Ulle.

Proof. By linear algebra, we have
|UVT =0V g = UV —UVT +UVT UV s
< |UVT UVl + |UVT =TV |lp < U2V = Ve + [VI[2)U = Tlle. (€11
Thus, we conclude the proof. O

By Lemma C.1, we have
||RL;+0.5) _ V*(t+1)TV*(t)||F _ ”V(t+0.5)TV(t+0.5) _ V*(t+1)Tv*(t)||F

(t+0.5) . * N —(t40.5)  —x(t4+1)
< [P V05 v O 4 @ 7O gD
< V0D Y Ofp 4 2208y, €12)

k
where the last inequality comes from Lemma 4.5. Moreover, let U*(*+1) = U*(t) (V*(tﬂ)TV* ( t))T'

Then we can verify
U*(t+1)v*(t+1) _ U*(t)V*(t)Tv*(tJrl)V*(tJrl)T _ M*V*(tJrl)V*(tJrl)T e

)
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where the last equality holds, since DT

space of M*. Thus by Lemma C.1, we have
HU(t+1) _ U*(t+1)||F _ ‘lﬁ(t)R(i+O.5)T _ U*(t)(v

is exactly the projection matrix for the row

DT a0y T

+=(t) t4+0.5 DT 1o )T oo F=(t) (1)
< U2 IIB’L 'V Vg + |V VO[T =T |s
20 *
G* )WN”° ~VOlp 4oy [T =T,
Ok
VI, = oy, and [TV = 1. O

C.4 Proof of Lemma A.4

Proof. Following similar lines to Appendix B.5, we have
2

7(0)  77+(0) Tk
v -U < .
|| ||F > 450_%
In Appendix B.5, we have already shown
5(0)77(0)T
050y =+
— M| < 24/621(1+352) |12 |7
H R <2/ 35S I
Then by Lemma C.1 we have
HU(O)E(O) e HU(O)TU(O)E(O)V(O)T _U*(O)TM*
1+ 9 F N 1+ 025 F
77(0)5=(0)7(0) T
7O =V . w77 @ _ 70
< ||U — = M*|| +|M v -U
[ S I e
ok
021k (1 4 30 —==. C.13
kK (1 + 2k:)0'1+4£0_% (C.13)
By triangle inequality, we further have
77(0)5(0)
(0 0 * U % * *
[T v Ol < (14000 | T = VO 0Vl

—~

i)

§(1+52k)( \/52kk(1+352k)01+ ) +(52k0'1\F
4§ o1

(i) 0-2 0-3 (iii) 0-2

< k k k < k

(90—15 T3 T 1925%%)"1 = %0y

where (i) comes from (C.13) and |[V*©)|p = ||M*||r < 01V, (ii) comes from (A.4), and (iii)
comes from the definition of £ and o1 > 0. O

C.5 Proof of Corollary A.5

Proof. Since (A.5) ensures that (A.1) of Lemma A.1 holds we have
||V(t+0.5) _V*(t)”F < \/@HV(Q V*(t)”F+ ,D(V(t-&-()ﬁ)’V(t)’U(t))

1+5
25 (144 )
L oV — v 4 NCRL- L/, O, SO
1+ oy ¢
< LV - VOl + 2T T
= 125
(i) o2 o} 20, op (V) 1303 () oy

— < C.14
= 1260?7260y & Aot T 24202 T 47 ( )
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where (i) comes from Lemma A.2, (ii) and (iii) come from (A.5), and (iii) and (iv) come from the
definition of £ and o, < o1. Since (C.14) ensures that (4.2) of Lemma 4.5, we obtain

— — 2 () 2\/5 i — —x
||V(t+1) -V (t+1)||F < ;k||v(t+0.5) _ V*(t ” 2k ”V(t V*(t)HF + EHU(t) - (t)”F
@ (o, 4\ o2 i) a,i
< — - < 5 C.15
- (3501 + §> 450% - 450%’ ( )

where (i) and (ii) come from (C.14), and (iii) comes from the definition of £ and o1 > 0. Moreover,
since (C.14) ensures that (A.3) of Lemma A.3 holds, we have

3 — e
[U® — D < ﬂuv“*m Vg 4oy [T =T

(i) 3 \/5 6 — —x

(ii) 3 2 2
< &L .k 5 Tk + 6 +1)- Tk
or 1260y 280y 13 4€0q

2 2 (iil) g2
_ Uk2+§+1/2, Tk < U/c7
4520'1 f 2§O’1 250'1

where (i) comes from (C.14), (ii) comes from (A.5), and (iii) comes from the definition of £ and
o1 2 Ok. O

D Algorithms for Matrix Completion

Algorithm 2 A family of nonconvex optimization algorithms for matrix completion. The incoherence
factorization algorithm IF(-) is illustrated in Algorithm 3, and the partition algorithm Partition(-),
which is proposed by [10], is provided in Algorithm 4. The initialization procedures INT(-) and
INTZ(-) are provided in Algorithm 5 and Algorithm 6. Here Fyy(-) is defined in (5.2).
Input: Py, (M*)
Parameter: Step size 7, Total number of iterations 7'
(W2, ) < Partition(W), Py, (M) < Py, (M*), and M;; < 0forall (i,7) ¢ Wo
@ vy INTy (M M), (V' U©) « INTH(M)
For:t=0,. — 1
Alternating Exact Minimization : V#+0-%) « argmin,, F,, ., (U(t), V)
(V(t+1)7 R(Vt+0.5)) - IF(V(t+0'5))

Alternating Gradient Descent : V(1+0:5) < (8 nVV]:WQtH(U(t), V) Undatine V
(VY REFOD) Ry 09 o) T RIEHHT pestme ¥

Gradient Descent : V(09 « V() —pyy, 7y, (T V)
(VD RUHOD)) R (V09 g+ o O RUFOST

Alternating Exact Minimization : U**0-%) < argmin;; Fy,, ., (U, V(Hl))
(@Y RUFOD)) R (Ut+09)
Alternating Gradient Descent : U0 « U®) — vV Fyy,, , (UD V(H_l))
(U(t+1)’R(ﬁt+0.5)) - |F(U(t+0'5)), V(t+1) « V(t‘f‘l)Rgf—‘rOﬁ)T
Gradient Descent : UtH0-%) «— U®) — 9V Fyy,, , (UW®, V(t))
(@Y RUFOD)) (U0 9), ey PO REFONT

End for T .

Output: M) « gT-057 DT o 7Oy (MT (Gradient Descent Only)

Updating U.
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Algorithm 3 The incoherence factorization algorithm for matrix completion. It guarantees that the
solutions satisfy the incoherence condition throughout all iterations.

Input: W» .

r <— Number of rows of W™

Parameter: Incoherence parameter p

(W™, Riz) « QR(W'™)

W < argmin |[W —W"™||2 subject to max Wiill2 < pv/k/r

w J

(W™, R + QR(WO™)
R%t _ WoutTWin

. Jout out
Output: W s R

Algorithm 4 The observation set partition algorithm for matrix completion. It guarantees the inde-
pendence among all 27" + 1 output observation sets.

Input: W, p
p=1-(1-p)7.
For:t=0,....,2T
- (m”)|ﬁt+l(1 _ﬁ)mnftfl
plmn —t — DIt +1)!

pt =

End for
WO - 0, ceey WQT = @
For every (i,7) € W
Sample ¢ from {0, ..., 27"} with probability {po, ..., por}
Sample (w/o replacement) a set B3 such that |B| = ¢ from {0, ..., 2T} with equal probability
Add (i,7) to W, forall £ € B
End for
Output: {W,}7L,, p

Algorithm 5 The initialization procedure INT(-) for matrix completion. It guarantees that the initial
solutions satisfy the incoherence condition throughout all iterations.
Input: M
Parameter: Incoherence parameter
(U,D,V) + KSVD(M)
UY™P « argmin |[U — U||2 subject to max [|Uss | < ik /m
U

—out

(U™, Rot) « QR(U™)
‘7th — argmin HV — vtmp“%\ subjeCt to max ||V)*H2 S ,U/\/k/in
% J

(VOUt, R%lt) — QR(f//'tmp)
Vout _ Vout (UoutT ]’\Z’Vout)—r

Output: T, yout
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Algorithm 6 The initialization procedure INT-(-) for matrix completion. It guarantees that the initial
solutions satisfy the incoherence condition throughout all iterations.
Input: M
Parameter: Incoherence parameter
(U,D,V) + KSVD(M)
VPP« argmin |V — V|3 subject to max 1Viullz < pu/k/n
v

—out

(V°, Rot) « QR(VtmP)

U™ « argmin |[U — U™P||% subject to max ||Us||2 < pv/k/m
U K3

(Uout7 R%lt) — QR(ﬁtrnp)

Uout _ UoutgvoutT]’\Z’Vout)

Output: V', yout
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