
A Nonconvex Optimization Framework for Low Rank
Matrix Estimation⇤

Tuo Zhao
Johns Hopkins University

Zhaoran Wang Han Liu
Princeton University

Abstract

We study the estimation of low rank matrices via nonconvex optimization. Com-
pared with convex relaxation, nonconvex optimization exhibits superior empirical
performance for large scale instances of low rank matrix estimation. However, the
understanding of its theoretical guarantees are limited. In this paper, we define the
notion of projected oracle divergence based on which we establish sufficient condi-
tions for the success of nonconvex optimization. We illustrate the consequences
of this general framework for matrix sensing. In particular, we prove that a broad
class of nonconvex optimization algorithms, including alternating minimization
and gradient-type methods, geometrically converge to the global optimum and
exactly recover the true low rank matrices under standard conditions.

1 Introduction
Let M⇤

2 Rm⇥n be a rank k matrix with k much smaller than m and n. Our goal is to estimate
M⇤ based on partial observations of its entires. For example, matrix sensing is based on linear
measurements hAi,M

⇤
i, where i 2 {1, . . . , d} with d much smaller than mn and Ai is the sensing

matrix. In the past decade, significant progress has been established on the recovery of low rank matrix
[4, 5, 23, 18, 15, 16, 12, 22, 7, 25, 19, 6, 14, 11, 13, 8, 9, 10, 27]. Among all these existing works, most
are based upon convex relaxation with nuclear norm constraint or regularization. Nevertheless, solving
these convex optimization problems can be computationally prohibitive in high dimensional regimes
with large m and n [27]. A computationally more efficient alternative is nonconvex optimization. In
particular, we reparameterize the m ⇥ n matrix variable M in the optimization problem as UV >

with U 2 Rm⇥k and V 2 Rn⇥k, and optimize over U and V . Such a reparametrization automatically
enforces the low rank structure and leads to low computational cost per iteration. Due to this reason,
the nonconvex approach is widely used in large scale applications such as recommendation systems
[17].

Despite the superior empirical performance of the nonconvex approach, the understanding of its
theoretical guarantees is relatively limited in comparison with the convex relaxation approach. Only
until recently has there been progress on coordinate descent-type nonconvex optimization methods,
which is known as alternating minimization [14, 8, 9, 10]. They show that, provided a desired
initialization, the alternating minimization algorithm converges at a geometric rate to U⇤

2 Rm⇥k

and V ⇤
2 Rn⇥k, which satisfy M = U⇤V ⇤>. Meanwhile, [15, 16] establish the convergence of

gradient-type methods, and [27] further establish the convergence of a broad class of nonconvex
algorithms including both gradient-type and coordinate descent-type methods. However, [15, 16, 27]
only establish the asymptotic convergence for an infinite number of iterations, rather than the explicit
rate of convergence. Besides these works, [18, 12, 13] consider projected gradient-type methods,
which optimize over the matrix variable M 2 Rm⇥n rather than U 2 Rm⇥k and V 2 Rn⇥k. These
methods involve calculating the top k singular vectors of an m ⇥ n matrix at each iteration. For
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k much smaller than m and n, they incur much higher computational cost per iteration than the
aforementioned methods that optimize over U and V . All these works, except [27], focus on specific
algorithms, while [27] do not establish the explicit optimization rate of convergence.

In this paper, we propose a general framework that unifies a broad class of nonconvex algorithms
for low rank matrix estimation. At the core of this framework is a quantity named projected oracle
divergence, which sharply captures the evolution of generic optimization algorithms in the presence
of nonconvexity. Based on the projected oracle divergence, we establish sufficiently conditions under
which the iteration sequences geometrically converge to the global optima. For matrix sensing, a direct
consequence of this general framework is that, a broad family of nonconvex algorithms, including
gradient descent, coordinate gradient descent and coordinate descent, converge at a geometric rate
to the true low rank matrices U⇤ and V ⇤. In particular, our general framework covers alternating
minimization as a special case and recovers the results of [14, 8, 9, 10] under standard conditions.
Meanwhile, our framework covers gradient-type methods, which are also widely used in practice
[28, 24]. To the best of our knowledge, our framework is the first one that establishes exact recovery
guarantees and geometric rates of convergence for a broad family of nonconvex matrix sensing
algorithms.

To achieve maximum generality, our unified analytic framework significantly differs from previous
works. In detail, [14, 8, 9, 10] view alternating minimization as a perturbed version of the power
method. However, their point of view relies on the closed form solution of each iteration of alternating
minimization, which makes it hard to generalize to other algorithms, e.g., gradient-type methods.
Meanwhile, [27] take a geometric point of view. In detail, they show that the global optimum of the
optimization problem is the unique stationary point within its neighborhood and thus a broad class of
algorithms succeed. However, such geometric analysis of the objective function does not characterize
the convergence rate of specific algorithms towards the stationary point. Unlike existing analytic
frameworks, we analyze nonconvex optimization algorithms as perturbed versions of their convex
counterparts. For example, under our framework we view alternating minimization as a perturbed
version of coordinate descent on convex objective functions. We use the key quantity, projected oracle
divergence, to characterize such a perturbation effect, which results from the local nonconvexity
at intermediate solutions. This framework allows us to establish explicit rate of convergence in an
analogous way as existing convex optimization analysis.

Notation: For a vector v = (v
1

, . . . , vd)
T
2 Rd, let the vector `q norm be kvkqq =

P

j v
q
j . For a

matrix A 2 Rm⇥n, we use A⇤j = (A
1j , ..., Amj)

> to denote the j-th column of A, and Ai⇤ =

(Ai1, ..., Ain)
> to denote the i-th row of A. Let �

max

(A) and �
min

(A) be the largest and smallest
nonzero singular values of A. We define the following matrix norms: kAk2

F

=

P

j kA⇤jk
2

2

, kAk
2

=

�
max

(A). Moreover, we define kAk⇤ to be the sum of all singular values of A. Given another matrix
B 2 Rm⇥n, we define the inner product as hA,Bi =

P

i,j AijBij . We define ei as an indicator
vector, where the i-th entry is one, and all other entries are zero. For a bivariate function f(u, v), we
define ruf(u, v) to be the gradient with respect to u. Moreover, we use the common notations of
⌦(·), O(·), and o(·) to characterize the asymptotics of two real sequences.

2 Problem Formulation and Algorithms

Let M⇤
2 Rm⇥n be the unknown low rank matrix of interest. We have d sensing matrices Ai 2

Rm⇥n with i 2 {1, . . . , d}. Our goal is to estimate M⇤ based on bi = hAi,M
⇤
i in the high

dimensional regime with d much smaller than mn. Under such a regime, a common assumption
is rank(M⇤

) = k ⌧ min{d,m, n}. Existing approaches generally recover M⇤ by solving the
following convex optimization problem

min

M2Rm⇥n
kMk⇤ subject to b = A(M), (2.1)

where b = [b
1

, ..., bd]
>
2 Rd, and A(M) : Rm⇥n

! Rd is an operator defined as
A(M) = [hA

1

,Mi, ..., hAi,Mi]
>
2 Rd. (2.2)

Existing convex optimization algorithms for solving (2.1) are computationally inefficient, in the sense
that they incur high per-iteration computational cost, and only attain sublinear rates of convergence to
the global optimum [14]. Instead, in large scale settings we usually consider the following nonconvex
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optimization problem

min

U2Rm⇥k,V 2Rn⇥k
F(U, V ). where F(U, V ) =

1

2

kb�A(UV >
)k

2

2

. (2.3)

The reparametrization of M = UV >, though making the optimization problem in (2.3) nonconvex,
significantly improves the computational efficiency. Existing literature [17, 28, 21, 24] has established
convincing empirical evidence that (2.3) can be effectively solved by a board variety of gradient-based
nonconvex optimization algorithms, including gradient descent, alternating exact minimization (i.e.,
alternating least squares or coordinate descent), as well as alternating gradient descent (i.e., coordinate
gradient descent), which are shown in Algorithm 1.

It is worth noting the QR decomposition and rank k singular value decomposition in Algorithm
1 can be accomplished efficiently. In particular, the QR decomposition can be accomplished in
O(k2 max{m,n}) operations, while the rank k singular value decomposition can be accomplished
in O(kmn) operations. In fact, the QR decomposition is not necessary for particular update schemes,
e.g., [14] prove that the alternating exact minimization update schemes with or without the QR
decomposition are equivalent.

Algorithm 1 A family of nonconvex optimization algorithms for matrix sensing. Here (U,D, V ) 

KSVD(M) is the rank k singular value decomposition of M . Here D is a diagonal matrix containing
the top k singular values of M in decreasing order, and U and V contain the corresponding top k left
and right singular vectors of M . Here (V ,RV ) QR(V ) is the QR decomposition, where V is the
corresponding orthonormal matrix and RV is the corresponding upper triangular matrix.

Input: {bi}di=1, {Ai}di=1

Parameter: Step size ⌘, Total number of iterations T
(U

(0)
, D(0), V

(0)
) KSVD(

Pd
i=1 biAi), V (0)  V

(0)
D(0), U (0)  U

(0)
D(0)

For: t = 0, ...., T � 1

Alternating Exact Minimization : V (t+0.5)  argminV F(U
(t)

, V )

(V
(t+1)

, R(t+0.5)

V
) QR(V (t+0.5))

Alternating Gradient Descent : V (t+0.5)  V (t) � ⌘rV F(U
(t)

, V (t))

(V
(t+1)

, R(t+0.5)

V
) QR(V (t+0.5)), U (t)  U

(t)
R(t+0.5)>

V

Gradient Descent : V (t+0.5)  V (t) � ⌘rV F(U
(t)

, V (t))

(V
(t+1)

, R(t+0.5)

V
) QR(V (t+0.5)), U (t+1)  U

(t)
R(t+0.5)>

V

9
>>>>>>>>>=

>>>>>>>>>;

Updating V

Alternating Exact Minimization : U (t+0.5)  argminU F(U, V
(t+1)

)

(U
(t+1)

, R(t+0.5)

U
) QR(U (t+0.5))

Alternating Gradient Descent : U (t+0.5)  U (t) � ⌘rUF(U (t), V
(t+1)

)

(U
(t+1)

, R(t+0.5)

U
) QR(U (t+0.5)), V (t+1)  V

t+1
R(t+0.5)>

U

Gradient Descent : U (t+0.5)  U (t) � ⌘rUF(U (t), V
(t)

)

(U
(t+1)

, R(t+0.5)

U
) QR(U (t+0.5)), V (t+1)  V

t
R(t+0.5)>

U

9
>>>>>>>>>=

>>>>>>>>>;

Updating U

End for
Output: M (T )  U (T�0.5)V

(T )> (for gradient descent we use U
(T )

V (T )>)

3 Theoretical Analysis
We analyze the convergence properties of the general family of nonconvex optimization algorithms
illustrated in §2. Before we present the main results, we first introduce a unified analytic framework
based on a key quantity named projected oracle divergence. Such a unified framework equips our
theory with the maximum generality. Without loss of generality, we assume m  n throughout the
rest of this paper.

3.1 Projected Oracle Divergence
We first provide an intuitive explanation for the success of nonconvex optimization algorithms, which
forms the basis of our later proof for the main results. Recall that (2.3) is a special instance of the
following optimization problem,

min

U2Rm⇥k,V 2Rn⇥k
f(U, V ). (3.1)

A key observation is that, given fixed U , f(U, ·) is strongly convex and smooth in V under suitable
conditions, and the same also holds for U given fixed V correspondingly. For the convenience of
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discussion, we summarize this observation in the following technical condition, which will be later
verified for matrix sensing under suitable conditions.

Condition 3.1 (Strong Biconvexity and Bismoothness). There exist universal constants µ
+

> 0 and
µ� > 0 such that
µ�
2

kU 0
� Uk2

F

 f(U 0, V )� f(U, V )� hU 0
� U,rUf(U, V )i 

µ
+

2

kU 0
� Uk2

F

for all U,U 0,

µ�
2

kV 0
� V k2

F

 f(U, V 0
)� f(U, V )� hV 0

� V,rV f(U, V )i 

µ
+

2

kV 0
� V k2

F

for all V, V 0.

For the simplicity of discussion, for now we assume U⇤ and V ⇤ are the unique global minimizers to
the generic optimization problem in (3.1). Assuming U⇤ is given, we can obtain V ⇤ by

V ⇤
= argmin

V 2Rn⇥k

f(U⇤, V ). (3.2)

Condition 3.1 implies the objective function in (3.2) is strongly convex and smooth. Hence, we can
choose any gradient-based algorithm to obtain V ⇤. For example, we can directly solve for V ⇤ in

rV f(U
⇤, V ) = 0, (3.3)

or iteratively solve for V ⇤ using gradient descent, i.e.,
V (t)

= V (t�1)

� ⌘rV f(U
⇤, V (t�1)

), (3.4)
where ⌘ is the step size. For the simplicity of discussion, we put aside the renormalization issue for
now. In the example of gradient descent, by invoking classical convex optimization results [20], it is
easy to prove that

kV (t)
� V ⇤

k

F

 kV (t�1)

� V ⇤
k

F

for all t = 0, 1, 2, . . . ,

where  2 (0, 1) is a contraction coefficient, which depends on µ
+

and µ� in Condition 3.1.
However, the first-order oraclerV f(U

⇤, V (t�1)

) is not accessible in practice, since we do not know
U⇤. Instead, we only have access to rV f(U, V

(t�1)

), where U is arbitrary. To characterize the
divergence between the ideal first-order oraclerV f(U

⇤, V (t�1)

) and the accessible first-order oracle
rV f(U, V

(t�1)

), we define a key quantity named projected oracle divergence, which takes the form
D(V, V 0, U) =

⌦

rV f(U
⇤, V 0

)�rV f(U, V
0
), V � V ⇤/(kV � V ⇤

k

F

)

↵

, (3.5)
where V 0 is the point for evaluating the gradient. In the above example, it holds for V 0

= V (t�1).
Later we will illustrate that, the projection of the difference of first-order oracles onto a specific one
dimensional space, i.e., the direction of V � V ⇤, is critical to our analysis. In the above example of
gradient descent, we will prove later that for V (t)

= V (t�1)

� ⌘rV f(U, V
(t�1)

), we have
kV (t)

� V ⇤
k

F

 kV (t�1)

� V ⇤
k

F

+ 2/µ
+

· D(V (t), V (t�1), U). (3.6)
In other words, the projection of the divergence of first-order oracles onto the direction of V (t)

� V ⇤

captures the perturbation effect of employing the accessible first-order oraclerV f(U, V
(t�1)

) instead
of the ideal rV f(U

⇤, V (t�1)

). For V (t+1)

= argminV f(U, V ), we will prove that
kV (t)

� V ⇤
k

F

 1/µ� · D(V (t), V (t), U). (3.7)
According to the update schemes shown in Algorithm 1, for alternating exact minimization, we set
U = U (t) in (3.7), while for gradient descent or alternating gradient descent, we set U = U (t�1) or
U = U (t) in (3.6) respectively. Correspondingly, similar results hold for kU (t)

� U⇤
k

F

.

To establish the geometric rate of convergence towards the global minima U⇤ and V ⇤, it remains to
establish upper bounds for the projected oracle divergence. In the example of gradient decent we will
prove that for some ↵ 2 (0, 1� ),

2/µ
+

· D(V (t), V (t�1), U (t�1)

)  ↵kU (t�1)

� U⇤
k

F

,

which together with (3.6) (where we take U = U (t�1)) implies
kV (t)

� V ⇤
k

F

 kV (t�1)

� V ⇤
k

F

+ ↵kU (t�1)

� U⇤
k

F

. (3.8)
Correspondingly, similar results hold for kU (t)

� U⇤
k

F

, i.e.,
kU (t)

� U⇤
k

F

 kU (t�1)

� U⇤
k

F

+ ↵kV (t�1)

� V ⇤
k

F

. (3.9)
Combining (3.8) and (3.9) we then establish the contraction

max{kV (t)
� V ⇤

k

F

, kU (t)
� U⇤

k

F

}  (↵+ ) ·max{kV (t�1)

� V ⇤
k

F

, kU (t�1)

� U⇤
k

F

},
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which further implies the geometric convergence, since ↵ 2 (0, 1�). Respectively, we can establish
similar results for alternating exact minimization and alternating gradient descent. Based upon such a
unified analytic framework, we now simultaneously establish the main results.
Remark 3.2. Our proposed projected oracle divergence is inspired by previous work [3, 2, 1],
which analyzes the Wirtinger Flow algorithm for phase retrieval, the expectation maximization (EM)
Algorithm for latent variable models, and the gradient descent algorithm for sparse coding. Though
their analysis exploits similar nonconvex structures, they work on completely different problems, and
the delivered technical results are also fundamentally different.

3.2 Matrix Sensing
Before we present our main results, we first introduce an assumption known as the restricted isometry
property (RIP). Recall that k is the rank of the target low rank matrix M⇤.
Assumption 3.3. The linear operator A(·) : Rm⇥n

! Rd defined in (2.2) satisfies 2k-RIP with
parameter �

2k 2 (0, 1), i.e., for all � 2 Rm⇥n such that rank(�)  2k, it holds that
(1� �

2k)k�k
2

F

 kA(�)k

2

2

 (1 + �
2k)k�k

2

F

.

Several random matrix ensembles satisfy k-RIP for a sufficiently large d with high probability. For
example, suppose that each entry of Ai is independently drawn from a sub-Gaussian distribution,
A(·) satisfies 2k-RIP with parameter �

2k with high probability for d = ⌦(��2

2k kn log n).

The following theorem establishes the geometric rate of convergence of the nonconvex optimization
algorithms summarized in Algorithm 1.
Theorem 3.4. Assume there exists a sufficiently small constant C

1

such that A(·) satisfies 2k-RIP
with �

2k  C
1

/k, and the largest and smallest nonzero singular values of M⇤ are constants, which do
not scale with (d,m, n, k). For any pre-specified precision ✏, there exist an ⌘ and universal constants
C

2

and C
3

such that for all T � C
2

log(C
3

/✏), we have kM (T )

�M⇤
k

F

 ✏.

The proof of Theorems 3.4 is provided in Appendices 4.1, A.1, and A.2. Theorem 3.4 implies that all
three nonconvex optimization algorithms geometrically converge to the global optimum. Moreover,
assuming that each entry of Ai is independently drawn from a sub-Gaussian distribution with mean
zero and variance proxy one, our result further suggests, to achieve exact low rank matrix recovery,
our algorithm requires the number of measurements d to satisfy

d = ⌦(k3n log n), (3.10)
since we assume that �

2k  C
1

/k. This sample complexity result matches the state-of-the-art result
for nonconvex optimization methods, which is established by [14]. In comparison with their result,
which only covers the alternating exact minimization algorithm, our results holds for a broader variety
of nonconvex optimization algorithms.

Note that the sample complexity in (3.10) depends on a polynomial of �
max

(M⇤
)/�

min

(M⇤
), which

is treated as a constant in our paper. If we allow �
max

(M⇤
)/�

min

(M⇤
) to increase with the dimension,

we can plug the nonconvex optimization algorithms into the multi-stage framework proposed by [14].
Following similar lines to the proof of Theorem 3.4, we can derive a new sample complexity, which
is independent of �

max

(M⇤
)/�

min

(M⇤
). See more details in [14].

4 Proof of Main Results
Due to space limitation, we only sketch the proof of Theorem 3.4 for alternating exact minimization.
The proof of Theorem 3.4 for alternating gradient descent and gradient descent, and related lemmas
are provided in the appendix. For notational simplicity, let �

1

= �
max

(M⇤
) and �k = �

min

(M⇤
).

Before we proceed with the main proof, we first introduce the following lemma, which verifies
Condition 3.1.
Lemma 4.1. Suppose that A(·) satisfies 2k-RIP with parameter �

2k. Given an arbitrary orthonormal
matrix U 2 Rm⇥k, for any V, V 0

2 Rn⇥k, we have
1 + �

2k

2

kV 0
� V k2

F

� F(U, V 0
)� F(U, V )� hrV F(U, V ), V 0

� V i �
1� �

2k

2

kV 0
� V k2

F

.

The proof of Lemma 4.1 is provided in Appendix B.1. Lemma 4.1 implies that F(U, ·) is strongly
convex and smooth in V given a fixed orthonormal matrix U , as specified in Condition 3.1. Equipped
with Lemma 4.1, we now lay out the proof for each update scheme in Algorithm 1.
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4.1 Proof of Theorem 3.4 (Alternating Exact Minimization)
Proof. Throughout the proof of alternating exact minimization, we define a constant ⇠ 2 (1,1)

for notational simplicity. We assume that at the t-th iteration, there exists a matrix factorization of
M⇤

= U
⇤(t)

V ⇤(t)>, where U
⇤(t)

is orthonormal. We choose the projected oracle divergence as

D(V (t+0.5), V (t+0.5), U
(t)
)=

⌧

rV F(U
⇤(t)

, V (t+0.5)
)�rV F(U

(t)
, V (t+0.5)

),
V (t+0.5)

�V ⇤(t)

kV (t+0.5)
�V ⇤(t)

k

F

�

.

Remark 4.2. Note that the matrix factorization is not necessarily unique. Because given a factoriza-
tion of M⇤

= UV >, we can always obtain a new factorization of M⇤
=

eU eV >, where eU = UO and
eV = V O for an arbitrary unitary matrix O 2 Rk⇥k. However, this is not a issue to our convergence
analysis. As will be shown later, we can prove that there always exists a factorization of M⇤ satisfying
the desired computational properties for each iteration (See Lemma 4.5, Corollaries 4.7 and 4.8).

The following lemma establishes an upper bound for the projected oracle divergence.

Lemma 4.3. Suppose that �
2k and U

(t)
satisfy

�
2k 

p

2(1� �
2k)

2�k

4⇠k(1 + �
2k)�1

and kU
(t)
� U

⇤(t)
k

F



(1� �
2k)�k

4⇠(1 + �
2k)�1

. (4.1)

Then we have D(V (t+0.5), V (t+0.5), U
(t)
) 

(1� �
2k)�k

2⇠
kU

(t)
� U

⇤(t)
k

F

.

The proof of Lemma 4.3 is provided in Appendix B.2. Lemma 4.3 shows that the projected oracle di-
vergence for updating V diminishes with the estimation error of U

(t)
.The following lemma quantifies

the progress of an exact minimization step using the projected oracle divergence.

Lemma 4.4. We have kV (t+0.5)
� V ⇤(t)

k

F

 1/(1� �
2k) · D(V (t+0.5), V (t+0.5), U

(t)
).

The proof of Lemma 4.4 is provided in Appendix B.3. Lemma 4.4 illustrates that the estimation error
of V (t+0.5) diminishes with the projected oracle divergence. The following lemma characterizes the
effect of the renormalization step using QR decomposition.

Lemma 4.5. Suppose that V (t+0.5) satisfies
kV (t+0.5)

� V ⇤(t)
k

F

 �k/4. (4.2)

Then there exists a factorization of M⇤
= U⇤(t+1)V

⇤(t+1)

such that V
⇤(t+0.5)

2 Rn⇥k is an
orthonormal matrix, and satisfies kV

(t+1)

� V
⇤(t+1)

k

F

 2/�k · kV (t+0.5)
� V ⇤(t)

k

F

.

The proof of Lemma 4.5 is provided in Appendix B.4. The next lemma quantifies the accuracy of the
initialization U

(0)

.
Lemma 4.6. Suppose that �

2k satisfies

�
2k 

(1� �
2k)

2�4

k

192⇠2k(1 + �
2k)

2�4

1

. (4.3)

Then there exists a factorization of M⇤
= U

⇤(0)
V ⇤(0)> such that U

⇤(0)
2 Rm⇥k is an orthonormal

matrix, and satisfies kU
(0)

� U
⇤
k

F



(1��2k)�k

4⇠(1+�2k)�1
.

The proof of Lemma 4.6 is provided in Appendix B.5. Lemma 4.6 implies that the initial solution
U

(0)

attains a sufficiently small estimation error.

Combining the above Lemmas, we obtain the next corollary for a complete iteration of updating V .

Corollary 4.7. Suppose that �
2k and U

(t)
satisfy

�
2k 

(1� �
2k)

2�4

k

192⇠2k(1 + �
2k)

2�4

1

and kU
(t)
� U

⇤(t)
k

F



(1� �
2k)�k

4⇠(1 + �
2k)�1

. (4.4)

We then have kV
(t+1)

�V
⇤(t+1)

k

F



(1��2k)�k

4⇠(1+�2k)�1
. Moreover, we also have kV

(t+1)

�V
⇤(t+1)

k

F



1

⇠kU
(t)
� U

⇤(t)
k

F

and kV (t+0.5)
� V ⇤(t)

k

F



�k
2⇠ kU

(t)
� U

⇤(t)
k

F

.
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The proof of Corollary 4.7 is provided in Appendix B.6. Since the alternating exact minimization
algorithm updates U and V in a symmetric manner, we can establish similar results for a complete
iteration of updating U in the next corollary.

Corollary 4.8. Suppose that �
2k and V

(t+1)

satisfy

�
2k 

(1� �
2k)

2�4

k

192⇠2k(1 + �
2k)

2�4

1

and kV
(t+1)

� V
⇤(t+1)

k

F



(1� �
2k)�k

4⇠(1 + �
2k)�1

. (4.5)

Then there exists a factorization of M⇤
= U

⇤(t+1)

V ⇤(t+1)> such U
⇤(t+1)

is an orthonormal matrix,
and satisfies kU

(t+1)

� U
⇤(t+1)

k

F



(1��2k)�k

4⇠(1+�2k)�1
. Moreover, we also have kU

(t+1)

� U
⇤(t+1)

k

F



1

⇠kV
(t+1)

� V
⇤(t+1)

k

F

and kU (t+0.5)
� U⇤(t+1)

k

F



�k
2⇠ kV

(t+1)

� V
⇤(t+1)

k

F

.

The proof of Corollary 4.8 directly follows Appendix B.6, and is therefore omitted.

We then proceed with the proof of Theorem 3.4 for alternating exact minimization. Lemma 4.6
ensures that (4.4) of Corollary 4.7 holds for U

(0)

. Then Corollary 4.7 ensures that (4.5) of Corollary
4.8 holds for V

(1)

. By induction, Corollaries 4.7 and 4.8 can be applied recursively for all T iterations.
Thus we obtain

kV
(T )

� V
⇤(T )

k

F



1

⇠
kU

(T�1)

� U
⇤(T�1)

k

F



1

⇠2
kV

(T�1)

� V
⇤(T�1)

k

F

 · · · 

1

⇠2T�1

kU
(0)

� U
⇤(0)
k

F



(1� �
2k)�k

4⇠2T (1 + �
2k)�1

, (4.6)

where the last inequality comes from Lemma 4.6. Therefore, for a pre-specified accuracy ✏, we need
at most T =

l

1/2 · log
⇣

(1��2k)�k

2✏(1+�2k)�1

⌘

log

�1 ⇠
m

iterations such that

kV
(T )

� V
⇤(T )

k

F



(1� �
2k)�k

4⇠2T (1 + �
2k)�1



✏

2

. (4.7)

Moreover, Corollary 4.8 implies

kU (T�0.5)
� U⇤(T )

k

F



�k

2⇠
kV

(T )

� V
⇤(T )

k

F



(1� �
2k)�

2

k

8⇠2T+1

(1 + �
2k)�1

,

where the last inequality comes from (4.6). Therefore, we need at most

T =

⇠

1/2 · log

✓

(1� �
2k)�

2

k

4⇠✏(1 + �
2k)

◆

log

�1 ⇠

⇡

iterations such that

kU (T�0.5)
� U⇤

k

F



(1� �
2k)�

2

k

8⇠2T+1

(1 + �
2k)�1



✏

2�
1

. (4.8)

Then combining (4.7) and (4.8), we obtain

kM (T )

�M⇤
k = kU (T�0.5)V

(T )>
� U⇤(T )V

⇤(T )>
k

F

 kV
(T )

k

2

kU (T�0.5)
� U⇤(T )

k

F

+ kU⇤(T )

k

2

kV
(T )

� V
⇤(T )

k

F

 ✏, (4.9)

where the last inequality is from kV
(T )

k

2

= 1 (since V
(T )

is orthonormal) and kU⇤
k

2

= kM⇤
k

2

=

�
1

(since U⇤(T )V
⇤(T )>

= M⇤ and V
⇤(T )

is orthonormal). Thus we complete the proof.

5 Extension to Matrix Completion
Under the same setting as matrix sensing, we observe a subset of the entries of M⇤, namely, W ✓
{1, . . . ,m}⇥ {1, . . . , n}. We assume that W is drawn uniformly at random, i.e., M⇤

i,j is observed
independently with probability ⇢̄ 2 (0, 1]. To exactly recover M⇤, a common assumption is the
incoherence of M⇤, which will be specified later. A popular approach for recovering M⇤ is to solve
the following convex optimization problem

min

M2Rm⇥n
kMk⇤ subject to PW(M⇤

) = PW(M), (5.1)

where PW(M) : Rm⇥n
! Rm⇥n is an operator defined as [PW(M)]ij = Mij if (i, j) 2W , and

0 otherwise. Similar to matrix sensing, existing algorithms for solving (5.1) are computationally
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inefficient. Hence, in practice we usually consider the following nonconvex optimization problem
min

U2Rm⇥k,V 2Rn⇥k
FW(U, V ), where FW(U, V ) = 1/2 · kPW(M⇤

)� PW(UV >
)k

2

F

. (5.2)

Similar to matrix sensing, (5.2) can also be efficiently solved by gradient-based algorithms. Due to
space limitation, we present these matrix completion algorithms in Algorithm 2 of Appendix D. For
the convenience of later convergence analysis, we partition the observation set W into 2T +1 subsets
W

0

,...,W
2T using Algorithm 4 in Appendix D. However, in practice we do not need the partition

scheme, i.e., we simply set W
0

= · · · = W

2T = W .

Before we present the main results, we introduce an assumption known as the incoherence property.
Assumption 5.1. The target rank k matrix M⇤ is incoherent with parameter µ, i.e., given the rank k

singular value decomposition of M⇤
= U

⇤
⌃

⇤V
⇤>

, we have
max

i
kU

⇤
i⇤k2  µ

p

k/m and max

j
kV

⇤
j⇤k2  µ

p

k/n.

The incoherence assumption guarantees that M⇤ is far from a sparse matrix, which makes it feasible
to complete M⇤ when its entries are missing uniformly at random. The following theorem establishes
the iteration complexity and the estimation error under the Frobenius norm.
Theorem 5.2. Suppose that there exists a universal constant C

4

such that ⇢̄ satisfies
⇢̄ � C

4

µ2k3 log n log(1/✏)/m, (5.3)
where ✏ is the pre-specified precision. Then there exist an ⌘ and universal constants C

5

and C
6

such
that for any T � C

5

log(C
6

/✏), we have kM (T )

�Mk
F

 ✏ with high probability.

Due to space limit, we defer the proof of Theorem 5.2 to the longer version of this paper. Theorem
5.2 implies that all three nonconvex optimization algorithms converge to the global optimum at a
geometric rate. Furthermore, our results indicate that the completion of the true low rank matrix M⇤

up to ✏-accuracy requires the entry observation probability ⇢̄ to satisfy
⇢̄ = ⌦(µ2k3 log n log(1/✏)/m). (5.4)

This result matches the result established by [8], which is the state-of-the-art result for alternating
minimization. Moreover, our analysis covers three nonconvex optimization algorithms.

6 Experiments
We present numerical experiments for matrix sensing to support our theoretical analysis. We choose
m = 30, n = 40, and k = 5, and vary d from 300 to 900. Each entry of Ai’s are independent sampled
from N(0, 1). We then generate M = UV >, where eU 2 Rm⇥k and eV 2 Rn⇥k are two matrices
with all their entries independently sampled from N(0, 1/k). We then generate d measurements by
bi = hAi,Mi for i = 1, ..., d. Figure 1 illustrates the empirical performance of the alternating exact
minimization and alternating gradient descent algorithms for a single realization. The step size for the
alternating gradient descent algorithm is determined by the backtracking line search procedure. We
see that both algorithms attain linear rate of convergence for d = 600 and d = 900. Both algorithms
fail for d = 300, because d = 300 is below the minimum requirement of sample complexity for the
exact matrix recovery.

Number of Iterations
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o
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E
r
r
o
r

10-5

100

d = 300
d = 600
d = 900

(a) Alternating Exact Minimization
Number of Iterations

0 10 20 30 40

E
s
t
i
m
a
t
i
o
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E
r
r
o
r

10-5

10
0

d = 300
d = 600
d = 900

(b) Alternating Gradient Descent

Figure 1: Two illustrative examples for matrix sensing. The vertical axis corresponds to estimation
error kM (t)

�Mk
F

. The horizontal axis corresponds to numbers of iterations. Both the alternating
exact minimization and alternating gradient descent algorithms attain linear rate of convergence for
d = 600 and d = 900. But both algorithms fail for d = 300, because d = 300 is below the minimum
requirement of sample complexity for the exact matrix recovery.
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