
A Experimental Results: Statistical Arbitrage
In this section we present some preliminary results that demonstrate the effectiveness of the proposed
algorithm to the task of creating statistical arbitrage opportunities under the pairs trading setting. In
this setting, we are given two assets with the same sectoral belonging and our goal is to construct
a mean reverting portfolio by maintaining weights upon these assets. To simplify the setting we
ignore transaction costs (both for our algorithm and the benchmarks).

In order to isolate the problem of constructing a mean reverting portfolio (which is of our interest)
from the problem of designing a trading strategy, the experiments are executed in two stages: first, a
mean reverting portfolio is constructed by each of the considered approaches (which are described
below in Section A.1). Then, the same trading strategy is applied to all resulted portfolios, so that
the different approaches are comparable in terms of return.

Our dataset contains time series of daily closing rates of 9 pairs of assets based on their common sec-
toral belonging (Coca Cola and Pepsi; AT&T and Verizon; Johnson&Johnson and Procter&Gamble;
Cellcom and Partner; Microsoft and Intel; 3M and DD; Pfizer and Merck; Chevron and Exxon Mo-
bil; and Home Depot and Wal-Mart). We use data between 01/01/2008 and 01/02/2013, which is
divided into training set (75% of the data, from 01/01/2008 to 01/10/2011) and test set (25% of the
data, from 02/10/2011 to 01/02/2013).

A.1 Baselines
In order to capture the essence of our Online Statistical Arbitrage (OSA) algorithm with respect to its
offline counterparts, we choose some of the fundamental offline approaches5 to serve as benchmarks:

Orthogonal Least Squares (OLS) this baseline proposes to choose the eigenvector that corre-
sponds to smallest eigenvalue of the empirical covariance matrix of yt. This matrix is
denoted by C, and formally defined as follows:

C =

1

Ttraining � 1

·
Ttraining
X

t=1

ỹtỹ
>
t , where ỹt = yt � 1

Ttraining
·
Ttraining
X

t=1

yt,

where Ttraining denotes the number of days in the training set.

Johansen Vector Error Correction Model this baseline relies on co-integration techniques. Ba-
sically, co-integration is a statistical relationship where two time series (e.g., stock prices)
that are both integrated of same order d can be linearly combined to produce a single time
series which is integrated of order d � b, where b > 0. In its application to pairs trading,
the co-integration technique seeks to find a linear combination such that d = b = 1, which
roughly results in a mean reverting combined asset.

The offline optimum (Offline) this baselines refers to the best distribution of weights in hindsight
with respect to our proxy, that is

xOffline = argmin

x

8

<

:

Ttest
X

t=m

 

m
X

i=0

xT yt�i

!

2

� � ·
m
X

i=0

�

xT yt�i

�

2

9

=

;

.

Here, Ttest denotes the number of days in the test set. Clearly, the performance of this
baselines cannot be obtained in practice, as it relies on the future prices of the considered
assets when constructing the portfolio. Nevertheless, this baseline has a crucial role in
understanding the effectiveness of the proposed mean reversion proxy.

For the OLS and Johansen baselines we use the training period to generate a weight distribution x,
and then construct the portfolio {x>yt}Ttest

t=1

. For OSA we run Algorithm 3 on the training set to get
the sequence {xt}Ttraining

t=1

. Then, we use xTtraining as a warm start for a new run of Algorithm 3 on the
test data to generate the portfolio {x>

t yt}Ttest
t=1

(which will be used for the benchmark task).

5We refer the reader to [20, 21] for more comprehensive information about OLS and Johansen.
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Figure 1: Sample experimental results of OSA and Johansen for the pair Coca Cola and Pepsi

A.2 Trading Strategy
In order to compare the different approaches, we apply the trading strategy of [22] to each of the
resulting portfolios. Basically, [22] propose to take a position Nt in the asset zt proportionally to
↵(µ�zt)

�2 Wt, where Wt denotes the wealth at time t and {zt}Tt=1

is assumed to be an auto regressive
process of order 1 with mean µ that complies with zt+1

= ↵zt+�✏t (and ✏t ⇠ N (0, 1)). Essentially,
this strategy takes a long position whenever the asset is below its mean and short position whenever
it is above, while taking into account the autoregressive model parameters ↵ and �. In practice, these
parameters are estimated on the training set and then used to generate Nt. A sample experiment for
the pair Coca Cola and Pepsi (using the entire training and test sets) that compares the performance
of our algorithm and Johansen’s is illustrated in Figure 1.

A.3 Results
In Figure 2 we plot the cumulative wealth of our online algorithm and the three offline baselines,
and also provide the Sharpe ratios. To execute this experiments we use the 10 pairs of assets in our
dataset. In all runs of our online algorithm and its offline counterpart we set m = 5 and � = 1,
arbitrarily. The task of determining the best values of m and � is outside the scope of this paper,
yet is a very challenging problem. The empirical observations clearly verify the effectiveness of the
proposed mean reversion proxy and the online algorithm, as both OSA and Offline outperform the
other baselines. It can can also be seen that the performance of OSA approaches the performance
of Offline as time advances, corresponding to our theoretic regret guarantee. It remains for future
work to compare the performance of the online approach and the offline state-of-the-art approaches
in the presence of transaction costs.

Return (in %)
8-month 16-month

Offline 39.45 102.67
OSA 33.59 98.33
OLS 23.64 83.68

Johansen 33.87 60.47
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Figure 2: Wealth as a function of time for the online algorithm and the three offline baselines
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B Experimental Results: Multi-Step Ahead Prediction

The following experiments demonstrate the effectiveness of the proposed algorithm under various
synthetic settings. We start by presenting two state-of-the-art baselines for the problem at hand.

B.1 Baselines

Most of the work on time series prediction considers what we call the offline setting: given a time
series, compute the model parameters (in our case, the AR coefficients) and generate predictions
for the signal accordingly. Our online setting can be seen as a sequential offline setting, in which at
time t we are given the time series values up to time t� 1 and our task is to predict the signal value
at time t +m. In light of this, we adapt the offline baselines presented below to the online setting.
We note that this adaptation does not weaken the offline baselines in any way, and we use it only for
comparison purposes.

1-step ahead ML estimator. Essentially, this baseline aims to extract 1-step ahead estimator for
↵ using maximum likelihood techniques. This estimator is then used to recursively predict
the values of Xt, . . . , Xt+m as explained in Equation (4).

Multi-step ahead ML estimator. This baselines extracts the multi-step ahead estimator using
maximum likelihood techniques, and generates its predictions accordingly. See [18] for
further discussion about this baseline and comparison with the previous one.

B.2 Experimental Results

To evaluate the performance of our algorithms we design several various settings (presented below).
In order to ensure the stability of the results we average them over 50 runs. In our tables, we mark
with bold font the best results, and add an asterisk to indicate significance level of 0.05.

Sanity check. We generate a time series that complies with the standard AR model using the
coefficient vector ↵ = [0.6,�0.5, 0.5,�0.4, 0.3] and i.i.d. noise terms that are distributed
N (0, 0.32).

AR mixture. Our motivation in this setting is to examine the functionality of the different algo-
rithms when faced with abruptly changing environments. Thus, we consider a predefined
set of AR coefficients, and generate time series by alternating between them in a random
manner. We add an additive noise that is distributed Uni[�0.5, 0.5].

Slowly changing environment. Our motivation here is to test the robustness of our approach to
slowly changing environment. Thus, we set

↵(t) = [�0.4,�0.5, 0.4, 0.4, 0.1] ⇤
⇣ t

10

4

⌘

+ [0.6,�0.4, 0.4,�0.5, 0.4] ⇤
⇣

1� t

10

4

⌘

,

and generate the time series by adding uniformly distributed noise terms.

As evident in Figure ?? and Table ??, our online algorithm outperforms the other algorithms when
the time series exhibits some complicated structure. In the case where the error terms are Gaussian
and the time series complies with the AR model (sanity check), we can see that all algorithms
perform roughly the same, as can be expected by the theoretical guarantees of our algorithm and the
MLE baselines.
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C Complete Analysis for Section 3

C.1 Background

Recall the RFTL algorithm, which is one of the most popular algorithms for the standard OCO
framework. Basically, RFTL generates the decision at round t according to the following rule:

xt = argmin

x2K

(

⌘
t�1

X

⌧=1

g⌧ (x) +R(x)

)

,

where ⌘ is a predefined learning rate, and R(x) is called a regularization function. Note that R(x) is
chosen by the online player, and assumed to be �-strongly convex and smooth, such that its second
derivative is continuous.

Usually, general matrix norms are used to analyze and bound the regret of the RFTL algorithm: a
PSD matrix A � 0 gives rise to the norm kxkA =

p
x>Ax; its dual norm is kxkA�1 = kxk⇤A. In

particular, the interesting case is when A = r2R, the Hessian of the regularization function. In this
case, the notation is shorthanded to be kxkr2R(y) = kxky and kxkr�2R(y) = kxk⇤y .

Now, if we denote

� = sup

t2{1,...,T},x,y2K

n

�krgt(x)k⇤y
�

2

o

and R = sup

x,y2K
{R(x)�R(y)} ,

then, the RFTL algorithm generates an online sequence {xt}Tt=1

, for which the following holds:

RT =

T
X

t=1

gt(xt)�min

x2K

T
X

t=1

gt(x)  2T�⌘ +

R

⌘
. (5)

A complete analysis can be found in [2, 3].

C.2 Adapting RFTL to the Framework of OCO with Memory

We start by defining the function ˜ft as follows: ˜ft(x) = ft(x, . . . , x). Recall that ˜ft(x) is con-
vex in x for all t, as assumed in Section 2. Following the notations of Section C.1, we define a
regularization function R(x) and upper-bound

� = sup

t2{1,...,T},x,y2K

⇢

⇣

kr ˜ft(x)k⇤y
⌘

2

�

and R = sup

x,y2K
{R(x)�R(y)} . (6)

Notice that � might depend implicitly on m. It follows that the loss functions { ˜ft}Tt=1

are Lipschitz
continuous for the Lipschitz constant

p
�� with respect to the `

2

-norm. I.e., it holds that
�

�

˜ft(x)� ˜ft(y)
�

� 
p
�� · kx� yk.

The following is our main theorem, stated and proven:

Theorem 3.1. Let {ft}Tt=1

be Lipschitz continuous loss functions with memory (from Km+1 to
[0, 1]), and let R and � be as defined in Equation (1). Then, Algorithm 1 generates an online
sequence {xt}Tt=1

, for which the following holds:

RT,m =

T
X

t=m

ft(xt�m, . . . , xt)�min

x2K

T
X

t=m

ft(x, . . . , x)  2T�⌘(m+ 1)

3/2
+

R

⌘
.

Setting ⌘ = R1/2
(TL)�1/2

(m+1)

�3/4
(�/�)�1/4 yields RT,m  3(TRL)1/2(m+1)

3/4
(�/�)1/4.

Proof. First, note that applying Algorithm 1 to the loss functions {ft}Tt=1

is equivalent to applying
the original RFTL algorithm to the loss functions { ˜ft}Tt=1

. I.e., given m initial points x
1

, . . . , xm,
both algorithms generate the same sequence of decisions {xt}Tt=m, for which it holds that:

T
X

t=m

˜ft(xt)�min

x2K

T
X

t=m

˜ft(x)  2T�⌘ +

R

⌘
,
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or equivalently:

T
X

t=m

ft(xt, . . . , xt)�min

x2K

T
X

t=m

ft(x, . . . , x)  2T�⌘ +

R

⌘
, (7)

due to the regret guarantee in Equation (5). On the other hand, ft is Lipschitz continuous for the
Lipschitz constant L, and thus we can bound

|ft(xt, . . . , xt)� ft(xt�m, . . . , xt)|2  (L · k(xt, . . . , xt)� (xt�m, . . . , xt)k)2

= L2 ·
m
X

j=1

kxt � xt�jk2

 L2 ·
m
X

j=1

 

j
X

l=1

kxt�l+1

� xt�lk
!

2

 L2 ·
m
X

j=1

 

j
X

l=1

1p
�
kxt�l+1

� xt�lkzt�l

!

2

 L2 ·
m
X

j=1

 

j
X

l=1

2⌘
p
�p

�

!

2

 L2 ·
m
X

j=1

✓

4m2⌘2�

�

◆

 4L2m3⌘2�

�
,

where zt 2 [xt, xt+1

]. The inequality kxt+1

� xtkzt  2⌘
p
� follows from the standard analysis of

the RFTL algorithm [2]. It follows that |ft(xt, . . . , xt)� ft(xt�m, . . . , xt)|  2L⌘m3/2
(�/�)1/2,

and by summing over t = m, . . . , T we get that

�

�

�

�

�

T
X

t=m

ft(xt, . . . , xt)�
T
X

t=m

ft(xt�m, . . . , xt)

�

�

�

�

�

 2TL⌘m3/2
(�/�)1/2. (8)

Next, by integrating Equations (7) and (8) we have that

RT,m =

T
X

t=m

ft(xt�m, . . . , xt)�min

x2K

T
X

t=m

ft(x, . . . , x)  2TL⌘(m+ 1)

3/2
(�/�)1/2 +

R

⌘
.

Finally, setting ⌘ = R1/2
(TL)�1/2

(m + 1)

�3/4
(�/�)�1/4 yields the result stated in the theorem.

D Complete Analysis for Section 4

The outline of this section is as follows: we begin by adapting the EWOO algorithm of [23] to mem-
oryless convex loss functions (Section D.1). Then, we present an algorithm for the standard OCO
framework that attains low regret and small number of decision switches in expectation (Section
D.2). Finally, we show that these properties together can be reduced to the framework of OCO with
memory, yielding a nearly optimal policy regret bound (Section D.3).

D.1 Adapting EWOO to Convex Loss Functions

Recall the Exponentially Weighted Online Optimization (EWOO) algorithm, presented in [23] and
designed originally for ↵-exp-concave (memoryless) loss functions {`t}Tt=1

.
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Algorithm 5 Exponentially Weighted Online Optimization (EWOO)
1: Input: exp-concavity parameter ↵, exp-concave loss functions {`t}Tt=1

.
2: Initialize w

1

(x) = 1 for all x 2 K, and choose x
1

2 K arbitrarily.
3: for t = 1 to T do
4: Play xt and suffer loss `t(xt).
5: Define weights wt+1

(x) = e�↵
Pt

⌧=1 `⌧ (x).
6: Set xt+1

=

�R

K x · wt+1

(x)dx
� · �RK wt+1

(x)dx
��1

7: end for

[23] prove the following regret bound for Algorithm 5:

RT =

T
X

t=1

`t(xt)�min

x2K

T
X

t=1

`t(x)  1

↵
(1 + n log(T + 1)) .

Next, we consider the following modification of the EWOO algorithm — denoted as Algorithm 6.

Algorithm 6
1: Input: exp-concavity parameter ↵, exp-concave loss functions {`t}Tt=1

.
2: Initialize w

1

(x) = 1 for all x 2 K, and choose x
1

2 K arbitrarily.
3: for t = 1 to T do
4: Play xt and suffer loss `t(xt).
5: Define weights wt+1

(x) = e�↵
Pt

⌧=1 `⌧ (x).
6: Sample xt+1

from the density function pt(x) = wt(x) ·
�R

K wt+1

(x)dx
��1

7: end for

Basically, xt is sampled from the density function pt(x) = wt(x) ·
�R

K wt(x)dx
��1, instead of

being computed deterministically. The following two lemmas state that applying Algorithm 6 to
the loss functions {ĝt}Tt=1

yields regret bound of O�pT log(T )
�

. We first bound the regret of
Algorithm 6 when applied to general ↵-exp-concave loss functions {`t}Tt=1

(Lemma D.1), and then
plug in the loss functions {ĝt}Tt=1

(Lemma D.2).

Lemma D.1. Let {`t}Tt=1

be ↵-exp-concave loss functions. Then, Algorithm 6 generates an online
sequence {xt}Tt=1

, for which the following holds:

E [RT ] =

T
X

t=1

E [`t(xt)]�min

x

T
X

t=1

`t(x)  1

↵
(1 + n log(T + 1)) +

↵

2

T
X

t=1

E
⇥

`t(xt)
2

⇤

.

Proof. The proof goes along the lines of [23]; for completeness, we present here the full proof.
Define ht(x) = e�↵

Pt�1
⌧=1 `⌧ (x) and notice that

E [ht(xt)] =

Z

K
ht(x)pt(x)dx =

R

K

⇣

Qt
⌧=1

h⌧ (x)
⌘

dx

R

K

⇣

Qt�1

⌧=1

h⌧ (x)
⌘

dx
.

Then, by telescopic product we have

T
Y

t=1

E [ht(xt)] =

R

K

⇣

QT
t=1

ht(x)
⌘

dx
R

K 1dx
=

R

K

⇣

QT
t=1

ht(x)
⌘

dx

vol (K)

, (9)

where we used the fact that w
1

(x) = 1 for all x 2 K. Denote x⇤
= argminx2K

PT
t=1

`t(x), then it
exists that x⇤

= argmaxx2K
QT

t=1

ht(x). Define nearby points S ⇢ K by

S =

⇢

x 2 K | x =

T

T + 1

x⇤
+

1

T
y , y 2 K

�

.
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By concavity and non-negativity of ht it holds that ht(x) � T
T+1

ht(x
⇤
) for every x 2 S , and thus

T
Y

t=1

ht(x) �
✓

T

T + 1

◆T T
Y

t=1

ht(x
⇤
) � e�1

T
Y

t=1

ht(x
⇤
).

By substituting the above in Equation (9) and using the fact that S is a rescaling of K by factor of
1

T+1

in n dimensions, we have that

T
Y

t=1

E [ht(xt)] =

R

K

⇣

QT
t=1

ht(x)
⌘

dx

vol (K)

�
R

S

⇣

QT
t=1

ht(x)
⌘

dx

vol (K)

�
R

S

⇣

e�1

QT
t=1

ht(x
⇤
)

⌘

dx

vol (K)

=

vol(S)
vol (K)

e�1

T
Y

t=1

ht(x
⇤
)

=

e�1

(T + 1)

n

T
Y

t=1

ht(x
⇤
).

Now, by taking logarithm on both sides we get that
T
X

t=1

log (E [ht(xt)])�
T
X

t=1

log (ht(x
⇤
)) � �1� n log(T + 1),

or equivalently
T
X

t=1

log

⇣

E
h

e�↵`t(xt)

i⌘

+ ↵
T
X

t=1

`t(x
⇤
) � �1� n log(T + 1). (10)

Next, we use the facts that e�x  1 � x +

x2

2

for 0  x  1 and log(1 � x)  �x for x < 1, to
derive the following inequality:

log

⇣

E
h

e�↵`t(xt)

i⌘

 log

✓

E


1� ↵`t(xt) +
↵2

2

`t(xt)
2

�◆

= log

✓

1� ↵E [`t(xt)] +
↵2

2

E
⇥

`t(xt)
2

⇤

◆

 �↵E [`t(xt)] +
↵2

2

E
⇥

`t(xt)
2

⇤

By substituting the above in Equation (10) and rearanging we get that
T
X

t=1

E [`t(xt)]�
T
X

t=1

`t(x
⇤
)  1

↵
(1 + n log(T + 1)) +

↵

2

T
X

t=1

E
⇥

`t(xt)
2

⇤

,

as stated in the lemma.

Plugging in the loss functions {ĝt}Tt=1

into the previous lemma yields the following result:

Lemma D.2. Let {gt}Tt=1

be convex functions from K to [0, 1], such that D = supx,y2K kx � yk
and G = supx,t krgt(x)k, and define ĝt(x) = gt(x) +

⌘
2

kxk2 for some ⌘  G
D . Then, Applying

Algorithm 6 to the loss functions {ĝt}Tt=1

generates an online sequence {xt}Tt=1

, for which the
following holds:

E [RT ] =

T
X

t=1

E [gt(xt)]�min

x

T
X

t=1

gt(x)  4G2

⌘
(1 + n log(T + 1))+

T⌘

2

 

�

1 + ⌘D2

�

2

4G2

+D2

!

.

Setting ⌘ =

2G
D

q

1+log(T+1)

T yields E [RT ]  8n ·max

�

GD, 1

GD

 ·pT (1 + log(T + 1)).
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Proof. Recall that the loss functions {ĝt}Tt=1

are ⌘
4G2 -exp-concave for ⌘  G

D . Thus, applying
Algorithm 6 to the loss functions {ĝt}Tt=1

yields the following result (using Lemma D.1):

T
X

t=1

E [ĝt(xt)]�min

x

T
X

t=1

ĝt(x)  4G2

⌘
(1 + n log(T + 1)) +

⌘

8G2

T
X

t=1

E
⇥

ĝt(xt)
2

⇤

.

By substituting ĝt from the definition and using the fact that ĝt(x) 2 [0, 1 + ⌘D2

] for all t and
x 2 K, we have that

T
X

t=1

E [gt(xt)]�min

x

T
X

t=1

gt(x)

 4G2

⌘
(1 + n log(T + 1)) +

⌘

2

T
X

t=1

 

�

1 + ⌘D2

�

2

4G2

+ kx⇤k2 � kxtk2
!

.

The lemma is obtained by observing that kx⇤k2 � kxtk2  D2.

D.2 Algorithm and Analysis

We turn now to restate and prove our main theorem:

Theorem 4.1. Let {gt}Tt=1

be convex functions from K to [0, 1], such that D = supx,y2K kx � yk
and G = supx,t krgt(x)k, and define ĝt(x) = gt(x) +

⌘
2

kxk2 for some ⌘  G
D . Then, Algorithm 2

generates an online sequence {xt}Tt=1

, for which it holds that

E [RT ] =

T
X

t=1

E [gt(xt)]�min

x2K

T
X

t=1

gt(x)  4G2

⌘
(1 + n log(T + 1))+

T⌘

2

 

�

1 + ⌘D2

�

2

4G2

+D2

!

,

and in addition

E [S] = E
"

T
X

t=1

1{xt+1 6=xt}

#

 T⌘

4G2

+

TD2⌘2

8G2

,

Setting ⌘ =

2G
D

q

1+log(T+1)

T yields E [RT ] = O�pT log(T )
�

, and E [S] = O�pT log(T )
�

.

Proof. The proof follows immediately by observing that: (1) Algorithm 2 generates the decisions
from the same distribution with respect Algorithm 6 (stated formally in Lemma D.3 below), and thus
attains the same expected regret bound; and (2) Algorithm 2 has an expected low switches guarantee
(also stated below in Lemma D.4).

We shall continue to prove the lemmas.

Lemma D.3. Let {gt}Tt=1

be convex functions from K to [0, 1], such that D = supx,y2K kx � yk
and G = supx,t krgt(x)k, and define ĝt(x) = gt(x) +

⌘
2

kxk2 for some ⌘  G
D . Denote by {yt}Tt=1

and {xt}Tt=1

the online sequences generated by applying Algorithm 2 and Algorithm 6 to the loss
functions {gt}Tt=1

and {ĝt}Tt=1

, respectively. Then, it holds that yt and xt are sampled from the
same distribution for all t.

Proof. Let qt(·) and pt(·) be the density functions of yt and xt, respectively, and Wt =
R

K wt(x)dx.
The proof is by induction: for t = 1 we have from the definition that p

1

(x) = q
1

(x) for all x 2 K.
Now, let us assume that pt�1

(x) = qt�1

(x) for all x 2 K, and prove for t. Notice that the weights

17



update for both algorithms is the same and is independent of the decisions actually played by the
player. Thus, by applying the law of total probability we have that

qt(x) = pt�1

(x) · wt(x)

wt�1

(x)
+ pt(x) ·

Z

K
pt�1

(y)

✓

1� wt(y)

wt�1

(y)

◆

dy

=

wt�1

(x)

Wt�1

· wt(x)

wt�1

(x)
+

wt(x)

Wt
·
Z

K

wt�1

(y)

Wt�1

✓

wt�1

(y)� wt(y)

wt�1

(y)

◆

dy

=

wt(x)

Wt�1

+

wt(x)

Wt
·
Z

K

wt�1

(y)� wt(y)

Wt�1

dy

=

wt(x)

Wt�1

+

wt(x)

Wt
· Wt�1

�Wt

Wt�1

=

wt(x) ·Wt + wt(x) ·Wt�1

� wt(x) ·Wt

Wt�1

·Wt

=

wt(x) ·Wt�1

Wt�1

·Wt
=

wt(x)

Wt
= pt(x).

The above holds for all x 2 K, and thus the lemma is obtained.

Lemma D.4. Let {gt}Tt=1

be convex functions from K to [0, 1], such that D = supx,y2K kx � yk
and G = supx,t krgt(x)k. Then, applying Algorithm 2 to the loss functions {gt}Tt=1

generates an
online sequence {xt}Tt=1

, for which the it holds that

E [S] =
T
X

t=1

E
⇥

1{xt+1 6=xt}
⇤  T⌘

4G2

+

TD2⌘2

8G2

,

where S denotes the number of decision switches in the sequence {xt}Tt=1

.

Setting ⌘ =

2G
D

q

1+log(T+1)

T yields E [S]  1 + log(T + 1) +

1

GD

p

T (1 + log(T + 1)).

Proof. From Algorithm 2 it follows that

E
⇥

1{xt+1 6=xt}
⇤

= P (xt+1

6= xt)  1� wt+1

(xt)

wt(xt)
= 1� e�

⌘

4G2 ĝt(xt),

Using the inequality 1� e�x  x for all x, and substituting ĝt from the definition yields

1� e�
⌘

4G2 ĝt(xt)  ⌘

4G2

gt(xt) +
⌘2

8G2

kxtk2.

Next, by summing the above for all t we have that

T
X

t=1

E
⇥

1{xt+1 6=xt}
⇤  ⌘

4G2

T
X

t=1

gt(xt) +
⌘2

8G2

T
X

t=1

kxtk2.

Finally, since kxk2  D2 for all x 2 K and gt(x) 2 [0, 1] for all x 2 K and t 2 {1, . . . , T}, setting

⌘ =

2G
D

q

1+log(T+1)

T gives the stated result.

D.3 Adaptation to the Framework of OCO with Memory

Up to this point, we presented an algorithm that attains O�pT log(T )
�

-regret along with expected
O�pT log(T )

�

decision switches for generally convex loss functions {gt}Tt=1

. The next lemma
states that these two properties imply learning against bounded-memory adversaries.

18



Lemma D.5. Let {ft}Tt=1

be loss functions with memory from Km+1 to [0, 1], define ˜ft(x) =

ft(x, . . . , x), and denote D = supx,y2K kx � yk and G = supx,t kr ˜ft(x)k. Then, applying
Algorithm 2 to the loss functions { ˜ft}Tt=1

yields an online sequence {xt}Tt=1

, for which it holds that:

E [RT,m] =

T
X

t=1

E [ft(xt�m, . . . , xt)]�min

x2K

T
X

t=1

ft(x, . . . , x)

 4G2

⌘
(1 + n log(T + 1)) +

T⌘

2

 

�

1 + ⌘D2

�

2

4G2

+D2

!

+

Tm⌘

4G2

+

TD2m⌘2

8G2

.

Setting ⌘ =

2G
D

q

1+log(T+1)

mT yields E [RT,m]  8n ·max

�

GD, 1

GD

 ·pmT (1 + log(T + 1)).

Proof. From Theorem 4.1, we know that applying Algorithm 2 to the loss functions { ˜ft}Tt=1

yields:

T
X

t=1

E[ ˜ft(xt)]�min

x2K

T
X

t=1

˜ft(x)  4G2

⌘
(1 + n log(T + 1)) +

T⌘

2

 

�

1 + ⌘D2

�

2

4G2

+D2

!

,

or equivalently:

T
X

t=1

E [ft(xt, . . . , xt)]�min

x2K

T
X

t=1

ft(x, . . . , x)

 4G2

⌘
(1 + n log(T + 1)) +

T⌘

2

 

�

1 + ⌘D2

�

2

4G2

+D2

!

. (11)

Now, notice that if a decision switch did not occur between rounds (t �m) and t, it trivially holds
that ft(xt�m, . . . , xt) = ft(xt, . . . , xt). Otherwise, if a decision switch did occur between these
rounds, we can bound |ft(xt�m, . . . , xt) = ft(xt, . . . , xt)|  1. Thus, it follows that

T
X

t=m

|ft(xt�m, . . . , xt)� ft(xt, . . . , xt)|  m · S,

where again, S denotes the number of decision switches in the sequence {xt}Tt=1

. From Lemma D.4
we have that E [S]  T⌘

4G2 +

TD2⌘2

8G2 , and it follows that
�

�

�

�

�

T
X

t=m

E [ft(xt�m, . . . , xt)]�
T
X

t=m

E [ft(xt, . . . , xt)]

�

�

�

�

�


T
X

t=1

|E [ft(xt�m, . . . , xt)� ft(xt, . . . , xt)]|


T
X

t=1

E [|ft(xt�m, . . . , xt)� ft(xt, . . . , xt)|]

 m · E [S]  Tm⌘

4G2

+

TD2m⌘2

8G2

.

Plugging the above in Equation (11) yields the result stated in the lemma.

E Efficient Implementation of Algorithm 2

The original EWOO algorithm (Algorithm 5) of [23] is not efficient, since it generates xt as the
expectation with respect to the distribution pt in every round. Hazan et al. solve this issue by
referring to the works of [24], that offer a sampling method from logconcave distributions. These
techniques enable the sampling of m points from the distribution pt in time of ˜O(n4

+mn3

). Since
an accuracy of T�1 to the expectation is necessary for maintaining logarithmic regret, m must be
on the order of T 2. Thus, generating a single decision xt via a slightly modified EWOO algorithm
requires running time of ˜O(n4

+ T 2n3

), which results in a total running time of ˜O(Tn4

+ T 3n3

).
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The implementation of the proposed algorithm (Algorithm 2) can rely on the same techniques as
algorithm EWOO, yet can be carried out more efficiently in various ways. First, our algorithm
requires only ˜O(T 1/2

) samples (in compare to T samples that EWOO requires), due to its low
switches guarantee. Second, each of these samples requires time of ˜O(n4

) using the techniques of
[24], because xt need not be generated as the expectation of pt, but rather only be sampled from this
distribution. Therefore, an efficient implementation of our algorithm can be carried out in a total
running time of ˜O(T 1/2n4

).

Another efficient implementation of Algorithm 2 relies on the work of [25], in which techniques
of random walks are utilized for regret minimization. Basically, these techniques are applicable
in our setting for two reasons: (1) two successive distributions over the decision set, pt and pt+1

,
are relatively close; and (2) each distribution pt can be approximated quite well using a Gaussian
distribution. This allows sampling xt+1

via a random walk technique that requires only one step,
due to the fact that xt can be used as its warm start. This results in a same running time guarantee
for our algorithm, as stated before for the techniques of [24].
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