
Supplemental Material

7 On the sub-optimality of deflation – An example

We provide a simple example demonstrating the sub-optimality of deflation based approaches for computing multiple sparse
components with disjoint supports. Consider the real 4× 4 matrix

A =

1 0 0 ǫ
0 δ 0 0
0 0 δ 0
ǫ 0 0 1

 ,

with ǫ, δ > 0 such that ǫ+ δ < 1. Note that A is PSD; A = B⊤B for

B =

1 0 0 ǫ

0
√
δ 0 0

0 0
√
δ 0

0 0 0
√
1− ǫ2

 .

We seek two 2-sparse components with disjoint supports, i.e., the solution to

max
X∈X

2∑

j=1

x⊤
j Axj , (8)

where

X,
{
X ∈ R

4×2 : ‖xi‖2 ≤ 1, ‖xi‖0 ≤ 2 ∀ i ∈ {1, 2}, supp(x1) ∩ supp(x2) = ∅
}
.

Iterative computation with deflation. Following an iterative, greedy procedure with a deflation step, we compute one
component at the time. The first component is

x1 = argmax
‖x‖0=2,‖x‖2=1

x⊤Ax. (9)

Recall that for any unit norm vector x with support I = supp(x),

x⊤Ax ≤ λmax
(
AI,I

)
, (10)

where AI,I denotes the principal submatrix of A formed by the rows and columns indexed by I . Equality can be achieved
in (10) for x equal to the leading eigenvector of AI,I . Hence, it suffices to determine the optimal support for x1. Due to the
small size of the example, it is easy to determine that the set I1 = {1, 4} maximizes the objective in (10) over all sets of two
indices, achieving value

x⊤
1 Ax1 = λmax

([
1 ǫ
ǫ 1

])
= 1 + ǫ. (11)

Since subsequent components must have disjoint supports, it follows that the support of the second 2-sparse component x2

is I2 = {2, 3}, and x2 achieves value

x⊤
2 Ax2 = λmax

([
δ 0
0 δ

])
= δ. (12)

In total, the objective value in (8) achieved by the greedy computation with a deflation step is

2∑

j=1

x⊤
j Axj = 1 + ǫ+ δ. (13)

The sub-optimality of deflation. Consider an alternative pair of 2-sparse components x′
1 and x′

2 with support sets
I′1 = {1, 2} and I′2 = {3, 4}, respectively. Based on the above, such a pair achieves objective value in (8) equal to

λmax

([
1 0
0 δ

])
+ λmax

([
δ 0
0 1

])
= 1 + 1 = 2,

which clearly outperforms the objective value in (13) (under the assumption ǫ + δ < 1), demonstrating the sub-optimality
of the x1, x2 pair computed by the deflation-based approach. In fact, for small ǫ, δ the objective value in the second case is
larger than the former by almost a factor of two.

10

8 Construction of Bipartite Graph

The following algorithm formally outlines the steps for generating the bipartite graph G =
(
{Uj}kj=1, V, E

)
given a weight

d× k matrix W.

Algorithm 4 Generate Bipartite Graph

input Real d× k matrix W

output Bipartite G =
(

{Uj}
k
j=1, V, E

)

{Fig. 1}
1: for j = 1, . . . , k do

2: Uj ←
{

u
(j)
1 , . . . , u

(j)
s

}

3: end for
4: U ← ∪kj=1Uj {|U | = k · s}

5: V ←
{

1, . . . , d
}

6: E ← U × V
7: for i = 1, . . . , d do
8: for j = 1, . . . , k do
9: for each u ∈ Uj do

10: w
(

u, vi
)

←W 2
ij

11: end for
12: end for
13: end for

9 Proofs

9.1 Guarantees of Algorithm 2

Lemma 2.1. For any real d× k matrix W, and Algorithm 2 outputs

X̃ = argmax
X∈Xk

k∑

j=1

〈
Xj ,Wj

〉2
(14)

in time O
(
d · (s · k)2

)
.

Proof. Consider a matrix X ∈ Xk and let Ij , j = 1 . . . , k denote the support sets of its columns. By the constraints in Xk ,
those sets are disjoint, i.e., Ij1 ∩ Ij2 = ∅ ∀j1, j2 ∈ {1, . . . , k}, j1 6= j2, and

k∑

j=1

〈
Xj , Wj

〉2
=

k∑

j=1

(∑

i∈Ij

Xij ·Wij

)2
≤

k∑

j=1

(∑

i∈Ij

W 2
ij

)
. (15)

The last inequality is due to Cauchy-Schwarz and the fact that ‖Xj‖2 ≤ 1, ∀ j ∈ {1, . . . , k}. In fact, if the supports sets

Ij , j = 1, . . . , k were known, the upper bound in (15) would be achieved by setting X
j
Ij

= W
j
Ij
/‖Wj

Ij
‖2, i.e., setting

the nonzero subvector of the jth column of X colinear to the corresponding subvector of the jth column of W. Hence, the

key step towards computing the optimal solution X̃ is to determine the support sets Ij , j = 1, . . . , k of its columns.

Consider the set of binary matrices

Z,
{
Z ∈ {0, 1}d×k : ‖Zj‖0 ≤ s ∀ j ∈ [k], supp(Zi) ∩ supp(Zj) = ∅ ∀ i, j ∈ [k], i 6= j

}
.

The set represents all possible supports for the members ofXk . Taking into account the previous discussion, the maximization
in (14) can be written with respect to Z ∈ Z:

max
X∈Xk

k∑

j=1

〈
Xj , Wj

〉2
= max

Z∈Z

k∑

j=1

d∑

i=1

ZijW
2
ij . (16)

Let Z̃ ∈ Z denote the optimal solution, which corresponds to the (support) indicator of X̃. Next, we show that computing

Z̃ boils down to solving a maximum weight matching problem on the bipartite graph generated by Algorithm 4. Recall that
given W ∈ Rd×k , Algorithm 4 generates a complete weighted bipartite graph G = (U, V,E) where

• V is a set of d vertices v1, . . . , vd, corresponding to the d variables, i.e., the d rows of X̂.
• U is a set of k · s vertices, conceptually partitioned into k disjoint subsets U1, . . . , Uk , each of cardinality s. The

jth subset, Uj , is associated with the support Ij ; the s vertices u
(j)
α , α = 1, . . . , s in Uj serve as placeholders for the

variables/indices in Ij .

11

• Finally, the edge set is E = U × V . The edge weights are determined by the d × k matrix W in (6). In particular, the

weight of edge (u
(j)
α , vi) is equal to W 2

ij . Note that all vertices in Uj are effectively identical; they all share a common

neighborhood and edge weights.

It is straightforward to verify that any Z ∈ Z corresponds to a perfect matching in G and vice versa; Zij = 1 if and only if
vertex vi ∈ V is matched with a vertex in Uj (all vertices in Uj are equivalent with respect to their neighborhood). Further,
for a given Z ∈ Z the objective value in (16) is equal to the weight of the corresponding matching in G. More formally, For
a given perfect matchingM ⊂ E, the corresponding indicator matrix Z ∈ Z (and equivalently the support of its columns)
is determined by setting

Ij ←
{
i ∈ [d] : (u, vi) ∈M, u ∈ Uj

}
, j = 1, . . . , k. (17)

The weight of the matchingM is

∑

(u,v)∈M

w(u, v) =
k∑

j=1

∑

(u,vi)∈M:
u∈Uj

w(u, vi) =
k∑

j=1

∑

i∈Ij

W 2
ij =

k∑

j=1

d∑

i=1

Zij ·W 2
ij , (18)

which is equal to the objective function in (16). Conversely, any given indicator matrix Z ∈ Z corresponds to a perfect

matchingM⊂ E. In particular, letting Ij,supp(Zj), and for an arbitrary ordering σj : [s]→ Ij of the elements of Ij ,

M←
{
(u(j)

α , vσj(α)), α = 1, . . . , s, j = 1, . . . , k
}

is a perfect matching in G. The weight of the matchingM is equal to the objective value in (16) for that Z:

k∑

j=1

d∑

i=1

Zij ·W 2
ij =

k∑

j=1

∑

i∈Ij

W 2
ij =

k∑

j=1

s∑

α=1

W 2
Ij(α),j =

∑

(u,v)∈M

w(u, v). (19)

It follows that to determine Z̃ that maximizes (16) with respect to Z ∈ Z , it suffices to compute a maximum weight perfect

matching in G. Then Z̃ is obtained as described in (17). Finally, the values of the non-zero entries of X̃ are determined as

described in the beginning of the proof (lines 4-7 of Algorithm 2), guaranteeing the optimality of X̃ for the maximization
in (14).

The weighted bipartite graph G is generated in O(d · (s · k)). The running time of Algorithm 2 is dominated by the
computation of the maximum weight matching of G. For the case of unbalanced bipartite graph with |U | = s · k <
d = |V | the Hungarian algorithm can be modified [22] to compute the maximum weight bipartite matching in time
O
(
|E||U |+ |U |2 log |U |

)
= O

(
d · (s · k)2

)
. This completes the proof.

9.2 Guarantees of Algorithm 1 – Proof of Theorem 1

We first prove a more general version of Theorem 1 for arbitrary constraint sets. Combining that with the guarantees of
Algorithm 2, we prove the Theorem 1.

Lemma 9.2. For any real d×d rank-r PSD matrix A and arbitrary setX ⊂ Rd×k , let X⋆, argmaxX∈X TR
(
X⊤AX

)
.

Assuming that there exists an operator PX : Rd×k → X such that PX (W) = argmaxX∈X

〈
xj , wj

〉2
, then Algorithm 1

outputs X ∈ X such that

TR
(
X

⊤
AX

)
≥ (1− ǫ) · TR

(
X⊤

⋆ AX⋆
)
,

in time TSVD(r)+O
((

4
ǫ

)r·k ·
(
TX +kd

))
, where TX is the time required to compute PX (·) and TSVD(r) the time required

to compute the truncated SVD of A.

Proof. Let A = UΛU
⊤

denote the truncated eigenvalue decomposition of A; Λ is a diagonal r × r whose ith diagonal

entry Λii is equal to the ith largest eigenvalue of A, while the columns of U contain the corresponding eigenvectors. By the
Cauchy-Schwartz inequality, for any x ∈ Rd,

x⊤Ax =
∥∥Λ1/2

U
⊤
x
∥∥2
2
≥
〈
Λ

1/2
U

⊤
x, c

〉2
, ∀ c ∈ R

r : ‖c‖2 = 1. (20)

In fact, equality in (20) is achieved for c colinear to Λ
1/2

Ux, and hence,

x⊤Ax = max
c∈S

r−1
2

〈
Λ

1/2
U

⊤
x, c

〉2
. (21)

In turn,

TR

(
X⊤AX

)
=

k∑

j=1

Xj⊤AXj = max
C:Cj∈S

r−1
2 ∀j

k∑

j=1

〈
Λ

1/2
U

⊤
Xj , Cj

〉2
. (22)

12

Recall that X⋆ is the optimal solution of the trace maximization on A, i.e.,

X⋆, argmax
X∈X

TR

(
X⊤AX

)
.

Let C⋆ be the maximizing value of C in (22) for X = X⋆, i.e., C⋆ is an r× k matrix with unit-norm columns such that for
all j ∈ {1, . . . , k},

X
j
⋆
⊤
AX

j
⋆ =

〈
Λ

1/2
U

⊤
X

j
⋆, C

j
⋆

〉2
. (23)

Algorithm 1 iterates over the points (r × k matrices) C in N⊗k
ǫ/2

(
S
r−1
2

)
, the kth cartesian power of a finite ǫ/2-net of the

r-dimensional l2-unit sphere. At each such point C, it computes a candidate

X̃ = argmax
X∈X

k∑

j=1

〈
Xj ,UΛ1/2Cj

〉2

via Algorithm 2 (See Lemma 9.1 for the guarantees of Algorithm 2). By construction, the set N⊗k
ǫ/2

(
S
r−1
2

)
contains a C♯

such that

‖C♯ −C⋆‖∞,2 = max
j∈{1,...,k}

‖Cj
♯ −C

j
⋆‖2 ≤ ǫ/2. (24)

Based on the above, for all j ∈ {1, . . . , k},
(
X

j
⋆
⊤
AX

j
⋆

)1/2
=
∣∣〈Λ1/2

U
⊤
X

j
⋆, C

j
⋆

〉∣∣

=
∣∣〈Λ1/2

U
⊤
X

j
⋆, C

j
♯

〉
+
〈
Λ

1/2
U

⊤
X

j
⋆,
(
C

j
⋆ −C

j
♯

)〉∣∣

≤
∣∣〈Λ1/2

U
⊤
X

j
⋆, C

j
♯

〉∣∣+
∣∣〈Λ1/2

U
⊤
X

j
⋆,
(
C

j
⋆ −C

j
♯

)〉∣∣

≤
∣∣〈Λ1/2

U
⊤
X

j
⋆, C

j
♯

〉∣∣+
∥∥Λ1/2

U
⊤
X

j
⋆

∥∥ ·
∥∥Cj

⋆ −C
j
♯

∥∥

≤
∣∣〈Λ1/2

U
⊤
X

j
⋆, C

j
♯

〉∣∣+ (ǫ/2) ·
(
X

j
⋆
⊤
AX

j
⋆

)1/2
. (25)

The first step follows by the definition of C⋆, the second by the linearity of the inner product, the third by the triangle
inequality, the fourth by Cauchy-Schwarz inequality and the last by (24). Rearranging the terms in (25),

∣∣〈Λ1/2
U

⊤
X

j
⋆, C

j
♯

〉∣∣ ≥
(
1− ǫ

2

)
·
(
X

j
⋆
⊤
AX

j
⋆

)1/2 ≥ 0,

and in turn,

〈
Λ

1/2
U

⊤
X

j
⋆, C

j
♯

〉2 ≥
(
1− ǫ

2

)2 ·Xj
⋆
⊤
AX

j
⋆ ≥ (1− ǫ) ·Xj

⋆
⊤
AX

j
⋆ (26)

Summing the terms in (26) over all j ∈ {1, . . . , k},
k∑

j=1

〈
Λ

1/2
U

⊤
X

j
⋆, C

j
♯

〉2 ≥ (1− ǫ) · TR

(
X⊤

⋆ AX⋆

)
. (27)

Let X♯ ∈ X be the candidate solution produced by the algorithm at C♯, i.e.,

X♯, argmax
X∈X

k∑

j=1

〈
xj , UΛ

1/2
C

j
♯

〉2
. (28)

Then,

TR

(
X⊤

♯ AX♯

)
(α)
= max

C:Cj∈S
r−1
2 ∀j

k∑

j=1

〈
Λ

1/2
U

⊤
X

j
♯ , C

j
〉2

(β)

≥
k∑

j=1

〈
Λ

1/2
U

⊤
X

j
♯ , C

j
♯

〉2

(γ)

≥
k∑

j=1

〈
X

j
⋆, UΛ

1/2
C

j
♯

〉2

(δ)

≥ (1− ǫ) · TR

(
X⊤

⋆ AX⋆

)
, (29)

where (α) follows from the observation in (22), (β) from the sub-optimality of C♯, (γ) by the definition of X♯ in (28),
while (δ) follows from (27). According to (29), at least one of the candidate solutions produced by Algorithm 1, namely X♯,
achieves an objective value within a multiplicative factor (1− ǫ) from the optimal, implying the guarantees of the lemma.

Finally, the running time of Algorithm 1 follows immediately from the cost per iteration and the cardinality of the ǫ/2-net on
the unit-sphere. Note that matrix multiplications can exploit the singular value decomposition which is performed once.

13

Theorem 1. For any real d × d rank-r PSD matrix A, desired number of components k, number s of nonzero entries per

component, and accuracy parameter ǫ ∈ (0, 1), Algorithm 1 outputs X ∈ Xk such that

TR
(
X

⊤
AX

)
≥ (1− ǫ) · TR

(
X⊤

⋆ AX⋆
)
,

where X⋆, argmaxX∈Xk
TR
(
X⊤AX

)
, in time TSVD(r) + O

((
4
ǫ

)r·k · d · (s · k)2
)
. TSVD(r) is the time required to

compute the truncated SVD of A.

Proof. Recall that Xk is the set of d × k matrices X whose columns have unit length and pairwise disjoint supports.
Algorithm 2, given any W ∈ Rd×k , computes X ∈ Xk that optimally solves the constrained maximization in line 5. (See
Lemma 9.1 for the guarantee of Algorithm 2). in time O

(
d · (s · k)2

)
. The desired result then follows by Lemma 9.2 for the

constrained set Xk .

9.3 Guarantees of Algorithm 3 – Proof of Theorem 2

We prove Theorem 2 with the approximation guarantees of Algorithm 3.

Lemma 9.3. For any d× d PSD matrices A and A, and any set X ⊆ Rd×k let

X⋆, argmax
X∈X

TR

(
X⊤AX

)
, and X⋆, argmax

X∈X
TR
(
X⊤AX

)
.

Then, for any X ∈ X such that TR
(
X

⊤
AX

)
≥ γ · TR

(
X⊤

⋆ AX⋆
)

for some 0 < γ < 1,

TR
(
X

⊤
AX

)
≥ γ · TR

(
X⊤

⋆ AX⋆
)
− 2 · ‖A−A‖2 · max

X∈X
‖X‖2F .

Proof. By the optimality of X⋆ for A,

TR

(
X⊤

⋆ AX⋆

)
≥ TR

(
X⊤

⋆ AX⋆

)
.

In turn, for any X ∈ X such that TR

(
X

⊤
AX

)
≥ γ · TR

(
X⊤

⋆ AX⋆
)

for some 0 < γ < 1,

TR

(
X

⊤
AX

)
≥ γ · TR

(
X⊤

⋆ AX⋆

)
. (30)

Let E,A−A. By the linearity of the trace,

TR

(
X

⊤
AX

)
= TR

(
X

⊤
AX

)
− TR

(
X

⊤
EX

)

≤ TR

(
X

⊤
AX

)
+
∣∣TR

(
X

⊤
EX

)∣∣. (31)

By Lemma 10.9,

∣∣TR

(
X

⊤
EX

)∣∣ ≤ ‖X‖F · ‖X‖F · ‖E‖2 ≤ ‖E‖2 · max
X∈X

‖X‖2F , R. (32)

Continuing from (31),

TR

(
X

⊤
AX

)
≤ TR

(
X

⊤
AX

)
+R. (33)

Similarly,

TR

(
X⊤

⋆ AX⋆

)
= TR

(
X⊤

⋆ AX⋆

)
− TR

(
X⊤

⋆ EX⋆

)

≥ TR

(
X⊤

⋆ AX⋆

)
−
∣∣TR

(
X⊤

⋆ EX⋆

)∣∣

≥ TR

(
X⊤

⋆ AX⋆

)
−R. (34)

Combining the above, we have

TR

(
X

⊤
AX

)
≥ TR

(
X

⊤
AX

)
−R

≥ γ · TR

(
X⊤

⋆ AX⋆

)
−R

≥ γ ·
(

TR

(
X⊤

⋆ AX⋆

)
−R

)
−R

= γ · TR

(
X⊤

⋆ AX⋆

)
− (1 + γ) ·R

≥ γ · TR

(
X⊤

⋆ AX⋆

)
− 2 ·R,

where the first inequality follows from (33) the second from (30), the third from (34), and the last from the fact that R ≥ 0
and 0 < γ ≤ 1. This concludes the proof.

14

Remark 9.1. If in Lemma 9.3 the PSD matrices A and A ∈ Rd×d are such that A −A is also PSD, then the following

tighter bound holds:

TR
(
X

⊤
AX

)
≥ γ · TR

(
X⊤

⋆ AX⋆
)
−

k∑

i=1

λi

(
A−A

)
.

Proof. This follows from the fact that if E,A−A is PSD, then

TR

(
X

⊤
EX

)
=

d∑

j=1

x⊤
j Exj ≥ 0,

and the bound in (31) can be improved to

TR

(
X

⊤
AX

)
= TR

(
X

⊤
AX

)
− TR

(
X

⊤
EX

)
≤ TR

(
X

⊤
AX

)
.

Further, by Lemma 10.10, the bound in (32) can be improved to

TR
(
X

⊤
EX

)
≤

k∑

i=1

λi

(
E
)
, R.

The rest of the proof follows as is.

Theorem 2. For any n × d input data matrix S, with corresponding empirical covariance matrix A = 1/n · S⊤S, any

desired number of components k, and accuracy parameters ǫ ∈ (0, 1) and r, Algorithm 3 outputs X(r) ∈ Xk such that

TR
(
X⊤

(r)AX(r)

)
≥ (1− ǫ) · TR

(
X⊤

⋆ AX⋆
)
− 2 · k · ‖A−A‖2,

where X⋆, argmaxX∈Xk
TR
(
X⊤AX

)
, in time TSKETCH(r) + TSVD(r) +O

((
4
ǫ

)r·k · d · (s · k)2
)
.

Proof. The theorem follows from Lemma 9.3 and the approximation guarantees of Algorithm 1.

10 Auxiliary Technical Lemmata

Lemma 10.4. For any real d× n matrix M, and any r, k ≤ min{d, n},
r+k∑

i=r+1

σi(M) ≤ k√
r + k

· ‖M‖F,

where σi(M) is the ith largest singular value of M.

Proof. By the Cauchy-Schwartz inequality,

r+k∑

i=r+1

σi(M) =

r+k∑

i=r+1

|σi(M)| ≤

r+k∑

i=r+1

σ2
i (M)

1/2

· ‖1k‖2 =
√
k ·

r+k∑

i=r+1

σ2
i (M)

1/2

.

Note that σr+1(M), . . . , σr+k(M) are the k smallest among the r + k largest singular values. Hence,

r+k∑

i=r+1

σ2
i (M) ≤ k

r + k

r+k∑

i=1

σ2
i (M) ≤ k

r + k

min{d,n}∑

i=1

σ2
i (M) =

k

r + k
‖M‖2F .

Combining the two inequalities, the desired result follows.

Corollary 1. For any real d× n matrix M and k ≤ min{d, n}, σk(M) ≤ k−1/2 · ‖M‖F.

Proof. It follows immediately from Lemma 10.4.

Lemma 10.5. Let a1, . . . , an and b1, . . . , bn be 2n real numbers and let p and q be two numbers such that 1/p+1/q = 1
and p > 1. We have

∣∣
n∑

i=1

aibi
∣∣ ≤

(
n∑

i=1

|ai|p
)1/p

·
(

n∑

i=1

|bi|q
)1/q

.

Lemma 10.6. For any two real matrices A and B of appropriate dimensions,

‖AB‖F ≤ min{‖A‖2‖B‖F, ‖A‖F‖B‖2} .

15

Proof. Let bi denote the ith column of B. Then,

‖AB‖2F =
∑

i

‖Abi‖22 ≤
∑

i

‖A‖22‖bi‖22 = ‖A‖22
∑

i

‖bi‖22 = ‖A‖22‖B‖2F .

Similarly, using the previous inequality,

‖AB‖2F = ‖B⊤A⊤‖2F ≤ ‖B⊤‖22‖A⊤‖2F = ‖B‖22‖A‖2F .
Combining the two upper bounds, the desired result follows.

Lemma 10.7. For any A,B ∈ Rn×k ,
∣∣〈A,B〉

∣∣,
∣∣TR

(
A⊤B

)∣∣ ≤ ‖A‖F‖B‖F.

Proof. The inequality follows from Lemma 10.5 for p = q = 2, treating A and B as vectors.

Lemma 10.8. For any real m× n matrix A, and any k ≤ min{m, n},

max
Y∈R

n×k

Y
⊤
Y=Ik

‖AY‖F =

(
k∑

i=1

σ2
i (A)

)1/2

.

The maximum is attained by Y coinciding with the k leading right singular vectors of A.

Proof. Let UΣV⊤ be the singular value decomposition of A; U and V are m×m and n×n unitary matrices respectively,

while Σ is a diagonal matrix with Σjj = σj , the jth largest singular value of A, j = 1, . . . , d, where d,min{m,n}. Due
to the invariance of the Frobenius norm under unitary multiplication,

‖AY‖2F = ‖UΣV⊤Y‖2F = ‖ΣV⊤Y‖2F . (35)

Continuing from (35),

‖ΣV⊤Y‖2F = TR

(
Y⊤VΣ2V⊤Y

)
=

k∑

i=1

y⊤
i

(d∑

j=1

σ2
j · vjv

⊤
j

)
yi =

d∑

j=1

σ2
j ·

k∑

i=1

(
v⊤
j yi

)2
.

Let zj,
∑k

i=1

(
v⊤
j yi

)2
, j = 1, . . . , d. Note that each individual zj satisfies

0 ≤ zj,

k∑

i=1

(
v⊤
j yi

)2
≤ ‖vj‖2 = 1,

where the last inequality follows from the fact that the columns of Y are orthonormal. Further,

d∑

j=1

zj =

d∑

j=1

k∑

i=1

(
v⊤
j yi

)2
=

k∑

i=1

d∑

j=1

(
v⊤
j yi

)2
=

k∑

i=1

‖yi‖2 = k.

Combining the above, we conclude that

‖AY‖2F =
d∑

j=1

σ2
j · zj ≤ σ2

1 + . . .+ σ2
k. (36)

Finally, it is straightforward to verify that if yi = vi, i = 1, . . . , k, then (36) holds with equality.

Lemma 10.9. For any real d × n matrix A, and pair of d × k matrix X and n × k matrix Y such that X⊤X = Ik and

Y⊤Y = Ik with k ≤ min{d, n}, the following holds:

∣∣TR

(
X⊤AY

)∣∣ ≤
√
k ·
(k∑

i=1

σ2
i (A)

)1/2
.

Proof. By Lemma 10.7,

|〈X, AY〉| =
∣∣TR

(
X⊤AY

)∣∣ ≤ ‖X‖F · ‖AY‖F =
√
k · ‖AY‖F.

where the last inequality follows from the fact that ‖X‖2F = TR
(
X⊤X

)
= TR(Ik) = k. Combining with a bound on

‖AY‖F as in Lemma 10.8, completes the proof.

Lemma 10.10. For any real d× d PSD matrix A, and k × d matrix X with k ≤ d orthonormal columns,

TR

(
X⊤AX

)
≤

k∑

i=1

λi(A)

where λi(A) is the ith largest eigenvalue of A. Equality is achieved for X coinciding with the k leading eigenvectors of A.

Proof. Let A = VV⊤ be a factorization of the PSD matrix A. Then, TR
(
X⊤AX

)
= TR

(
X⊤VV⊤X

)
= ‖V⊤X‖2F .

The desired result follows by Lemma 10.8 and the fact that λi(A) = σ2
i (V), i = 1, . . . , d.

11 Additional Experimental Results

16

Component
1 2 3 4 5 6

C
u
m
u
la
ti
v
e
E
x
p
l.
V
a
ri
a
n
ce

0

500

1000

1500

2000

2500

3000

+20:99%

k = 6 components, s = 10 nnz/component

TPower
EM-SPCA
SpanSPCA
SPCABiPart

(a)

Number of target components
2 3 4 5 6 7 8

T
o
ta
l
C
u
m
u
la
ti
v
e
E
x
p
l.

V
a
ri
a
n
ce

0

500

1000

1500

2000

2500

3000

3500

+10.01%

+16.22%

+17.94%
+19.10%

+20.99%
+23.57%

+24.51%

s = 10 nnz/component

SPCABiPart
SpanSPCA
EM-SPCA
TPower

(b)

Figure 3: Cumulative variance captured by k s-spars components computed on the word-by-word
matrix – BAGOFWORDS:NIPS dataset [30]. Sparsity is arbitrarily set to s = 10 nonzero entries
per component. Fig. 3(a) depicts the cum. variance captured by k = 6 components. Deflation leads
to a greedy formation of components; first components capture high variance, but subsequent ones
contribute less. On the contrary, our algorithm jointly optimizes the k components and achieves
higher total cum. variance. Fig. 3(b) depicts the total cum. variance achieved for various values
of k. Our algorithm operates on a rank-4 approximation of the input.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8

1:

T
P

O
W

E
R

network algorithm neuron parameter object classifier word noise

2: model data cell point image net speech control

3: learning system pattern distribution recognition classification level dynamic

4: input error layer hidden images class context step

5: function weight information space task test hmm term

6: neural problem signal gaussian features order character optimal

7: unit result visual linear feature examples processing component

8: set number field probability representation rate non equation

9: training method synaptic mean performance values approach single

10: output vector firing case view experiment trained analysis

11:

S
P

A
N

S
P

C
A

network algorithm neuron parameter recognition control classifier noise

12: model data cell distribution object action classification order

13: input weight pattern point image dynamic class term

14: learning error layer linear word step net component

15: neural problem signal probability performance optimal test rate

16: function output information space task policy speech equation

17: unit result visual gaussian features states examples single

18: set number synaptic hidden representation reinforcement approach analysis

19: system method field case feature values experiment large

20: training vector response mean images controller trained form

21:

S
P

C
A

B
IP

A
R

T

data function neuron unit learning network model training

22: distribution algorithm cell weight space input parameter hidden

23: gaussian set visual layer action neural information performance

24: probability error direction net order system control recognition

25: component problem firing task step output dynamic classifier

26: approach result synaptic connection linear pattern mean test

27: analysis number response activation case signal noise word

28: mixture method spike architecture values processing field speech

29: likelihood vector activity generalization term image local classification

30: experiment point motion threshold optimal object equation trained

Total Cum. Variance

TPOWER 2.5999 · 103

SPANSPCA 2.5981 · 103

SPCABIPART 3.2090 · 10
3

Table 4: BAGOFWORDS:NIPS dataset [30]. We run various SPCA algorithms for k = 8 com-
ponents (topics) and s = 10 nonzero entries per component. The table lists the words selected by
each component (words corresponding to higher magnitude entries appear higher in the topic). Our
algorithm was configured to use a rank-4 approximation of the input data.

17

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8

1:

T
P

O
W

E
R

percent zzz bush team school women zzz enron drug palestinian

2: company zzz al gore game student show firm patient zzz israel

3: million president season program book zzz arthur andersen doctor zzz israeli

4: companies official player high com deal system zzz yasser arafat

5: market zzz george bush play children look lay problem attack

6: stock campaign games right american financial law leader

7: business government point group need energy care peace

8: money plan run home part executives cost israelis

9: billion administration coach public family accounting help israeli

10: fund zzz white house win teacher found partnership health zzz west bank

11:

S
P

A
N

S
P

C
A

percent team zzz bush palestinian school cup show won

12: company game zzz al gore attack student minutes com night

13: million season president zzz united states children add part left

14: companies player zzz george bush zzz u s program tablespoon look big

15: market play campaign military home teaspoon need put

16: stock games official leader family oil book win

17: business point government zzz israel women pepper called hit

18: money run political zzz american public water hour job

19: billion right election war high large american ago

20: plan coach group country law sugar help zzz new york

21:

S
P

C
A

B
IP

A
R

T

percent zzz united states zzz bush company team cup school zzz al gore

22: million zzz u s official companies game minutes student zzz george bush

23: money zzz american government market season add children campaign

24: high attack president stock player tablespoon women election

25: program military group business play oil show plan

26: number palestinian leader billion point teaspoon book tax

27: need war country analyst run water family public

28: part administration political firm right pepper look zzz washington

29: problem zzz white house american sales home large hour member

30: com games law cost won food small nation

Total Cum. Variance

TPOWER 45.4014

SPANSPCA 46.0075

SPCABIPART 47.7212

Table 5: BAGOFWORDS:NYTIMES dataset [30]. We run various SPCA algorithms for k = 8

components (topics) and s = 10 nonzero entries per component. The table lists the words selected
by each component (words corresponding to higher magnitude entries appear higher in the topic).
Our algorithm was configured to use a rank-4 approximation of the input data.

18

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8

1:

T
P

O
W

E
R

percent zzz bush team school com zzz enron law palestinian

2: company zzz al gore game student women firm drug zzz israel

3: million zzz george bush season program book deal court zzz israeli

4: companies campaign player children web financial case zzz yasser arafat

5: market right play show american zzz arthur andersen federal peace

6: stock group games public information chief patient israelis

7: money political point need look executive system israeli

8: business zzz united states run part site analyst decision military

9: government zzz u s coach family zzz new york executives bill zzz palestinian

10: official administration home help question lay member zzz west bank

11: billion leader win job number investor lawyer war

12: president attack won teacher called energy doctor security

13: plan zzz white house night country find investment cost violence

14: high tax left problem found employees care killed

15: fund zzz washington guy parent ago accounting health talk

16:

S
P

A
N

S
P

C
A

percent team official zzz al gore cup show public night

17: company game zzz bush zzz george bush minutes com member big

18: million season zzz united states campaign add part system set

19: companies player attack election tablespoon look case film

20: market play zzz u s political teaspoon need number find

21: stock games palestinian vote oil book question room

22: business point military republican pepper women job place

23: money run leader voter water family told friend

24: billion right zzz american democratic large called put took

25: plan win war school sugar children zzz washington start

26: government coach zzz israel presidential serving help found car

27: president home country zzz white house butter ago information feel

28: high won administration law chopped zzz new york federal half

29: cost left terrorist zzz republican hour program student guy

30: group hit american tax pan problem court early

31:

S
P

C
A

B
IP

A
R

T

company show cup team percent zzz al gore official school

32: companies home minutes game million zzz george bush zzz bush student

33: stock run add season money campaign government children

34: market com tablespoon player plan right president women

35: billion high oil play business election zzz united states book

36: zzz enron need teaspoon games tax political zzz u s family

37: firm look pepper coach cost point group called

38: analyst part water guy cut leader attack hour

39: industry night large yard job zzz washington zzz american friend

40: fund zzz new york sugar hit pay administration country found

41: investor help serving played deal question military find

42: sales left butter playing quarter member american set

43: customer put chopped ball chief won war room

44: investment ago fat fan executive win law film

45: economy big food shot financial told public small

Total Cum. Variance

TPOWER 48.140645

SPANSPCA 48.767864

SPCABIPART 51.873063

Table 6: BAGOFWORDS:NYTIMES dataset [30]. We run various SPCA algorithms for k = 8

components (topics) and cardinality s = 15 per component. The table lists the words corresponding
to each component (words corresponding to higher magnitude entries appear higher in the topic).
Our algorithm was configured to use a rank-4 approximation of the input data.

19

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8

1:
T

P
O

W
E

R
percent zzz bush team school com zzz enron drug palestinian

2: company zzz al gore game student women court patient zzz israel

3: million zzz george bush season program book case doctor zzz israeli

4: companies campaign player children web firm cell zzz yasser arafat

5: market zzz united states play show site federal care peace

6: stock zzz u s games public information lawyer disease israelis

7: government political point part zzz new york deal health israeli

8: official attack run family www decision medical zzz palestinian

9: money zzz american home system hour chief test zzz west bank

10: business american coach help find power hospital security

11: president administration win problem mail industry research violence

12: billion leader won law found executive cancer killed

13: plan country left job put according treatment talk

14: group election night called set financial study meeting

15: high zzz washington hit look room office death soldier

16: right military guy member big analyst human minister

17: fund zzz white house yard question told executives heart zzz sharon

18: need war played ago friend zzz arthur andersen blood fire

19: cost tax start teacher director employees trial zzz ariel sharon

20: number nation playing parent place investor benefit zzz arab

21:

S
P

A
N

S
P

C
A

percent team zzz al gore attack school cup com drug

22: company game zzz bush zzz united states student minutes web patient

23: million season zzz george bush zzz u s children add site cell

24: companies player campaign palestinian program tablespoon information doctor

25: market play election military family oil computer disease

26: stock games political zzz american women teaspoon find care

27: business point tax zzz israel show pepper big health

28: money run republican war help water zzz new york test

29: billion win zzz white house country told large www research

30: government home vote terrorist parent sugar mail human

31: president won law american problem serving set medical

32: plan coach administration zzz taliban book butter put study

33: high left democratic zzz afghanistan job chopped director death

34: group night voter security found hour industry cancer

35: official hit leader zzz israeli friend pan room hospital

36: need guy public nation ago fat small treatment

37: right yard zzz republican member question bowl car scientist

38: part played presidential support teacher gram zzz internet according

39: cost look federal called case food place blood

40: system start zzz washington forces number medium film heart

41:

S
P

C
A

B
IP

A
R

T

palestinian percent zzz al gore cup school team company official

42: zzz israel million zzz bush minutes right game companies government

43: zzz israeli money zzz george bush add group season market president

44: zzz yasser arafat billion campaign tablespoon show player stock zzz united states

45: peace business election oil home play zzz enron zzz u s

46: war fund political teaspoon high games analyst attack

47: terrorist tax zzz white house pepper program point firm zzz american

48: zzz taliban cost administration water need run industry country

49: zzz afghanistan cut republican hour part coach investor law

50: forces job leader large com win sales plan

51: bin pay vote sugar american won customer public

52: troop economy democratic serving look left price zzz washington

53: laden deal presidential butter help night investment member

54: student big zzz clinton chopped problem hit quarter system

55: zzz pakistan chief support pan called guy executives nation

56: product executive zzz congress fat zzz new york yard consumer case

57: zzz internet financial military bowl number played technology federal

58: profit start policy gram question ball share information

59: earning record court food ago playing prices power

60: shares manager security league told lead growth effort

Total Cum. Variance

TPOWER 50.7686

SPANSPCA 52.8117

SPCABIPART 54.8906

Table 7: BAGOFWORDS:NYTIMES dataset [30]. We run various SPCA algorithms for k = 8

components (topics) and cardinality s = 20 per component. The table lists the words corresponding
to each component (words corresponding to higher magnitude entries appear higher in the topic).
Our algorithm was configured to use a rank-4 approximation of the input data.

20

Component
1 2 3 4 5 6

C
u
m
u
la
ti
v
e
E
x
p
l.
V
a
ri
a
n
ce

0

5

10

15

20

25

30

35

40 +1:82%

k = 8 components, s = 10 nnz/component

TPower
EM-SPCA
SpanSPCA
SPCABiPart

(a)

Number of target components
2 3 4 5 6 7 8

T
o
ta
l
C
u
m
u
la
ti
v
e
E
x
p
l.

V
a
ri
a
n
ce

0

5

10

15

20

25

30

35

40

45

50

+0.02%

+0.10%

+0.48%

+1.91%

+1.62%

+2.37%

+5.52%

s = 10 nnz/component

SPCABiPart
SpanSPCA
EM-SPCA
TPower

(b)

Figure 4: Cumulative variance captured by k s-sparse (s = 10) extracted components on the word-
by-word matrix – BAGOFWORDS:NYTIMES dataset [30]. Fig. 4(a) depicts the cum. variance
captured by k = 6 components. Deflation leads to a greedy formation of components; first com-
ponents capture high variance, but subsequent ones contribute less. On the contrary, our algorithm
jointly optimizes the k components and achieves higher total cum. variance. Fig. 4(b) depicts the
total cum. variance achieved for various values of k. Sparsity is arbitrarily set to s = 10 nonzero
entries per component. Our algorithm operates on a rank-4 approximation.

Component
1 2 3 4 5 6

C
u
m
u
la
ti
v
e
E
x
p
l.
V
a
ri
a
n
ce

0

5

10

15

20

25

30

35

40

45
+5:37%

k = 6 components, s = 15 nnz/component

TPower
EM-SPCA
SpanSPCA
SPCABiPart

(a)

Number of target components
2 3 4 5 6 7 8

T
o
ta
l
C
u
m
u
la
ti
v
e
E
x
p
l.

V
a
ri
a
n
ce

0

10

20

30

40

50

+0.30%

+1.58%

+1.73%

+0.64%

+5.37%

+2.83%

+9.19%

s = 15 nnz/component

SPCABiPart
SpanSPCA
EM-SPCA
TPower

(b)

Figure 5: Same as Fig. 4, but for sparsity s = 15.

Component
1 2 3 4 5 6

C
u
m
u
la
ti
v
e
E
x
p
l.
V
a
ri
a
n
ce

0

5

10

15

20

25

30

35

40

45 +6:�6%

k = 6 components, s = 20 nnz/component

TPower
EM-SPCA
SpanSPCA
SPCABiPart

(a)

Number of target components
2 3 4 5 6 7 8

T
o
ta
l
C
u
m
u
la
ti
v
e
E
x
p
l.

V
a
ri
a
n
ce

0

10

20

30

40

50

60

+0.30%

+3.94%

+1.23%

+6.26%

+6.86%

+8.58%

+9.21%

s = 20 nnz/component

SPCABiPart
SpanSPCA
EM-SPCA
TPower

(b)

Figure 6: Same as Fig. 4, but for sparsity s = 20.

21

	Introduction
	Our Sparse PCA Algorithm
	Sparse Components via Bipartite Matchings

	Sparse PCA on Low-Dimensional Sketches
	Related Work
	Experiments
	Conclusions
	On the sub-optimality of deflation – An example
	Construction of Bipartite Graph
	Proofs
	Guarantees of Algorithm 2
	Guarantees of Algorithm 1 – Proof of Theorem 1
	Guarantees of Algorithm 3 – Proof of Theorem 2

	Auxiliary Technical Lemmata
	Additional Experimental Results

