
Supplementary Material:
Fast and Memory Optimal Low-Rank Matrix

Approximation

A Proofs

A.1 Proof of Lemma 1

We first recall the Matrix Bernstein inequality (Theorem 6.1 [Tro12]), a concentration inequality for
the sum of zero mean random matrices. We will apply this inequality to Φ.

Proposition 9 (Matrix Bernstein) Consider a finite set {X(i)}1≤i≤m of independent random ma-
trices, where every X(i) is self-adjoint with dimension n, E[X(i)] = 0, and ‖X(i)‖2 ≤ R almost
surely. Let ρ2 = ‖

∑m
i=1 E[X(i)X(i)]‖2. Then,

P{‖
m∑
i=1

X(i)‖2 ≥ x} ≤ n exp

(
−x2/2

ρ2 +Rx/3

)
.

With a slight abuse of notation, in the remaining of this proof, we use A instead of A(B). Recall that
Ai is the i-th low of A and

Φ− E[Φ] =

m∑
i=1

(
(Ai)>Ai − diag((Ai)>Ai)− E[(Ai)>Ai − diag((Ai)>Ai)]

)
.

Let X(i) = (Ai)>Ai− diag((Ai)>Ai)−E[(Ai)>Ai− diag((Ai)>Ai)]. Then X(i) is a self-adjoint
`× ` matrix and E[X(i)] = 0.

In order to use the Matrix Bernstein inequality, we find upper bounds of ‖X(i)‖2 and ρ2 =
‖
∑m
i=1 E[X(i)X(i)]‖2. Since every entry of Ai is independently sampled with probability δ,

[X(i)]uv = O(1) if both u and v are sampled in Ai and O(δ2) otherwise. Therefore, since the
number of non-zero entries of Ai is bounded by 10, every row u of X(i) satisfies, for all 1 ≤ i ≤ m:

ru =
∑
v 6=u

|[X(i)]uv| = O(1) +O(`δ2) = O(1).

From the Gershgorin circle theorem, for all 1 ≤ i ≤ m

‖X(i)‖2 = O(1). (4)

To derive a bound for ρ2, we need to bound the absolute value of each element of E[X(i)X(i)].
Since the number of non-zero entries of Ai is bounded by 10, we have

|E[X(i)X(i)]uv| = O(δ2) for all u 6= v and

|E[X(i)X(i)]uu| = O(δ2`) for all 1 ≤ u ≤ `.
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Again, from the Gershgorin circle theorem, we deduce that:

ρ2 =

∥∥∥∥∥
m∑
i=1

E[X(i)X(i)]

∥∥∥∥∥
2

= O(δ2m`). (5)

Therefore, from (4), (5), and Proposition 9, with probability 1− 1
`2 ,

‖Φ− E[Φ]‖2 = O
(√

δ2m` log(`)
)
,

from which we conclude the proof as follows:

‖Φ− δ2(M(B))
>M(B)‖2 ≤ ‖δ2diag((M(B))

>M(B))‖2 + ‖Φ− E[Φ]‖2
= O(δ

√
m` log(`)).

A.2 Proof of Lemma 2

The proof exploits Lemma 3.4 [Tro11], quoted below.

Lemma 10 (Corollary of Lemma 3.4 in [Tro11]) Let V be an n × i matrix with orthonormal
columns and define ρ = nmax1≤j≤n ‖V j‖22 and α = `

ρ log i . When the rows of V are randomly
shuffled, with probability

1− i
(

e−ε

(1− ε)1−ε

)α log i

− i
(

eε

(1 + ε)1+ε

)α log i

there exists an `× i matrix with orthonormal columns V̄ such that∥∥∥∥∥V 1:` −
√
`

n
V̄

∥∥∥∥∥
2

≤ ε
√
`

n
.

In Lemma 10, we can write e−ε

(1−ε)1−ε and eε

(1+ε)1+ε as functions of ε2. Since
d
dx (−x− (1− x) log(1− x)) = log(1− x) and log(1− x) is a decreasing function,

e−ε

(1− ε)1−ε = exp (−ε− (1− ε) log(1− ε))

≤ exp
(ε

2
log(1− ε

2
)
)

≤ exp

(
−ε

2

4

)
. (6)

Analogously, since d
dx (x− (1 + x) log(1 + x)) = − log(1 + x) and − log(1 + x) is a decreasing

function,

eε

(1 + ε)1+ε
= exp (ε− (1 + ε) log(1 + ε))

≤ exp
(
−ε

2
log(1 +

ε

2
)
)

≤ exp

(
− ε2

4(1 + ε)

)
. (7)

Next, we evaluate the parameter α defined in Lemma 10 for our matrix V1:i and then use (6), (7),
and Lemma 10 applied to V1:i with ε = m−

1
3 to prove Lemma 2. Since M is a bounded matrix,

every column of M satisfies:
k∑
j=1

s2
j (M)V 2

vj ≤ ‖Mv‖22 ≤ m.
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Therefore, when s2
i (M) ≥ n

δ`

√
m` log(`), ρ ≤ mn

s2i (M)
≤ δm`√

m` log(`)
and thus,

α ≥
√
m` log(`)

mδ log i
≥ 1

m
1
2 δ

3
2 log(m)

. (8)

Let ε = m−
1
3 . Combining (6), (7), and (8) and the result of Lemma 10, we can conclude that when

δ ≤ m−8/9, with probability 1−exp(−m1/7), there exists an `×imatrix with orthonormal columns
V̄ such that ∥∥∥∥∥V (B)

1:i −
√
`

n
V̄1:i

∥∥∥∥∥
2

≤ m− 1
3

√
`

n
.

A.3 Proof of Lemma 3

The SPCA (Spectral Principal Component Analysis) algorithm is inspired by the randomized power
iteration algorithm (Algorithm 4.3 in [HMT11]). Lemma 11 is an extension of results in [HMT11]
where we show that 5 log(`) iterations are sufficient to compute the low-rank approximation of Φ.

Lemma 11 After the power method with 5 log(`) iterations, with probability 1− 1
`2 ,

‖(I −QQ>)Φ‖2 ≤ 2sk+1(Φ).

Proof: Let Φ = U (Φ)Σ(Φ)(U (Φ))> be the singular value decomposition of Φ and U (Φ)
1:k be the top

k singular vectors of Φ. From Edelman’s theorem [Ede88], the ` × k Gaussian random matrix Ω
whose entries are independent gaussian random values with unit variance satisfies:

P{sk((U
(Φ)
1:k )>Ω) ≤ εk− 1

2 } = O(ε). (9)

From Proposition 2.4 in [RV10], we can bound the largest singular value of Ω as follows:

P{s1(Ω) ≥ log(`)
√
`} ≤ exp(−`). (10)

Then, from (9) and (10), with probability 1− 1
`2 ,

s1(Ω)

sk((U
(Φ)
1:k )>Ω)

≤ `4. (11)

When the inital matrix Ω satisfies (11), from Theorem 9.1 and Theorem 9.2 in [HMT11],

‖(I −QQ>)Φ‖2 ≤

1 +

(
s1(Ω)

sk((U
(Φ)
1:k )>Ω)

)2
 1

10 log `

sk+1(Φ)

≤ 2sk+1(Φ).

�

Since Φ = δ2`
n V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

> + Y and sk+1(V̄
(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

>) = 0, from Lemma 11,
the output Q of the SPCA satisfies with probability 1− 1

`2

‖(I −QQ>)Φ‖2 ≤ 2sk+1(Φ)
≤ 2s1(Y ). (12)

Therefore,

‖δ
2`

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

> −QQ>Φ‖2 ≤ ‖δ
2`

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

> − Φ‖2 + ‖Φ−QQ>Φ‖2
≤ ‖Y ‖2 + 2sk+1(Φ) ≤ 3‖Y ‖2,

from which we conclude

‖(V̄ (B)
1:i )>Q⊥‖2 ≤

‖ δ
2`
n V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

> −QQ>Φ‖2
δ2 `
nsi(M)2
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≤ 3‖Y ‖2
δ2 `
nsi(M)2

,

since

‖Q>⊥V̄
(B)
1:i ‖2

δ2`

n
si(M)2 ≤‖δ

2`

n
Q>⊥V̄

(B)
1:i (Σ1:i

1:i)
2(V̄

(B)
1:i )>‖2

(a)
=‖Q>⊥

(
QQ>Φ− δ2`

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

>
)
V̄

(B)
1:i ‖2

≤‖QQ>Φ− δ2`

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

>‖2,

where (a) stems from the following equations:

0 =Q>⊥QQ
>Φ

=Q>⊥

(
δ2`

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

> +

(
QQ>Φ− δ2`

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

>
))

=Q>⊥

(
δ2`

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

> +

(
QQ>Φ− δ2`

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

>
))

V̄
(B)
1:i

=
δ2`

n
Q>⊥V̄

(B)
1:i (Σ1:i

1:i)
2(V̄

(B)
1:i )> +Q>⊥

(
QQ>Φ− δ2`

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

>
)
V̄

(B)
1:i .

A.4 Proof of Lemma 4

We first recall the matrix Chernoff bound (Theorem 2.2 in [Tro11]) which provides an upper bound
on the largest singular value of a sum of matrices which are randomly sampled from a matrix set
without replacement.

Proposition 12 (Matrix Chernoff) Let X be a finite set of positive-semidefinite matrices with
dimension d and satisfy maxX∈X s1(X) ≤ α. Let βmax = `

|X |s1(
∑
X∈X X). When

{X(1), . . . , X(`)} are sampled uniformly at random from X without replacement,

P

{
s1(
∑̀
i=1

X(i)) ≥ (1 + ε)βmax

}
≤ d

(
eε

(1 + ε)1+ε

)βmax/α

for ∀ε ≥ 0.

Next we prove Lemma 4. Let G = (I − U1:k′U
>
1:k′)M(B). Indeed, GG> is a sum of matrices

sampled uniformly at random without replacement from

X = {(I−U1:k′U
>
1:k′)M1((I−U1:k′U

>
1:k′)M1)>, . . . , (I−U1:k′U

>
1:k′)Mn((I−U1:k′U

>
1:k′)Mn)>}.

We apply Chernoff bound to GG>: the dimension is m, α = m and βmax = `
ns

2
k′+1(M). Then,

from Proposition 12,

P
{
s1(GG>) ≥ (1 + ε)

`

n
s2
k′+1(M)

}
≤ `

(
eε

(1 + ε)1+ε

) `
mn s

2
k′+1

(M)

for ε ≥ 0. (13)

When we set ε? =
n
√
m` log(`)

δ`s2
k′+1

(M)
and δ ≤ m− 8

9 , from (7) and (13), we get:

P
{
s1(GG>) ≥ `

n
s2
k′+1(M) +

1

δ

√
m` log(`)

}
≤` exp

(
(ε? − (1 + ε?) log(1 + ε?))

`

mn
s2
k′+1(M)

)
≤` exp

((
− (ε?)2

4(1 + ε?)

)
`

mn
s2
k′+1(M)

)
≤ exp

(
−m1/4

)
,
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where the last inequality stems from the fact that when ε? ≥ 1,(
(ε?)2

4(1 + ε?)

)
`

mn
s2
k′+1(M) ≥

(
−ε

?

8

)
`

mn
s2
k′+1(M) =

√
m` log(`)

8δm
> m1/4 and

when ε? ≤ 1,(
(ε?)2

4(1 + ε?)

)
`

mn
s2
k′+1(M) ≥

(
− (ε?)2

8

)
`

mn
s2
k′+1(M) =

n log(`)

8δ2s2
k′+1(M)

> m1/4.

From the definition of k′, we deduce that with probability 1− exp(−m1/4),

‖(I − U1:k′U
>
1:k′)M(B)‖22 ≤

2

δ

√
m` log(`) +

`

n
s2
k+1(M).

A.5 Proof of Theorem 5

Recall that k′ = max{i : s2
i (M) ≥ n

δ`

√
m` log(`), i ≤ k}. We first consider j > k′. Since

δ2s2
j (M) < δn

`

√
m` log(`) for all j > k′, it suffices to show that ‖(V̄ (B)

1:j )>Q⊥‖2 ≤ 3 which is

trivial since ‖V̄ (B)
1:j ‖2 = 1, ‖Q⊥‖2 = 1.

Consider now i ≤ k′. From Lemma 3, with probability 1− 1
`2 ,

‖(V̄ (B)
1:i )>Q⊥‖2 ≤

3‖Y ‖2
δ2`
n s

2(M)
where ‖Y ‖2 = ‖Φ− δ2`

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

>‖2.

Therefore, we can conclude the proof if we show that:

‖Φ− δ2`

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

>‖2 ≤
δ2`

n
s2
k+1(M) + δ2m

2
3 `+ δ

√
c1m` log(`). (14)

To this aim, we first split Φ− δ2`
n V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

> into 3 parts as follows:

Φ− δ2`

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

> =
(
Φ− δ2(M(B))

>M(B)

)
+ δ2(M(B))

> (I − U1:k′U
>
1:k′
)
M(B)+

δ2

(
(M(B))

>U1:k′U
>
1:k′M(B) −

`

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

>
)
.

(15)

Then, from Lemma 1, the first term in the r.h.s.of the above expression satisfies that with probability
1− 1

`2 ,
‖Φ− δ2(M(B))

>M(B)‖2 ≤ c1δ
√
m` log(`). (16)

For the second term in the r.h.s., since
(
I − U1:k′U

>
1:k′

)
is a projection matrix,(

I − U1:k′U
>
1:k′
)

=
(
I − U1:k′U

>
1:k′
)> (

I − U1:k′U
>
1:k′
)
,

we deduce, from the definition of k′ and Lemma 4, that with probability 1− exp(−m1/4),

δ2‖(M(B))
> (I − U1:k′U

>
1:k′
)
M(B)‖2 = δ2‖

(
I − U1:k′U

>
1:k′
)
M(B)‖22

≤ δ2 `

n
s2
k+1(M) + 2δ

√
m` log(`). (17)

Finally, from Lemma 2, with probability 1− exp(−m1/7),

δ2
∥∥∥(M(B))

>U1:k′U
>
1:k′M(B) −

`

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

>
∥∥∥

2

=δ2
∥∥∥V (B)

1:k′ (Σ
1:k′

1:k′)
2(V

(B)
1:k′ )

> − `

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

>
∥∥∥

2

≤δ2
∥∥∥V (B)

1:k′ (Σ
1:k′

1:k′)
2(V

(B)
1:k′ )

> −
√
`

n
V

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

>
∥∥∥

2
+

5



δ2
∥∥∥√ `

n
V

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

> − `

n
V̄

(B)
1:k′ (Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

>
∥∥∥

2

≤δ2
∥∥∥V (B)

1:k′ (Σ
1:k′

1:k′)
2
∥∥∥

2

∥∥∥(V
(B)
1:k′ )

> −
√
`

n
(V̄

(B)
1:k′ )

>
∥∥∥

2
+

δ2
∥∥∥√n

`
V

(B)
1:k′ − V̄

(B)
1:k′

∥∥∥
2

∥∥∥ `
n

(Σ1:k′

1:k′)
2(V̄

(B)
1:k′ )

>
∥∥∥

2

≤2δ2m
2
3 `, (18)

since ‖M‖2 ≤
√
mn, ‖V (B)

1:k′ Σ
1:k′

1:k′‖2 ≤
√
m`, and

∥∥∥ `n (Σ1:k′

1:k′)
2(V̄

(B)
1:k′ )

>
∥∥∥

2
≤ m− 1

3 .

Therefore, (14) holds with probability 1− 3
`2 , when we combine (16), (17), and (18) with (15).

A.6 Proof of Theorem 6

We first state some useful lemmas on the random matrices Ã− δM and A(B2) − δM(B).

Lemma 13 (Theorem 3.1 in [AM07]) When log4(m)
m ≤ δ, with probability 1− exp(− log4m),

‖Ã− δM‖2 = O(
√
δ(m+ n)).

Lemma 14 With probability 1− kδ
2 , ‖δM>(A(B2) − E[A(B2)])Q1:k‖2 ≤

√
2δ2mn.

Proof: Since entries of A(B2) are randomly sampled with probability δ and independent with Q, for
all 1 ≤ i ≤ n and 1 ≤ j ≤ k,

E
[(

[δM>(A(B2) − E[A(B2)])Q]ij
)2]

=E
[(
δ

m∑
u=1

∑̀
v=1

Mui[A(B2) − E[A(B2)]]uvQvj
)2]

=δ2
m∑
u=1

∑̀
v=1

M2
uiQ

2
vjE[([A(B2) − E[A(B2)]]uv)

2]

≤δ2
m∑
u=1

M2
ui

∑̀
v=1

Q2
vjδ ≤ δ3m.

From the above inequality, E[‖δM>(A(B2)−E[A(B2)])Q‖2F ] ≤ δ3kmn. Therefore, by the Markov
inequality,

P
{
‖δM>(A(B2) − E[A(B2)])Q1:k‖22 ≥ 2δ2mn

}
≤

E[‖δM>(A(B2) − E[A(B2)])Q‖2F ]

2δ2mn
≤ kδ.

�

To prove Theorem 6, we use (19) to (23), which hold with probability 1 − kδ from Lemma 2,
Lemma 4, Theorem 5, Lemma 13, and Lemma 14.

‖
√
n

`
V

(B)
1:i − V̄

(B)
1:i ‖2 ≤ m

− 1
3 , (19)

‖(I − U1:k′U
>
1:k′)M(B)‖22 ≤

2

δ

√
m` log(`) +

`

n
s2
k+1(M), (20)

‖(V̄ (B)
1:i )> ·Q⊥‖2 ≤

3δ2(s2
k+1(M) + 2m

2
3n) + 3(2 + c1)δ n`

√
m` log(`)

δ2s2
i (M)

, (21)

‖Ã− δM‖2 = O(
√
δ(m+ n)), and (22)
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‖(E[Ã])>((A(B2) − E[A(B2)])Q1:k)‖2 ≤
√

2δ2mn. (23)

Now since ‖V >i V̂⊥‖2 =
√

1− ‖V >i PV̂ ‖2 = sk((I − ViV >i )PV̂ ),

‖V >i V̂⊥‖2 = inf
x:‖x‖2>0

‖(I − ViV >i )V̂ x‖2
‖V̂ x‖2

,

to complete the proof of Theorem 6, we need to show that for all i ≤ k′, there exists a unit vector
x(i) such that:

‖(I − ViV >i )V̂ x(i)‖2
‖V̂ x(i)‖2

= O

(
s2
k+1(M) + n log(m)

√
m/δ +m

√
n log(m)/δ

s2
i (M)

)
. (24)

To this aim, for all i ≤ k′, we set x(i) as a `× 1 unit vector (i.e., ‖x(i)‖2 = 1) such that

‖(V̄ (B)
i )>Qx(i)‖2 ≥

√
1− ‖(V̄ (B)

1:i )>Q⊥x(i)‖22, (25)

‖(V̄ (B)
i+1:k)>Qx(i)‖2 ≤ ‖(V̄ (B)

1:i )>Q⊥x
(i)‖2, and (26)

‖(V̄ (B)
1:i−1)>Qx(i)‖2 = 0 when i ≥ 2. (27)

We further write V̂ as a sum of a signal matrix S and noise matrices Z1, Z2, Z3, and Z4 defined
below.

V̂ = δM>W + (Ã− δM)>W

= δ2

√
`

n
M>U1:k′Σ

1:k′

1:k′(V̄
(B)
1:k′ )

>Q+ δ2M>U1:k′Σ
1:k′

1:k′(V
1:`
1:k′ −

√
`

n
V̄

(B)
1:k′ )

>Q+

δ2M>(1− U1:k′U
>
1:k′)M(B)Q+ δM>(A(B2) − δM(B))Q+ (Ã− δM)>W

= S + Z1 + Z2 + Z3 + Z4, (28)

where S = δ2
√

`
nV1:k′(Σ

1:k′

1:k′)
2(V̄

(B)
1:k′ )

>Q,

Z1 = δ2M>U1:k′Σ
1:k′

1:k′(V
1:`
1:k′ −

√
`

n
V̄

(B)
1:k′ )

>Q, Z2 = δ2M>(1− U1:k′U
>
1:k′)M(B)Q,

Z3 = δM>(A(B2) − δM(B))Q, and Z4 = (Ã− δM)>W.

Then, the signal and noise matrices amplify x(i) in their directions as follows:

• from (25), ‖V >i Sx(i)‖2 ≥
√

`
nδ

2s2
i (M)

√
1− ‖(V̄ (B)

1:i )> ·Q⊥‖22;

• from (26) and (27), ‖(I − V >i Vi)Sx(i)‖2 ≤
√

`
nδ

2s2
i+1(M)‖(V̄ (B)

1:i )> ·Q⊥‖2;

• from (19) and s1(M) ≤
√
mn,

‖Z1x
(i)‖2 ≤δ2‖M>U1:k′Σ

1:k′

1:k′(V
1:`
1:k′ −

√
`

n
V̄

(B)
1:k′ )

>‖2‖Qx(i)‖2

≤δ2m2/3
√
n`;

• from the definition of k′ and (20),

‖Z2x
(i)‖2 ≤ ‖δ2M>(1− U1:k′U

>
1:k′)‖2‖(1− U1:k′U

>
1:k′)M(B)‖2‖Qx(i)‖2

≤ δ2sk′+1(M)

√
`

n
s2
k+1(M) +

2

δ

√
m` log(`)

= δ2sk′+1(M)

√
`

n

√
s2
k′+1(M)

(
s2
k+1(M) +

2n

δ`

√
m` log(`)

)
≤ δ2

√
`

n
s2
k+1(M) + 2δ

√
mn log(`);
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• from (22), ‖Z3x
(i)‖2 = O(δ

√
mn);

• finally, since ‖Wx(i)‖2 = O(
√
δm) thanks to the trimming process corresponding to the

line 3 in the pseudo-code and ‖Ã− δM‖2 = O(
√
δ(m+ n)) from (23),

‖Z4x
(i)‖2 = O(δ

√
m(m+ n)).

From the above conditions, when δ ≤ m−8/9, there exists a constant C such that

4∑
j=1

‖Zjx(i)‖2 ≤ C

(
δ2

√
`

n
s2
k+1(M) + δ

√
mn log(`) + δm

)
and (29)

1

4
≤

3δ2(s2
k+1(M) + 2m

2
3n) + 3(2 + c1)δ n`

√
m` log(`)

C
(
δ2s2

k+1(M) + δ n`
√
m` log(`) + δm`

√
n`
) , (30)

since n
δ`

√
m` log(`) = n log(m)

√
m log(`)
δ log(m) > nm

17
18 > nm

2
3 .

We are now ready to establish (24). When√
`

n
δ2s2

i (M) ≤ 2C

(
δ2

√
`

n
s2
k+1(M) + δ

√
mn log(`) + δm

)
,

(24) is trivial since ‖(I−ViV
>
i )V̂ x(i)‖2

‖V̂ x(i)‖2
≤ 1 and s2k+1(M)+n log(m)

√
m/δ+m

√
n log(m)/δ

s2i (M)
= Ω(1).

When √
`

n
δ2s2

i (M) ≥ 2C

(
δ2

√
`

n
s2
k+1(M) + δ

√
mn log(`) + δm

)
,

from (21), (29), and (30),

‖V̂ x(i)‖2 ≥ ‖ViV >i V̂ x(i)‖2 ≥ ‖ViV >i Sx(i)‖2 −
4∑
j=1

‖Zjx(i)‖2 = Ω

(√
`

n
δ2s2

i (M)

)
and

‖(I − ViV >i )V̂ x(i)‖2

≤ ‖(I − V >i Vi)Sx(i)‖2 +

4∑
j=1

‖Zjx(i)‖2

≤
√
`

n
δ2s2

i+1(M)‖(V̄ (B)
1:i )> ·Q⊥‖2 + C

(
δ2

√
`

n
s2
k+1(M) + δ

√
mn log(`) + δm

)

= O

(
δ2

√
`

n

(
s2
k+1(M) +

n

δ

√
m log(`)

`
+
m

δ

√
n

`

))
,

which implies (24), since n
δ

√
m log(`)

` = n
√

m log(`)
`δ2 ≤ n log(m)

√
m
δ and m

δ

√
n
` ≤ m

√
n log(m)

δ .

A.7 Proof of Theorem 7

The proof exploits the fact that the statements of Lemma 13 and Theorem 6 hold with probability
1− kδ.

With probability 1− kδ, from Theorem 6, for all i ≤ k:

‖si(M)UiV
>
i (I − PV̂ )‖2F =si(M)2‖V >i (I − PV̂ )‖2F

≤si(M)2

min

1, c2
s2
k+1(M) + n log(m)

√
m
δ +m

√
n log(m)

δ

s2
i (M)


2
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≤c2

(
s2
k+1(M) + n log(m)

√
m

δ
+m

√
n log(m)

δ

)
.

Therefore, since ‖M − 1
δ Ã‖2 = O(

√
δ(m+ n)) from Lemma 13,

‖M (k) − Û V̂ >‖2F = ‖M (k) − 1

δ
ÃPV̂ ‖

2
F = ‖M (k) −MPV̂ + (M − 1

δ
Ã)PV̂ ‖

2
F

= ‖M (k)(I − PV̂ )− (M −M (k))PV̂ + (M − 1

δ
Ã)PV̂ ‖

2
F

≤ (k + 2)

(
k∑
i=1

‖si(M)UiV
>
i (I − PV̂ )‖2F + ks2

k+1(M) + k‖M − 1

δ
Ã‖22

)

= O

(
k2

(
s2
k+1(M) + n log(m)

√
m

δ
+m

√
n log(m)

δ

))
.

B Matrix completion

The SLA algorithm can be extended to tackle matrix completion problems. In these problems, we
wish to recover a rank-k matrix M from a matrix A obtained by randomly erasing each entry of
M with probability δ. We present this extended algorithm, referred to as SMC (Streaming Matrix
Completion), in Algorithm 1. The only notable difference compared to SLA is that SMC has to first
estimate the sampling rate δ, and if the estimated sampling rate is larger than (log(m))4/m, SMC
further samples the entries of A so that the probability for each entry of the resulting matrix to be
non-zero is equal to (log(m))4/m. We provide more explanations below.

Algorithm 1 Streaming Matrix Completion (SMC)
Input: {A1, . . . , An}, k
1. A(B) ← [A1, . . . , A`]: store columns until the number of observed entries exceeds m

logm .

2. δ̂ ← 1
m`

∑
(i,j) 1([A(B)]ij > 0)

3. A(B) ← sample [A(B), A`+1, Ab m
(log(m))5

c] with rate min{1, log4m

mδ̂
}

4. A(B1), A(B2) ← Split(A(B), 2, 2, δ̂)
5. (PCA for the first block)Q← SPCA(A(B1), k)
6. (Trimming rows and columns)

A(B2) ← make the rows having more than two observed entries to zero rows
A(B2) ← make the columns having more than 10mδ̂ non-zero entries to zero columns

7. (Reference Columns) W ← A(B2)Q

8. (Principle row vectors) V̂ 1:` ← (A(B1))
>W

9. (Principle column vectors) Î ← A(B1)V̂
1:`

Remove A(B), A(B1), A(B2), and Q from the memory space
for t = b m

(log(m))5 c+ 1 to n do

10. At ← sample At with rate min{1, log4m

mδ̂
}

11. At ← Split(At, 1, 2, δ̂)
12. (Principle row vectors) V̂ t ← (At)

>W

13. (Principle column vectors) Î ← Î +AtV̂
t

Remove At from the memory space
end for
14. R̂← find R̂ using the Gram-Schmidt process such that V̂ R̂ is an orthonormal matrix.
15. Û ← 2

δ̂
ÎR̂R̂>

Output: |Û V̂ >|10

In SLA algorithm, δ is an important parameter which controls the batch size ` = 1
δ logm and the

output matrix Û = 1
δ ÎR̂R̂

>. Therefore, SMC should include some additional steps to set ` and

9



Algorithm 2 Split
Input: A,a,b, δ
Initial: Ã, . . . , A(a) ← zero matrices having the same size as A
for every [A]uv do
γ ← s ⊂ {1, . . . , b} which is randomly selected over all subsets of {1, . . . , b} with probability
1
δ

(
δ
b

)|s| (
1− δ

b

)b−|s|
if s is not the empty set and with probability 1− 1

δ (1− (1− δ
b )b) if s is

the empty set
for i ∈ γ do

[A(i)]uv ← [A]uv
end for

end for
Output: Ã, . . . , A(a)

compute 1
δ ÎR̂R̂

> without prior knowledge on δ. The lines 1 and 2 of Algorithm 1 are the additional
part. First, in Line 1, we store columns until the number of observed entries exceeds m

logm so that the

required memory space becomesO(m). Then, in Line 2, we compute δ̂, an estimate of the sampling
rate δ. Since the number of observed entries is large enough, one can easily show Lemma 15 from
the Chernoff bound.

Lemma 15 With probability 1− 1
m2 , |δ̂−δ|δ = O

(
m−1/2 log(m)

)
.

Then, to handle the case where δ ≥ log4m
m , the SMC algorithm undersamples the input matrix A

with rate log4(m)

mδ̂
. From the undersampling process, the sampling rate of the input matrix changes to

log4(m)
m . Since the sampling is updated to log4(m)

m , SMC receives more columns and stores m
log5(m)

columns to run the first step of the SLA algorithm.

Another non-trivial part in the SLA algorithm is the two independently sampled matrix A(B1) and
A(B2). In Line 4 of SMC, we construct 2 undersampled copies of A(B) so that we have two in-
dependently sampled matrices A(B1) and A(B2) with rate δ

2 . Note that for the matrix completion
problem, a simple undersampling procedure does not produce independently sampled matrices. The
Split algorithm explains how to make such matrices and its pseudo code is give in Algorithm 2.
With these additional steps, the matrix completion algorithm become similar to the SLA algorithm
with sampling with rate (log(m))4

2m . Since M is of rank k (i.e., sk+1(M) = 0), from Theorem 7 and
Lemma 15, we conclude that:

‖M − [Û V̂ >]‖2F
mn

≤ 2
‖M − δ̂

δ [Û V̂ >]‖2F +
(

1− δ̂
δ

)2

‖[Û V̂ >]‖2F
mn

= O

(
k2

(
log(m)√
δm

+

√
log(m)

δn

))
+O

(
log(m)√

m

)
= O

(
k2

(
1

log(m)
+

√
m

n(log(m))3

))
.

Corollary 16 When δ ≥ (log(m))4

m , with probability 1−k (log(m))4

m , the output of the SMC algorithm
satisfies:

‖M − [Û V̂ >]10‖2F
mn

= O

(
k2

(
1

log(m)
+

√
m

n(log(m))3

))
.

The complexity of SMC is O(kn(log(m))4) and its memory requirement is O(km+ kn).
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