
Randomized Block Krylov Methods for Stronger and
Faster Approximate Singular Value Decomposition

Cameron Musco
Massachusetts Institute of Technology, EECS

Cambridge, MA 02139, USA
cnmusco@mit.edu

Christopher Musco
Massachusetts Institute of Technology, EECS

Cambridge, MA 02139, USA
cpmusco@mit.edu

Abstract

Since being analyzed by Rokhlin, Szlam, and Tygert [1] and popularized by
Halko, Martinsson, and Tropp [2], randomized Simultaneous Power Iteration has
become the method of choice for approximate singular value decomposition. It is
more accurate than simpler sketching algorithms, yet still converges quickly for
any matrix, independently of singular value gaps. After Õ(1/ε) iterations, it gives
a low-rank approximation within (1 + ε) of optimal for spectral norm error.
We give the first provable runtime improvement on Simultaneous Iteration: a sim-
ple randomized block Krylov method, closely related to the classic Block Lanczos
algorithm, gives the same guarantees in just Õ(1/

√
ε) iterations and performs sub-

stantially better experimentally. Despite their long history, our analysis is the first
of a Krylov subspace method that does not depend on singular value gaps, which
are unreliable in practice.
Furthermore, while it is a simple accuracy benchmark, even (1+ ε) error for spec-
tral norm low-rank approximation does not imply that an algorithm returns high
quality principal components, a major issue for data applications. We address this
problem for the first time by showing that both Block Krylov Iteration and a minor
modification of Simultaneous Iteration give nearly optimal PCA for any matrix.
This result further justifies their strength over non-iterative sketching methods.
Finally, we give insight beyond the worst case, justifying why both algorithms can
run much faster in practice than predicted. We clarify how simple techniques can
take advantage of common matrix properties to significantly improve runtime.

1 Introduction

Any matrix A ∈ Rn×d with rank r can be written using a singular value decomposition (SVD) as
A = UΣVT. U ∈ Rn×r and V ∈ Rd×r have orthonormal columns (A’s left and right singular
vectors) and Σ ∈ Rr×r is a positive diagonal matrix containing A’s singular values: σ1 ≥ . . . ≥ σr.
A rank k partial SVD algorithm returns just the top k left or right singular vectors of A. These are
the first k columns of U or V, denoted Uk and Vk respectively.

Among countless applications, the SVD is used for optimal low-rank approximation and principal
component analysis (PCA)1. Specifically, for k < r, a partial SVD can be used to construct a rank k
approximation Ak such that both ‖A−Ak‖F and ‖A−Ak‖2 are as small as possible. We simply
set Ak = UkU

T
kA. That is, Ak is A projected onto the space spanned by its top k singular vectors.

For principal component analysis, A’s top singular vector u1 provides a top principal component,
which describes the direction of greatest variance within A. The ith singular vector ui provides the

1Typically after mean centering A’s columns or rows, depending on which principal components we want.

1

ith principal component, which is the direction of greatest variance orthogonal to all higher principal
components. Formally, denoting A’s ith singular value as σi,

uTi AATui = σ2
i = max

x:‖x‖2=1, x⊥uj∀j<i
xTAATx.

Traditional SVD algorithms are expensive, typically running in O(nd2) time2. Hence, there has
been substantial research on randomized techniques that seek nearly optimal low-rank approxima-
tion and PCA [4, 5, 1, 2, 6]. These methods are quickly becoming standard tools in practice and
implementations are widely available [7, 8, 9, 10], including in popular learning libraries like scikit-
learn [11].

Recent work focuses on algorithms whose runtimes do not depend on properties of A. In contrast,
classical literature typically gives runtime bounds that depend on the gaps between A’s singular
values and become useless when these gaps are small (which is often the case in practice – see
Section 8). This limitation is due to a focus on how quickly approximate singular vectors converge
to the actual singular vectors of A. When two singular vectors have nearly identical values they are
difficult to distinguish, so convergence inherently depends on singular value gaps.

Only recently has a shift in approximation goal, along with an improved understanding of random-
ization, allowed for algorithms that avoid gap dependence and thus run provably fast for any matrix.
For low-rank approximation and PCA, we only need to find a subspace that captures nearly as much
variance as A’s top singular vectors – distinguishing between two close singular values is overkill.

1.1 Prior Work

The fastest randomized SVD algorithms [4, 6] run in O(nnz(A)) time3, are based on non-iterative
sketching methods, and return a rank k matrix Z with orthonormal columns z1, . . . , zk satisfying

Frobenius Norm Error: ‖A− ZZTA‖F ≤ (1 + ε)‖A−Ak‖F . (1)

Unfortunately, as emphasized in prior work [1, 2, 12, 13], Frobenius norm error is often hopelessly
insufficient, especially for data analysis and learning applications. When A has a “heavy-tail” of
singular values, which is common for noisy data, ‖A−Ak‖2F =

∑
i>k σ

2
i can be huge, potentially

much larger than A’s top singular value. This renders (1) meaningless since Z does not need to
align with any large singular vectors to obtain good multiplicative error.

To address this shortcoming, a number of papers [4, 12, 13, 14] suggest targeting spectral norm
low-rank approximation error,

Spectral Norm Error: ‖A− ZZTA‖2 ≤ (1 + ε)‖A−Ak‖2, (2)

which is intuitively stronger. When looking for a rank k approximation, A’s top k singular vectors
are often considered data and the remaining tail is considered noise. A spectral norm guarantee
roughly ensures that ZZTA recovers A up to this noise threshold.

A series of work [1, 2, 15, 16, 14] shows that decades old Simultaneous Power Iteration (also called
subspace iteration or orthogonal iteration) implemented with random start vectors, achieves (2) after
Õ(1/ε) iterations. Hence, this method, which was popularized by Halko, Martinsson, and Tropp in
[2], has become the randomized SVD algorithm of choice for practitioners [11, 17].

2 Our Results

2.1 Faster Algorithm

We show that Algorithm 2, a randomized relative of the Block Lanczos algorithm [18, 19], which
we call Block Krylov Iteration, gives the same guarantees as Simultaneous Iteration (Algorithm 1)

2This is somewhat of an oversimplicifcation. By the Abel-Ruffini Theorem, an exact SVD is incomputable
even with exact arithmetic [3]. Accordingly, all SVD algorithm are inherently iteratively. Nevertheless, tra-
ditional methods including the ubiquitous QR algorithm obtain superlinear convergence rates for the low-rank
approximation problem. In any reasonable computing environment, they can be taken to run in O(nd2) time.

3Here nnz(A) is the number of non-zero entries in A and this runtime hides lower order terms.

2

in just Õ(1/
√
ε) iterations. This not only gives the fastest known theoretical runtime for achieving

(2), but also yields substantially better performance in practice (see Section 8).

Even though the algorithm has been discussed and tested for potential improvement over Simulta-
neous Iteration [1, 20, 21], theoretical bounds for Krylov subspace and Lanczos methods are much
more limited. As highlighted in [12],

“Despite decades of research on Lanczos methods, the theory for [randomized
power iteration] is more complete and provides strong guarantees of excellent
accuracy, whether or not there exist any gaps between the singular values.”

Our work addresses this issue, giving the first gap independent bound for a Krylov subspace method.

Algorithm 1 SIMULTANEOUS ITERATION

input: A ∈ Rn×d, error ε ∈ (0, 1), rank k ≤ n, d
output: Z ∈ Rn×k

1: q := Θ(log d
ε), Π ∼ N (0, 1)d×k

2: K :=
(
AAT

)q
AΠ

3: Orthonormalize the columns of K to obtain
Q ∈ Rn×k.

4: Compute M := QTAATQ ∈ Rk×k.
5: Set Ūk to the top k singular vectors of M.
6: return Z = QŪk.

Algorithm 2 BLOCK KRYLOV ITERATION

input: A ∈ Rn×d, error ε ∈ (0, 1), rank k ≤ n, d
output: Z ∈ Rn×k

1: q := Θ(log d√
ε

), Π ∼ N (0, 1)d×k

2: K :=
[
AΠ, (AAT)AΠ, ..., (AAT)qAΠ

]
3: Orthonormalize the columns of K to obtain

Q ∈ Rn×qk.
4: Compute M := QTAATQ ∈ Rqk×qk.
5: Set Ūk to the top k singular vectors of M.
6: return Z = QŪk.

2.2 Stronger Guarantees

In addition to runtime improvements, we target a much stronger notion of approximate SVD that is
needed for many applications, but for which no gap-independent analysis was known.

Specifically, as noted in [22], while intuitively stronger than Frobenius norm error, (1 + ε) spec-
tral norm low-rank approximation error does not guarantee any accuracy in Z for many matrices4.
Consider A with its top k + 1 squared singular values all equal to 10 followed by a tail of smaller
singular values (e.g. 1000k at 1). ‖A −Ak‖22 = 10 but in fact ‖A − ZZTA‖22 = 10 for any rank
k Z, leaving the spectral norm bound useless. At the same time, ‖A−Ak‖2F is large, so Frobenius
error is meaningless as well. For example, any Z obtains ‖A− ZZTA‖2F ≤ (1.01)‖A−Ak‖2F .

With this scenario in mind, it is unsurprising that low-rank approximation guarantees fail as an
accuracy measure in practice. We ran a standard sketch-and-solve approximate SVD algorithm
(see Section 3.1) on SNAP/AMAZON0302, an Amazon product co-purchasing dataset [23, 24], and
achieved very good low-rank approximation error in both norms for k = 30:

‖A− ZZTA‖F < 1.001‖A−Ak‖F and ‖A− ZZTA‖2 < 1.038‖A−Ak‖2.

However, the approximate principal components given by Z are of significantly lower quality than
A’s true singular vectors (see Figure 1). We saw a similar phenomenon for the popular 20 NEWS-
GROUPS dataset [25] and several others. Additionally, the potential failure of low rank approxima-
tion measures was recently raised in [22].

We address this issue by introducing a per vector guarantee that requires each approximate singular
vector z1, . . . , zk to capture nearly as much variance as the corresponding true singular vector:

Per Vector Error: ∀i,
∣∣uTi AATui − zTi AAT zi

∣∣ ≤ εσ2
k+1. (3)

The error bound (3) is very strong in that it depends on εσ2
k+1, meaning that it is better then relative

error, i.e.
∣∣uTi AATui − zTi AAT zi

∣∣ ≤ εσ2
i , for A’s large singular vectors. While it is reminiscent

of the bounds sought in classical numerical analysis [26], we stress that it does not require each zi to
converge to ui in the presence of small singular value gaps. In fact, we show that both randomized

4In fact, it does not even imply (1 + ε) Frobenius norm error.

3

5 10 15 20 25 30

50

100

150

200

250

300

350

400

450

Index i

S
in

g
u
la

r
V

al
u
e

 σ
i

 2
 = u

i

T
(AA

T
)u

i

 z
i

T
(AA

T
)z

i

Figure 1: Poor per vector error (3) for SNAP/AMAZON0302 returned by a sketch-and-solve ap-
proximate SVD that gives very good low-rank approximation in both spectral and Frobenius norm.

Block Krylov Iteration and our slightly modified Simultaneous Iteration algorithm5 achieve (3) in
gap-independent runtimes.

2.3 Main Result

Our contributions are summarized in Theorem 1, whose proof appears in parts as Theorems 6 and 7
in Section 5 (runtime) and Theorems 10, 11, and 12 in Section 6 (accuracy).
Theorem 1 (Main Theorem). With high probability, Algorithms 1 and 2 find approximate singular
vectors Z = [z1, . . . , zk] satisfying guarantees (1) and (2) for low-rank approximation and (3) for
PCA. For error ε, Algorithm 1 requires q = O(log d/ε) iterations while Algorithm 2 requires q =
O(log d/

√
ε) iterations. Excluding lower order terms, both algorithms run in time O(nnz(A)kq).

We note that, while Simultaneous Iteration was known to achieve (2) [14], surprisingly we are first
to prove that it gives (1), a qualitatively weaker goal.

In Section 7 we use our results to give an alternative analysis of both algorithms that does depend
on singular value gaps and can offer significantly faster convergence when A has decaying singular
values. It is possible to take further advantage of this result by running Algorithms 1 and 2 with a Π
that has > k columns, a simple modification for accelerating either method.

Finally, Section 8 contains a number of experiments on large data problems. We justify the im-
portance of gap independent bounds for predicting algorithm convergence and we show that Block
Krylov Iteration in fact significantly outperforms the more popular Simultaneous Iteration.

2.4 Comparison to Classical Bounds

Decades of work has produced a variety of gap dependent bounds for power iteration and Krylov
subspace methods. We refer the reader to Saad’s standard reference [27]. Most relevant to our
work are bounds for block Krylov methods with block size equal to k [28]. Roughly speaking, with
randomized initialization, these results offer guarantees equivalent to our strong equation (3) for the
top k singular directions after:

O

 log(d/ε)√
σk
σk+1

− 1

 iterations.

This bound is recovered by our Section 7 results and, when the target accuracy ε is smaller than the
relative singular value gap (σk/σk+1 − 1), it is tighter than our gap independent results. However,
as discussed in Section 8, for high dimensional data problems where ε is set far above machine
precision, gap independent bounds more accurately predict required iteration count.

5For guarantee (3) it is important that Algorithm 1 includes post-processing steps 4 and 5 rather than just
returning a basis for K, which is sufficient for the low-rank approximation guarantees.

4

Less comparable to our results are attempts to analyze algorithms with block size smaller than k
[26]. While “small block” or single vector algorithms offer runtime advantages, it is well understood
that with b duplicate singular values, it is impossible to recover the top k singular directions with a
block of size < b [29]. More generally, large singular value clusters slow convergence, so any small
block algorithm must have runtime dependence on the gaps between each adjacent pair of top k
singular values [30]. We believe that obtaining simpler theoretical bounds for small block methods
is an interesting direction for future work.

3 Background and Intuition

We will start by 1) providing background on algorithms for approximate singular value decom-
position and 2) giving intuition for Simultaneous Power Iteration and Block Krylov methods and
justifying why they can give strong gap-independent error guarantees.

3.1 Frobenius Norm Error

Progress on algorithms for Frobenius norm error low-rank approximation (1) has been considerable.
Work in this direction dates back to the strong rank-revealing QR factorizations of Gu and Eisenstat
[31]. They give deterministic algorithms that run in approximately O(ndk) time, vs. O(nd2) for a
full SVD, but only guarantee polynomial factor Frobenius norm error.

Recently, randomization has been applied to achieve even faster algorithms with (1 + ε) error. The
paradigm is to compute a linear sketch of A into very few dimensions using either a column sam-
pling matrix or Johnson-Lindenstrauss random projection matrix Π. Typically AΠ has at most
poly(k/ε) columns and can be used to quickly find Z. Specifically, Z is typically taken to be the top
k left singular vectors of AΠ or of A projected onto AΠ [32, 4].

An×d ×Πd×poly(k/ε) = (AΠ)n×poly(k/ε)
This approach was developed and refined in several pioneering results, including [33, 34, 35, 36]
for column sampling, [37, 5] for random projection, and definitive work by Sarlós [4]. Recent
work on sparse Johnson-Lindenstrauss type matrices [6, 38, 39] has significantly reduced the cost of
multiplying AΠ, bringing the cost of Frobenius error low-rank approximation down toO(nnz(A)+
npoly(k/ε)) time, where the first term is considered to dominate since typically k � n, d.

The sketch-and-solve method is very efficient – the computation of AΠ is easily parallelized and,
regardless, pass-efficient in a single processor setting. Furthermore, once a small compression of A
is obtained, it can be manipulated in fast memory to find Z. This is not typically true of A itself,
making it difficult to directly process the original matrix at all.

3.2 Spectral Norm Error via Simultaneous Iteration

Unfortunately, as discussed, Frobenius norm error is often insufficient when A has a heavy singular
value tail. Moreover, it seems an inherent limitation of sketch-and-solve methods. The noise from
A’s lower r − k singular values corrupts AΠ, making it impossible to extract a good partial SVD
if the sum of these singular values (equal to ‖A − Ak‖2F) is too large. In other words, any error
inherently depends on the size of this tail.

In order to achieve spectral norm error (2), Simultaneous Iteration must reduce this noise down to
the scale of σk+1 = ‖A − Ak‖2. It does this by working with the powered matrix Aq [40, 41].6
By the spectral theorem, Aq has exactly the same singular vectors as A, but its singular values are
equal to the singular values of A raised to the qth power. Powering spreads the values apart and
accordingly, Aq’s lower singular values are relatively much smaller than its top singular values (see
Figure 2a for an example).

Specifically, q = O(log d
ε) is sufficient to increase any singular value ≥ (1 + ε)σk+1 to be signifi-

cantly (i.e. poly(d) times) larger than any value ≤ σk+1. This effectively denoises our problem –
if we use a sketching method to find a good Z for approximating Aq up to Frobenius norm error, Z
will have to align very well with every singular vector with value ≥ (1 + ε)σk+1. It thus provides
an accurate basis for approximating A up to small spectral norm error.

6For nonsymmetric matrices we work with (AAT)qA, but present the symmetric case here for simplicity.

5

0 5 10 15 20
0

5

10

15

Index i

S
in

g
u

la
r

V
al

u
e

 σ
i

Spectrum of A

Spectrum of A
q

(a) A’s singular values compared to those of Aq ,
rescaled to match on σ1. Notice the significantly
reduced tail after σ8.

0 0.2 0.4 0.6 0.8 1

−5

0

5

10

15

20

25

30

35

40

45

x

x
O(1/ε)

T
O(1/√ε)

(x)

(b) An O(1/
√
ε)-degree Chebyshev polynomial,

TO(1/
√
ε)(x), pushes low values nearly as close to

zero as xO(1/ε) while spreading higher values less
significantly.

Figure 2: Replacing A with a matrix polynomial facilitates higher accuracy approximation.

Computing Aq directly is costly, so AqΠ is computed iteratively. We start with a random Π and
repeatedly multiply by A on the left. Since even a rough Frobenius norm approximation for Aq

suffices, Π is often chosen to have just k columns. Each iteration thus takes O(nnz(A)k) time.
After AqΠ is computed, Z can simply be set to a basis for its column span.

To the best of our knowledge, this approach to analyzing Simultaneous Iteration without dependence
on singular value gaps began with [1]. The technique was popularized in [2] and its analysis im-
proved in [15] and [16]. [14] gives the first bound that directly achieves (2) with O(log d/ε) power
iterations. All of these papers rely on an improved understanding of the benefits of starting with a
randomized Π, which has developed from work on the sketch-and-solve paradigm.

3.3 Beating Simultaneous Iteration with Krylov Methods

As mentioned, numerous papers hint at the possibility of beating Simultaneous Iteration with block
Krylov methods [18, 19, 28]. In particular, [1], [20] and [21] suggest and experimentally confirm the
potential of a randomized variant of the Block Lanczos algorithm, which we refer to as Block Krylov
Iteration (Algorithm 2). However, none of these papers give theoretical bounds on the algorithm’s
performance.

The intuition behind Block Krylov Iteration matches that of many accelerated iterative methods.
Simply put, there are better polynomials than Aq for denoising tail singular values. In particular,
we can use a lower degree polynomial, allowing us to compute fewer powers of A and thus leading
to an algorithm with fewer iterations. For example, an appropriately shifted q = O(log d√

ε
) degree

Chebyshev polynomial can push the tail of A nearly as close to zero as AO(log d/ε), even if the long
run growth of the polynomial is much lower (see Figure 2b).

Block Krylov Iteration takes advantage of such polynomials by working with the Krylov subspace,

K =
[
Π AΠ A2Π A3Π . . . AqΠ

]
,

from which we can construct pq(A)Π for any polynomial pq(·) of degree q.7 Since an effective
polynomial for denoising A must be scaled and shifted based on the value of σk+1, we cannot easily
compute it directly. Instead, we argue that the very best k rank approximation to A lying in the span
of K at least matches the approximation achieved by projecting onto the span of pq(A)Π. Finding
this best approximation will therefore give a nearly optimal low-rank approximation to A.

Unfortunately, there’s a catch. Perhaps surprisingly, it is not clear how to efficiently compute the
best spectral norm error low-rank approximation to A lying in a specific subspace (e.g. K’s span)
[16, 42]. This challenge precludes an analysis of Krylov methods parallel to the recent work on

7Algorithm 2 in fact only constructs odd powered terms in K, which is sufficient for our choice of pq(x).

6

Simultaneous Iteration. Nevertheless, we show that computing the best Frobenius error low-rank
approximation in the span of K, exactly the post-processing step taken by classic Block Lanczos
and our method, will give a good enough spectral norm approximation for achieving (1 + ε) error.

3.4 Stronger Per Vector Error Guarantees

Achieving the per vector guarantee of (3) requires a more nuanced understanding of how Simultane-
ous Iteration and Block Krylov Iteration denoise the spectrum of A. The analysis for spectral norm
low-rank approximation relies on the fact that Aq (or pq(A) for Block Krylov Iteration) blows up
any singular value ≥ (1 + ε)σk+1 to much larger than any singular value ≤ σk+1. This ensures that
the Z outputted by both algorithms aligns very well with the singular vectors corresponding to these
large singular values.

If σk ≥ (1 + ε)σk+1, then Z aligns well with all top k singular vectors of A and we get good
Frobenius norm error and the per vector guarantee (3). Unfortunately, when there is a small gap
between σk and σk+1, Z could miss intermediate singular vectors whose values lie between σk+1

and (1 + ε)σk+1. This is the case where gap dependent guarantees of classical analysis break down.

However, Aq or, for Block Krylov Iteration, some q-degree polynomial in our Krylov subspace, also
significantly separates singular values > σk+1 from those < (1− ε)σk+1. Thus, each column of Z
at least aligns with A nearly as well as uk+1. So, even if we miss singular values between σk+1 and
(1 + ε)σk+1, they will be replaced with approximate singular values > (1− ε)σk+1, enough for (3).

For Frobenius norm low-rank approximation, we prove that the degree to which Z falls outside of
the span of A’s top k singular vectors depends on the number of singular values between σk+1 and
(1−ε)σk+1. These are the values that could be ‘swapped in’ for the true top k singular values. Since
their weight counts towards A’s tail, our total loss compared to optimal is at worst ε‖A−Ak‖2F .

4 Preliminaries

Before proceeding to the full technical analysis, we overview required results from linear algebra,
polynomial approximation, and randomized low-rank approximation.

4.1 Singular Value Decomposition and Low-Rank Approximation

Using the SVD, we compute the pseudoinverse of A ∈ Rn×d as A+ = VΣ−1UT . Additionally,
for any polynomial p(x), we define p(A) = Up(Σ)VT. Note that, since singular values are always
take to be non-negative, p(A)’s singular values are given by |p(Σ)|.
Let Σk be Σ with all but its largest k singular values zeroed out. Let Uk and Vk be U and V with
all but their first k columns zeroed out. For any k, Ak = UΣkV

T = UkΣkV
T
k is the closest rank

k approximation to A for any unitarily invariant norm, including the Frobenius norm and spectral
norm [43]. The squared Frobenius norm is given by ‖A‖2F =

∑
i,j A2

i,j = tr(AAT) =
∑
i σ

2
i .

The spectral norm is given by ‖A‖2 = σ1.
‖A−Ak‖F = min

B|rank(B)=k
‖A−B‖F and ‖A−Ak‖2 = min

B|rank(B)=k
‖A−B‖2.

We often work with the remainder matrix A−Ak and label it Ar\k. Its singular value decomposition
is given by Ar\k = Ur\kΣr\kV

T
r\k where Ur\k, Σr\k, and VT

r\k have their first k columns zeroed.

While the SVD gives a globally optimal rank k approximation for A, both Simultaneous Iteration
and Block Krylov Iteration return the best k rank approximation falling within some fixed subspace
spanned by a basis Q (with rank≥ k). For the Frobenius norm, this simply requires projecting A to
Q and taking the best rank k approximation of the resulting matrix using an SVD.
Lemma 2 (Lemma 4.1 of [14]). Given A ∈ Rn×d and Q ∈ Rm×n with orthonormal columns,

‖A− (QQTA)k‖F = ‖A−Q
(
QTA

)
k
‖F = min

C|rank(C)=k
‖A−QC‖F .

This low-rank approximation can be obtained using an SVD (equivalently, eigendecomposition) of
the m×m matrix M = QT (AAT)Q. Specifically, letting M = ŪΣ̄2ŪT , then:(

QŪk

) (
QŪk

)T
A = Q

(
QTA

)
k
.

7

If the SVD of QTA is given by QTA = ŪΣ̄V̄T then M = QT (AAT)Q = ŪΣ̄2ŪT . So
Q
(
QTA

)
k

= QŪkΣ̄kV̄
T
k = Q

(
ŪkŪ

T
k

)
ŪΣ̄V̄T = QŪkŪ

T
kQTA, giving the lower matrix

equality. Note that QŪk has orthonormal columns since ŪT
kQTQŪk = ŪT

k IŪk = Ik.

In general, this rank k approximation does not give the best spectral norm approximation to A
falling within Q [16]. A closed form solution can be obtained using the results of [42], which are
related to Parrott’s theorem, but we do not know how to compute this solution without essentially
performing an SVD of A. It is at least simple to show that the optimal spectral norm approximation
for A spanned by a rank k basis is obtained by projecting A to the basis:
Lemma 3 (Lemma 4.14 of [14]). For A ∈ Rn×d and Q ∈ Rn×k with orthonormal columns,

‖A−QQTA‖2 = min
C
‖A−QC‖2.

4.2 Other Linear Algebra Tools

Throughout this paper we use span(M) to denote the column span of the matrix M. We say that
a matrix Q is an orthonormal basis for the column span of M if Q has orthonormal columns and
QQTM = M. That is, projecting the columns of M to Q fully recovers those columns. QQT is
the orthogonal projection matrix onto the span of Q. (QQT)(QQT) = QIQT = QQT .

If M and N have the same dimension and MNT = 0 then ‖M + N‖2F = ‖M‖2F + ‖N‖2F . This
matrix Pythagorean theorem follows from writing ‖M + N‖2F = tr((M + N)(M + N)T). As an
example, for any orthogonal projection QQTA, AT (I−QQT)QQTA = 0, so ‖A−QQTA‖2F =

‖A‖2F −‖QQTA‖2F . This implies that, since Ak = UkU
T
kA minimizes ‖A−Ak‖2F over all rank

k matrices, QQT = UkUk maximizes ‖QQTA‖2F over all rank k orthogonal projections.

4.3 Randomized Low-Rank Approximation

Our proofs build on well known sketch-based algorithms for low-rank approximation with Frobenius
norm error. A short proof of the following Lemma is in Appendix A:
Lemma 4 (Frobenius Norm Low-Rank Approximation). Take any A ∈ Rn×d and Π ∈ Rd×k where
the entries of Π are independent Gaussians drawn fromN (0, 1). If we let Z be an orthonormal basis
for span (AΠ), then with probability at least 99/100, for some fixed constant c,

‖A− ZZTA‖2F ≤ c · dk‖A−Ak‖2F .

For analyzing block methods, results like Lemma 4 can effectively serve as a replacement for earlier
random initialization analysis that applies to single vector power and Krylov methods [44].

4.4 Chebyshev Polynomials

As outlined in Section 3.3, our proof also requires polynomials to more effectively denoise the tail of
A. As is standard for Krylov subspace methods, we use a variation on the Chebyshev polynomials.
The proof of the following Lemma is relegated to Appendix A.
Lemma 5 (Chebyshev Minimizing Polynomial). Given a specified value α > 0, gap γ ∈ (0, 1],
and q ≥ 1, there exists a degree q polynomial p(x) such that:

1. p((1 + γ)α) = (1 + γ)α

2. p(x) ≥ x for all x ≥ (1 + γ)α

3. |p(x)| ≤ α
2q
√
γ−1 for all x ∈ [0, α]

Furthermore, when q is odd, the polynomial only contains odd powered monomials.

5 Implementation and Runtimes

We first briefly discuss runtime and implementation considerations for Algorithms 1 and 2, our
randomized implementations of Simultaneous Power Iteration and Block Krylov Iteration.

8

5.1 Simultaneous Iteration

Algorithm 1 can be modified in a number of ways. Π can be replaced by a random sign matrix, or
any matrix achieving the guarantee of Lemma 4. Π may also be chosen with p > k columns. We
will discuss in detail how this approach can give improved accuracy in Section 7.

In our implementation we set Z = QŪk. This ensures that, for all l ≤ k, Zl gives the best rank
l Frobenius norm approximation to A within the span of K (See Lemma 2). This is necessary
for achieving per vector guarantees for approximate PCA. However, if we are only interested in
computing a near optimal low-rank approximation, we can simply set Z = Q. Projecting A to
QŪk is equivalent to projecting to Q as these two matrices have the same column spans.

Additionally, since powering A spreads its singular values, K = (AAT)qAΠ could be poorly
conditioned. As suggested in [45], to improve stability we can orthonormalize K after every iteration
(or every few iterations). This does not change K’s column span, so it gives an equivalent algorithm
in exact arithmetic, but improves conditioning significantly.

Theorem 6 (Simultaneous Iteration Runtime). Algorithm 1 runs in time

O

(
nnz(A)

k log d

ε
+
nk2 log d

ε

)
.

Proof. Computing K requires first multiplying A by Π, which takes O(nnz(A)k) time. Comput-
ing
(
AAT

)i
AΠ given

(
AAT

)i−1
AΠ then takes O(nnz(A)k) time to first multiply our (n× k)

matrix by AT and then by A. Reorthogonalizing after each iteration takes O(nk2) time via Gram-
Schmidt or Householder reflections. This gives a total runtime of O(nnz(A)kq + nk2q) for com-
puting K.

Finding Q takes O(nk2) time. Computing M by multiplying from left to right requires
O(nnz(A)k + nk2) time. M’s SVD then requires O(k3) time using classical techniques. Finally,
multiplying Ūk by Q takes time O(nk2). Setting q = Θ(log d/ε) gives the claimed runtime.

5.2 Block Krylov Iteration

As with Simultaneous Iteration, we can replace Π with any matrix achieving the guarantee of
Lemma 4 and can use p > k columns to improve accuracy. Q can also be computed in a num-
ber of ways. In the traditional Block Lanczos algorithm, one starts by computing an orthonormal
basis for AΠ, the first block in the Krylov subspace. Bases for subsequent blocks are computed
from previous blocks using a three term recurrence that ensures QTAATQ is block tridiagonal,
with k× k sized blocks [19]. This technique can be useful if qk is large, since it is faster to compute
the top singular vectors of a block tridiagonal matrix. However, computing Q using a recurrence
can introduce a number of stability issues, and additional steps may be required to ensure that the
matrix remains orthogonal [29].

An alternative is to compute K explicitly and then compute Q using a QR decomposition. This
method is used in [1] and [20]. It does not guarantee that QTAATQ is block tridiagonal, but helps
avoid a number of stability issues. Furthermore, if qk is small, taking the SVD of QTAATQ will
still be fast and typically dominated by the cost of computing K.

As with Simultaneous Iteration, we can also orthonormalize each block of K after it is computed,
avoiding poorly conditioned blocks and giving an equivalent algorithm in exact arithmetic.

Theorem 7 (Block Krylov Iteration Runtime). Algorithm 2 runs in time

O

(
nnz(A)

k log d√
ε

+
nk2 log2 d

ε
+
k3 log3 d

ε3/2

)
.

Proof. Computing K, including block reorthogonalization, requires O(nnz(A)kq + nk2q) time.
The remaining steps are analogous to those in Simultaneous Iteration except somewhat more costly
as we work an k · q dimensional rather than k dimensional subspace. Finding Q takes O(n(kq)2)
time. Computing M take O(nnz(A)(kq) +n(kq)2) time and its SVD then requires O((kq)3) time.

9

Finally, multiplying Ūk by Q takes time O(nk(kq)). Setting q = Θ(log d/
√
ε) gives the claimed

runtime.

6 Error Bounds

We next prove that both Algorithms 1 and 2 return a basis Z that gives relative error Frobenius (1)
and spectral norm (2) low-rank approximation error as well as the per vector guarantees (3).

6.1 Main Approximation Lemma

We start with a general approximation lemma, which gives three guarantees formalizing the intuition
given in Section 3. All other proofs follow nearly immediately from this lemma.

For simplicity we assume that k ≤ r = rank(A) ≤ n, d. However, if k > r it can be seen that both
algorithms still return a basis satisfying the proven guarantees. We start with a definition:
Definition 8. For a given matrix Z ∈ Rn×k with orthonormal columns, letting Zl ∈ Rn×l be the
first l columns of Z, we define the error function:

E(Zl,A) = ‖Al‖2F − ‖ZlZTl A‖2F
= ‖A− ZlZ

T
l A‖2F − ‖A−Al‖2F .

Recall that Al is the best rank l approximation to A. This error function measures how well ZlZ
T
l A

approximates A in comparison to the optimal.
Lemma 9 (Main Approximation Lemma). Let m be the number of singular values σi of A with
σi ≥ (1 + ε/2)σk+1. Let w be the number of singular values with 1

1+ε/2σk ≤ σi < σk. With
probability 99/100 Algorithms 1 and 2 return Z satisfying:

1. ∀l ≤ m, E(Zl,A) ≤ (ε/2) · σ2
k+1,

2. ∀l ≤ k, E(Zl,A) ≤ E(Zl−1,A) + 3ε · σ2
k+1,

3. ∀l ≤ k, E(Zl,A) ≤ (w + 1) · 3ε · σ2
k+1.

Property 1 captures the intuition given in Section 3.2. Both algorithms return Z with Zl equal to the
best Frobenius norm low-rank approximation in span(K). Since σ1 ≥ . . . ≥ σm ≥ (1 + ε/2)σk+1

and our polynomials separate any values above this threshold from anything below σk+1, Z must
align very well with A’s top m singular vectors. Thus E(Zl,A) is very small for all l ≤ m.

Property 2 captures the intuition of Section 3.4 – outside of the largest m singular values, Z still
performs well. We may fail to distinguish between vectors with values between 1

1+ε/2σk and (1 +

ε/2)σk+1. However, aligning with the smaller vectors in this range rather than the larger vectors can
incur a cost of at most O(ε)σ2

k+1. Since every column of Z outside of the first m may incur such a
cost, there is a linear accumulation as characterized by Property 2.

Finally, Property 3 captures the intuition that the total error in Z is bounded by the number of
singular values falling in the range 1

1+ε/2σk ≤ σi < σk. This is the total number of singular vectors
that aren’t necessarily separated from and can thus be ‘swapped in’ for any of the (k − m) true
top vectors with singular value < (1 + ε/2)σk+1. Property 3 is critical in achieving near optimal
Frobenius norm low-rank approximation.

Proof. Proof of Property 1

Assumem ≥ 1. Ifm = 0 then Property 1 trivially holds. We will prove the statement for Algorithm
2, since this is the more complex case, and then explain how the proof extends to Algorithm 1.

Let p1 be the polynomial from Lemma 5 with α = σk+1, γ = ε/2, and q ≥ c log(d/ε)/
√
ε for

some fixed constant c. We can assume 1/ε = O(poly d) and thus q = O(log d/
√
ε). Otherwise our

Krylov subspace would have as many columns as A and we may as well use a classical algorithm
to compute A’s partial SVD directly. Let Y1 ∈ Rn×k be an orthonormal basis for the span of

10

p1(A)Π. Recall that we defined p1(A) = Up1(Σ)VT . As long as we choose q to be odd, by
the recursive definition of the Chebyshev polynomials, p1(A) only contains odd powers of A (see

Lemma 5). Any odd power i can be evaluated as
(
AAT

)(i−1)/2
A. Accordingly, p1(A)Π and thus

Y1 have columns falling within the span of the Krylov subspace from Algorithm 2 (and hence its
column basis Q).

By Lemma 4 we have with probability 99/100:

‖p1(A)−Y1Y
T
1 p1(A)‖2F ≤ cdk‖p1(A)− p1(A)k‖2F . (4)

Furthermore, one possible rank k approximation of p1(A) is p1(Ak). By the optimality of p1(A)k,

‖p1(A)− p1(A)k‖2F ≤ ‖p1(A)− p1(Ak)‖2F ≤
d∑

i=k+1

p1(σi)
2

≤ d ·
(

σ2
k+1

22q
√
ε/2−2

)
= O

(ε

2d2
σ2
k+1

)
.

The last inequalities follow from setting q = Θ(log(d/ε)/
√
ε) and from the fact that σi ≤ σk+1 = α

for all i ≥ k + 1 and thus by property 3 of Lemma 5, |p1(σi)| ≤ σk+1

2q
√
ε/2−1

. Noting that k ≤ d, we
can plug this bound into (4) to get

‖p1(A)−Y1Y
T
1 p1(A)‖2F ≤

ε

2
σ2
k+1. (5)

Applying the Pythagorean theorem and the invariance of the Frobenius norm under rotation gives

‖p1(Σ)‖2F −
εσ2
k+1

2
≤ ‖Y1Y

T
1 Up1(Σ)‖2F .

Y1 falls within A’s column span, and therefore U’s column span. So we can write Y1 = UC for
some C ∈ Rr×k. Since Y1 and U have orthonormal columns, so must C. We can now write

‖p1(Σ)‖2F −
εσ2
k+1

2
≤ ‖UCCTUTUp1(Σ)‖2F = ‖UCCT p1(Σ)‖2F = ‖CT p1(Σ)‖2F .

Letting ci be the ith row of C, expanding out these norms gives
r∑
i=1

p1(σi)
2 −

εσ2
k+1

2
≤

r∑
i=1

‖ci‖22p1(σi)
2. (6)

Since C’s columns are orthonormal, its rows all have norms upper bounded by 1. So ‖ci‖22p1(σi)
2 ≤

p1(σi)
2 for all i. So for all l ≤ r, (6) gives us

l∑
i=1

(1− ‖ci‖22)p1(σi)
2 ≤

r∑
i=1

(1− ‖ci‖22)p1(σi)
2 ≤

εσ2
k+1

2
.

Recall that m is the number of singular values with σi ≥ (1 + ε/2)σk+1. By Property 2 of Lemma
5, for all i ≤ m we have σi ≤ p1(σi). This gives, for all l ≤ m:

l∑
i=1

(1− ‖ci‖22)σ2
i ≤

εσ2
k+1

2
and so

l∑
i=1

σ2
i −

εσ2
k+1

2
≤

r∑
i=1

‖ci‖22σ2
i .

Converting these sums back to norms yields ‖Σl‖2F −
εσ2
k+1

2 ≤ ‖CTΣl‖2F and therefore ‖Al‖2F −
εσ2
k+1

2 ≤ ‖Y1Y
T
1 Al‖2F and

‖Al‖2F − ‖Y1Y
T
1 Al‖2F ≤

εσ2
k+1

2
. (7)

11

Now Y1Y
T
1 Al is a rank l approximation to A falling within the column span of Y and hence within

the column span of Q. By Lemma 2, the best rank l Frobenius approximation to A within Q is given
by QŪl(QŪl)

TA. So we have

‖Al‖2F − ‖QŪl(QŪl)
TA‖2F = E(Zl,A) ≤

εσ2
k+1

2
,

giving Property 1.

For Algorithm 1, we instead choose p1(x) = (1 + ε/2)σk+1 ·
(

x
(1+ε/2)σk+1

)2q+1

. For q =

Θ(log d/ε), this polynomial satisfies the necessary properties: for all i ≥ k + 1, p1(σi) ≤
O
(
ε

2d2σ
2
k+1

)
and for all i ≤ m, σi ≤ p1(σi). Further, up to a rescaling, p1(A)Π = K so Y1

spans the same space as K. Therefore since Algorithm 1 returns Z with Zl equal to the best rank l
Frobenius norm approximation to A within the span of K, for all l we have:

‖QŪl(QŪl)
TA‖2F ≥ ‖Y1Y

T
1 Al‖2F ≥ ‖Al‖2F −

εσ2
k+1

2
,

giving the proof.

Proof of Property 2

Property 1 and the fact that E(Zl,A) is always positive immediately gives Property 2 for l ≤ m. So
we need to show that it holds for m < l ≤ k. Note that if w, the number of singular values with

1
1+ε/2σk ≤ σi < σk is equal to 0, then σk+1 <

1
1+ε/2σk, so m = k and we are done. So we assume

w ≥ 1 henceforth. Again, we first prove the statement for Algorithm 2 and then explain how the
proof extends to the simpler case of Algorithm 1.

Intuitively, Property 1 follows from the guarantee that there is a rank m subspace of span(K) that
aligns with A nearly as well as the space spanned by A’s top m singular vectors. To prove Property
2 we must show that there is also some rank k subspace in span(K) whose components all align
nearly as well with A as uk, the kth singular vector of A. The existence of such a subspace ensures
that Z performs well, even on singular vectors in the intermediate range [σk, (1 + ε/2)σk+1].

Let p2 be the polynomial from Lemma 5 with α = 1
1+ε/2σk, γ = ε/2, and q ≥ c log(d/ε)/

√
ε for

some fixed constant c. Let Y2 ∈ Rn×k be an orthonormal basis for the span of p2(A)Π. Again,
as long as we choose q to be odd, p2(A) only contains odd powers of A and so Y2 falls within the
span of the Krylov subspace from Algorithm 2. We wish to show that for every unit vector x in the
column span of Y2, ‖xTA‖2 ≥ 1

1+ε/2σk.

Let Ainner = Ar\k −Ar\(k+w). Ainner = UΣinnerV
T where Σinner contains only the singular

values σk+1, . . . , σk+w. These are the w intermediate singular values of A falling in the range[
1

1+ε/2σk, σk

)
. Let Aouter = A − Ainner = UΣouterV

T . Σouter contains all large singular

values of A with σi ≥ σk and all small singular values with σi < 1
1+ε/2σk.

Let Yinner ∈ Rn×min{k,w} be an orthonormal basis for the columns of p2(Ainner)Π. Similarly
let Youter ∈ Rn×k, be an orthonormal basis for the columns of p2(Aouter)Π.

Every column of Yinner falls in the column span of Ainner and hence the column span of Uinner ∈
Rn×w, which contains only the singular vectors of A corresponding to the inner singular values.
Similarly, the columns of Youter fall within the span of Uouter ∈ Rn×r−w, which contains the re-
maining left singular vectors of A. So the columns of Yinner are orthogonal to those of Youter and
[Yinner,Youter] forms an orthogonal basis. For any unit vector x ∈ span(p2(A)Π) = span(Y2)
we can write x = xinner + xouter where xinner and xouter are orthogonal vectors in the spans of
Yinner and Youter respectively. We have:

‖xTA‖22 = ‖xTinnerA‖22 + ‖xTouterA‖22. (8)

We will lower bound ‖xTA‖22 by considering each contribution separately. First, any unit vector
x′ ∈ Rn in the column span of Yinner can be written as x′ = Uinnerz where z ∈ Rw is a unit

12

vector.

‖x′TA‖22 = zTUT
innerAATUinnerz = zTΣ2

innerz ≥
(

1

1 + ε/2
σk

)2

≥ (1− ε)σ2
k. (9)

Note that we’re abusing notation slightly, using Σinner ∈ Rw×w to represent the diagonal matrix
containing all singular values of A with 1

1+ε/2σk ≤ σi ≤ σk without diagonal entries of 0.

We next apply the argument used to prove Property 1 to p2(Aouter)Π. The (k+ 1)th singular value
of Aouter is equal to σk+w+1 ≤ 1

1+ε/2σk = α. So applying (7) we have for all l ≤ k,

‖Al‖2F − ‖ (Youter)l (Youter)
T
l Al‖2F ≤

εσ2
k

2
. (10)

Note that Aouter has the same top k singular vectors at A so (Aouter)l = Al. Let x′ ∈ Rn be any
unit vector within the column space of Youter and let Youter = (I − x′x′

T
)Youter, i.e the matrix

with x′ projected off each column. We can use (10) and the optimality of the SVD for low-rank
approximation to obtain:

‖Ak‖2F − ‖YouterY
T
outerAk‖2F ≤

εσ2
k

2

‖Ak‖2F − ‖YouterY
T

outerAk‖2F − ‖x′x′
T
Ak‖2F ≤

εσ2
k

2

‖Ak‖2F − ‖Ak−1‖2F −
εσ2
k

2
≤ ‖x′x′TAk‖2F

(1− ε/2)σ2
k ≤ ‖x′

T
A‖22. (11)

Plugging (9) and (11) into (8) yields that, for any x in span(Y2), i.e. span(p2(A)Π),

‖xTA‖22 = ‖xTinnerA‖22 + ‖xTouterA‖22
≥
(
‖xinner‖22 + ‖xouter‖22

)
(1− ε)σ2

k ≥ (1− ε)σ2
k. (12)

So, we have identified a rank k subspace Y2 within our Krylov subspace such that every vector in
its span aligns at least as well with A as uk.

Now, for anym ≤ l ≤ k, consider E(Zl,A). We know that given Zl−1, we can form a rank l matrix
Zl in our Krylov subspace simply by appending a column x orthogonal to the l−1 columns of Zl−1
but falling in the span of Y2. Since Y2 has rank k, finding such a column is always possible. Since
Zl is the optimal rank l Frobenius norm approximation to A falling within our Krylov subspace,

E(Zl,A) ≤ E(Zl,A) = ‖Al‖2F − ‖ZlZ
T

l A‖2F
= σ2

l + ‖Al−1‖2F − ‖Zl−1ZTl−1A‖2F − ‖xxTA‖2F
= E(Zl−1,A) + σ2

l − ‖xxTA‖2F
≤ E(Zl−1,A) + (1 + ε/2)2σ2

k+1 − (1− ε)σ2
k+1

≤ E(Zl−1,A) + 3ε · σ2
k+1,

which gives Property 2.

Again, a nearly identical proof applies for Algorithm 1. We just choose p2(x) = σk

(
x
σk

)2q+1

.
For q = Θ(log d/ε) this polynomial satisfies the necessary properties: for all i ≥ k, p1(σi) ≤
O
(
ε

2d2σ
2
k

)
and for all i ≤ k, σi ≤ p2(σi).

Proof of Property 3

By Properties 1 and 2 we already have, for all l ≤ k, E(Zl,A) ≤ εσ2
k+1 + (l − m) · 3εσ2

k+1 ≤
(1 + k −m) · 3ε · σ2

k+1. So if k −m ≤ w then we immediately have Property 3.

Otherwise, w < k −m so w < k and thus p2(Ainner)Π ∈ Rn×k only has rank w. It has a null
space of dimension k − w. Choose any z in this null space. Then p2(A)Πz = p2(Ainner)Πz +

13

p2(Aouter)Πz = p2(Aouter)Πz. In other words, p2(A)Πz falls entirely within the span of Youter.
So, there is a k −w dimensional subspace of span(Y2) that is entirely contained in span(Youter).

For l ≤ m + w, then Properties 1 and 2 already give us E(Zl,A) ≤ εσ2
k+1 + (l −m) · 3εσ2

k+1 ≤
(w+1) ·3ε ·σ2

k+1. So consider m+w ≤ l ≤ k. Given Zm, to form a rank l matrix Zl in our Krylov
subspace we need to append l −m orthonormal columns. We can choose min{k − w −m, l −m}
columns, X1, from the k − w dimensional subspace within span(Y2) that is entirely contained in
span(Youter). If necessary (i.e. k−w−m ≤ l−m), We can then choose the remaining l−(k−w)
columns X2 from the span of Y2.

Similar to our argument when considering a single vector in the span of Youter, letting Youter =(
I−X1X

T
1

)
Youter, we have by (10):

‖Ak‖2F − ‖YouterY
T
outerAk‖2F ≤

εσ2
k

2

‖Ak‖2F − ‖YouterY
T

outerAk‖2F − ‖X1X
T
1 Ak‖2F ≤

εσ2
k

2

‖Ak‖2F − ‖Ak−min{k−w−m,l−m}‖2F −
εσ2
k

2
≤ ‖X1X

T
1 Ak‖2F

k∑
i=k−min{k−w−m,l−m}+1

σ2
i −

εσ2
k

2
≤ ‖X1X

T
1 A‖2F .

By applying (12) directly to each column of X2 we also have:

(l + w − k)σ2
k − (l + w − k)εσ2

k ≤ ‖X2X
T
2 A‖2F

(l + w − k)σ2
k+1 − (l + w − k)εσ2

k+1 ≤ ‖X2X
T
2 A‖2F .

Assume that min{k−w−m, l−m} = k−w−m. Similar calculations show the same result when
min{k − w −m, l −m} = l −m. We can use the above two bounds to obtain:

E(Zl,A) ≤ E(Zl,A)

= ‖Al‖2F − ‖ZlZ
T

l A‖2F

=

l∑
i=m+1

σ2
i + ‖Am‖2F − ‖ZmZTmA‖2F − ‖X1X

T
1 A‖2F − ‖X2X

T
2 A‖2F

≤ E(Zm,A) +

l∑
i=m+1

σ2
i −

k∑
i=w+m+1

σ2
i +

εσ2
k

2
− (l + w − k)σ2

k+1 + (l + w − k)εσ2
k+1

≤
m+w∑
i=m+1

σ2
i − wσ2

k+1 + (l + w − k + 3/2)εσ2
k+1

≤ (l + 3w − k + 3/2)εσ2
k+1

≤ (w + 1) · 3ε · σ2
k+1,

giving Property 3 for all l ≤ k.

6.2 Error Bounds for Simultaneous Iteration and Block Krylov Iteration

With Lemma 9 in place, we can easily prove that Simultaneous Iteration and Block Krylov Iteration
both achieve the low-rank approximation and PCA guarantees (1), (2), and (3).

Theorem 10 (Near Optimal Spectral Norm Error Approximation). With probability 99/100, Algo-
rithms 1 and 2 return Z satisfying (2):

‖A− ZZTA‖2 ≤ (1 + ε)‖A−Ak‖2.

14

Proof. Letm be the number of singular values with σi ≥ (1+ε/2)σk+1. Ifm = 0 then we are done
since any Z will satisfy ‖A − ZZTA‖2 ≤ ‖A‖2 = σ1 ≤ (1 + ε/2)σk+1 ≤ (1 + ε)‖A −Ak‖2.
Otherwise, by Property 1 of Lemma 9,

E(Zm,A) ≤
εσ2
k+1

2

‖A− ZmZTmA‖2F ≤ ‖A−Am‖2F +
εσ2
k+1

2
.

Additive error in Frobenius norm directly translates to additive spectral norm error. Specifically,
applying Theorem 3.4 of [22], which we also prove as Lemma 15 in Appendix A,

‖A− ZmZTmA‖22 ≤ ‖A−Am‖22 +
εσ2
k+1

2
≤ σ2

m+1 +
εσ2
k+1

2

≤ (1 + ε/2)σ2
k+1 +

εσ2
k+1

2
≤ (1 + ε)‖A−Ak‖22. (13)

Finally, ZmZTmA = ZZTmA and so by Lemma 3 we have ‖A − ZZTA‖22 ≤ ‖A − ZmZTmA‖22,
which combines with (13) to give the result.

Theorem 11 (Near Optimal Frobenius Norm Error Approximation). With probability 99/100, Al-
gorithms 1 and 2 return Z satisfying (1):

‖A− ZZTA‖F ≤ (1 + ε)‖A−Ak‖F .

Proof. By Property 3 of Lemma 9 we have:

E(Zl,A) ≤ (w + 1) · 3ε · σ2
k+1

‖A− ZZTA‖2F ≤ ‖A−Ak‖2F + (w + 1) · 3ε · σ2
k+1. (14)

w is defined as the number of singular values with 1
1+ε/2σk ≤ σi < σk. So ‖A − Ak‖2F ≥

w ·
(

1
1+ε/2σk

)2
. Plugging into (14) we have:

‖A− ZZTA‖2F ≤ ‖A−Ak‖2F + (w + 1) · 3ε · σ2
k+1 ≤ (1 + 10ε)‖A−Ak‖2F .

Adjusting constants on the ε gives us the result.

Theorem 12 (Per Vector Quality Guarantee). With probability 99/100, Algorithms 1 and 2 return
Z satisfying (3):

∀i,
∣∣uTi AATui − zTi AAT zi

∣∣ ≤ εσ2
k+1.

Proof. First note that zTi AAT zi ≤ uTi AATui. This is because zTi AAT zi =
zTi QQTAATQQT zi = σi(QQTA)2 by our choice of zi. σi(QQTA)2 ≤ σi(A)2 since ap-
plying a projection to A will decrease each of its singular values (which follows for example from
the Courant-Fischer min-max principle). Then by Property 2 of Lemma 9 we have, for all i ≤ k,

‖Ai‖2F − ‖ZiZTi ‖2F ≤ ‖Ai−1‖2F − ‖Zi−1ZTi−1‖2F + 3εσ2
k+1

σ2
i ≤ ‖zizTi A‖2F + 3εσ2

k+1 = zTi AAT zi + 3εσ2
k+1.

σ2
i = uTi AATui, so simply adjusting constants on ε gives the result.

7 Improved Convergence With Spectral Decay

In addition to the implementations of Simultaneous Iteration and Block Krylov Iteration given in
Algorithms 1 and 2, our analysis applies to the common modification of running the algorithms
with Π ∈ Rn×p for p ≥ k [1, 20, 2]. This technique can significantly accelerate both methods for
matrices with decaying singular values. For simplicity, we focus on Block Krylov Iteration, although
as usual all arguments immediately extend to the simpler Simultaneous Iteration algorithm.

15

In order to avoid inverse dependence on the potentially small singular value gap σk
σk+1

− 1, the num-
ber of Block Krylov iterations inherently depends on 1/

√
ε. This ensures that our matrix polynomial

sufficiently separates small singular values from larger ones. However, when σk > (1 + ε)σk+1 we
can actually use q = Θ

(
log(d/ε)/

√
min{1, σk

σk+1
− 1}

)
iterations, which is sufficient for separat-

ing the top k singular values significantly from the lower values. Specifically, if we set α = σk+1

and γ = σk
σk+1

− 1, we know that with q = Θ
(

log(d/ε)/
√

min{1, σk
σk+1

− 1}
)

, (5) still holds. We

can then just follow the proof of Lemma 9 and show that Property 1 holds for all l ≤ k (not just for
l ≤ m as originally proven). This gives Property 2 and Property 3 trivially.

Further, for p ≥ k, the exact same analysis shows that q = Θ

(
log(d/ε)/

√
min{1, σk

σp+1
− 1}

)
suffices. When A’s spectrum decays rapidly, so σp+1 ≤ c · σk for some constant c < 1 and some
p not much larger than k, we can obtain significantly faster runtimes. Our ε dependence becomes
logarithmic, rather than polynomial:

Theorem 13 (Gap Dependent Convergence). With probability 99/100, for any p ≥ k, Algorithm 1
or 2 initialized with Π ∼ N (0, 1)d×p returns Z satisfying guarantees (1), (2), and (3) as long as we

set q = Θ
(

log(d/ε)/
(

min{1, σk
σp+1

− 1}
))

or Θ

(
log(d/ε)/

√
min{1, σk

σp+1
− 1}

)
, respectively.

This theorem may prove especially useful in practice because, on many architectures, multiplying
a large A by 2k or even 10k vectors is not much more expensive than multiplying by k vectors.
Additionally, it should still be possible to perform all steps for post-processing K in memory, again
limiting additional runtime costs due to its larger size.

Finally, we note that while Theorem 13 is more reminiscent of classical gap-dependent bounds, it
still takes substantial advantage of the fact that we’re looking for nearly optimal low-rank approxi-
mations and principal components instead of attempting to converge precisely to A’s true singular
vectors. This allows the result to avoid dependence on the gap between adjacent singular values,
instead varying only with σk

σp+1
, which should be much larger.

8 Experiments

We close with several experimental results. A variety of empirical papers, not to mention widespread
adoption, already justify the use of randomized SVD algorithms. Prior work focuses in particular on
benchmarking Simultaneous Iteration [20, 12] and, due to its improved accuracy over sketch-and-
solve approaches, this algorithm is popular in practice [11, 17]. As such, we focus on demonstrating
that for many data problems Block Krylov Iteration can offer significantly better convergence.

We implement both algorithms in MATLAB using Gaussian random starting matrices with exactly
k columns. We explicitly compute K for both algorithms, as described in Section 5, and use re-
orthonormalization at each iteration to improve stability [45]. We test the algorithms with varying
iteration count q on three common datasets, SNAP/AMAZON0302 [23, 24], SNAP/EMAIL-ENRON
[23, 46], and 20 NEWSGROUPS [25], computing column principal components in all cases. We plot
error vs. iteration count for metrics (1), (2), and (3) in Figure 3. For per vector error (3), we plot the
maximum deviation amongst all top k approximate principal components (relative to σk+1).

Unsurprisingly, both algorithms obtain very accurate Frobenius norm error, ‖A−ZZTA‖F /‖A−
Ak‖F , with very few iterations. This is our intuitively weakest guarantee and, in the presence of a
heavy singular value tail, both iterative algorithms will outperform the worst case analysis.

On the other hand, for spectral norm low-rank approximation and per vector error, we confirm that
Block Krylov Iteration converges much more rapidly than Simultaneous Iteration, as predicted by
our theoretical analysis. It it often possible to achieve nearly optimal error with< 8 iterations where
as getting to within say 1% error with Simultaneous Iteration can take much longer.

The final plot in Figure 3 shows error verses runtime for the 11269× 15088 dimensional 20 NEWS-
GROUPS dataset. We averaged over 7 trials and ran the experiments on a commodity laptop with
16GB of memory. As predicted, because its additional memory overhead and post-processing costs

16

5 10 15 20 25

0

0.05

0.1

0.15

0.2

0.25

0.3

Iterations q

E
rr

o
r

ε

Block Krylov − Frobenius Error

Block Krylov − Spectral Error

Block Krylov − Per Vector Error

Simult. Iter. − Frobenius Error

Simult. Iter. − Spectral Error

Simult. Iter. − Per Vector Error

(a) SNAP/AMAZON0302, k = 30

5 10 15 20 25

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations q

E
rr

o
r

ε

Block Krylov − Frobenius Error

Block Krylov − Spectral Error

Block Krylov − Per Vector Error

Simult. Iter. − Frobenius Error

Simult. Iter. − Spectral Error

Simult. Iter. − Per Vector Error

(b) SNAP/EMAIL-ENRON, k = 10

5 10 15 20 25

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
rr

o
r

ε

Iterations q

Block Krylov − Frobenius Error

Block Krylov − Spectral Error

Block Krlyov − Per Vector Error

Simult. Iter. − Frobenius Error

Simult. Iter. − Spectral Error

Simult. Iter. − Per Vector Error

(c) 20 NEWSGROUPS, k = 20

0 1 2 3 4 5 6 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Runtime (seconds)

E
rr

o
r

ε

Block Krylov − Frobenius Error

Block Krylov − Spectral Error

Block Krylov − Per Vector Error

Simult. Iter. − Frobenius Error

Simult. Iter. − Spectral Error

Simult. Iter. − Per Vector Error

(d) 20 NEWSGROUPS, k = 20, runtime cost

Figure 3: Low-rank approximation and per vector error convergence rates for Algorithms 1 and 2.

are small compared to the cost of the large matrix multiplication required for each iteration, Block
Krylov Iteration outperforms Simultaneous Iteration for small ε.

More generally, these results justify the importance of convergence bounds that are independent of
singular value gaps. Our analysis in Section 7 predicts that, once ε is small in comparison to the gap
σk
σk+1

− 1, we should see much more rapid convergence since q will depend on log(1/ε) instead of
1/ε. However, for Simultaneous Iteration, we do not see this behavior with SNAP/AMAZON0302
and it only just begins to emerge for 20 NEWSGROUPS.

While all three datasets have rapid singular value decay, a careful look confirms that their singular
value gaps are actually quite small! For example, σk

σk+1
− 1 is .004 for SNAP/AMAZON0302 and

.011 for 20 NEWSGROUPS, in comparison to .042 for SNAP/EMAIL-ENRON. Accordingly, the
frequent claim that singular value gaps can be taken as constant is insufficient, even for small ε.

Acknowledgments

We thank David Woodruff, Aaron Sidford, Richard Peng and Jon Kelner for several valuable con-
versations. Additionally, Michael Cohen was very helpful in discussing many details of this project,
including the ultimate form of Lemma 9. This work was partially supported by NSF Graduate Re-
search Fellowship Grant No. 1122374, AFOSR grant FA9550-13-1-0042, DARPA grant FA8650-
11-C-7192, and the NSF Center for Science of Information.

References

[1] Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. A randomized algorithm for principal component
analysis. SIAM Journal on Matrix Analysis and Applications, 31(3):1100–1124, 2009.

[2] Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217–288, 2011.

[3] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997.

17

[4] Tamás Sarlós. Improved approximation algorithms for large matrices via random projections. In Proceed-
ings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 143–152,
2006.

[5] Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. A randomized algorithm for the approxi-
mation of matrices. Technical Report 1361, Yale University, 2006.

[6] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input sparsity
time. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC), pages 81–90,
2013.

[7] Antoine Liutkus. Randomized SVD. http://www.mathworks.com/matlabcentral/fileexchange/47835-
randomized-singular-value-decomposition, 2014. MATLAB Central File Exchange.

[8] Daisuke Okanohara. redsvd: RandomizED SVD. https://code.google.com/p/redsvd/, 2010.

[9] David Hall et al. ScalaNLP: Breeze. http://www.scalanlp.org/, 2009.

[10] IBM Reseach Division, Skylark Team. libskylark: Sketching-based Distributed Matrix Computations for
Machine Learning. IBM Corporation, Armonk, NY, 2014.

[11] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[12] Arthur Szlam, Yuval Kluger, and Mark Tygert. An implementation of a randomized algorithm for princi-
pal component analysis. Computing Research Repository (CoRR), abs/1412.3510, 2014.

[13] Zohar Karnin and Edo Liberty. Online PCA with spectral bounds. In Proceedings of the 28th Annual
Conference on Computational Learning Theory (COLT), pages 505–509, 2015.

[14] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends in Theoret-
ical Computer Science, 10(1-2):1–157, 2014.

[15] Rafi Witten and Emmanuel J. Candès. Randomized algorithms for low-rank matrix factorizations: Sharp
performance bounds. Algorithmica, 31(3):1–18, 2014.

[16] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-optimal column-based matrix recon-
struction. SIAM Journal on Computing, 43(2):687–717, 2014. Preliminary version in the 52nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2011.

[17] Andrew Tulloch. Fast randomized singular value decomposition. http://research.facebook.
com/blog/294071574113354/fast-randomized-svd/, 2014.

[18] Jane Cullum and W.E. Donath. A block Lanczos algorithm for computing the q algebraically largest
eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices. In IEEE Conference
on Decision and Control including the 13th Symposium on Adaptive Processes, pages 505–509, 1974.

[19] Gene Golub and Richard Underwood. The block Lanczos method for computing eigenvalues. Mathemat-
ical Software, (3):361–377, 1977.

[20] Nathan Halko, Per-Gunnar Martinsson, Yoel Shkolnisky, and Mark Tygert. An algorithm for the principal
component analysis of large data sets. SIAM Journal on Scientific Computing, 33(5):2580–2594, 2011.

[21] Nathan P Halko. Randomized methods for computing low-rank approximations of matrices. PhD thesis,
University of Colorado, 2012.

[22] Ming Gu. Subspace iteration randomization and singular value problems. Computing Research Repository
(CoRR), abs/1408.2208, 2014.

[23] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection. ACM Transactions on
Mathematical Software, 38(1):1:1–1:25, December 2011.

[24] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. The dynamics of viral marketing. ACM
Transactions on the Web, 1(1), May 2007.

[25] Jason Rennie. 20 newsgroups. http://qwone.com/˜jason/20Newsgroups/, May 2015.

[26] Y. Saad. On the rates of convergence of the Lanczos and the Block-Lanczos methods. SIAM Journal on
Numerical Analysis, 17(5):687–706, 1980.

[27] Yousef Saad. Numerical Methods for Large Eigenvalue Problems: Revised Edition, volume 66. 2011.

[28] Gene Golub, Franklin Luk, and Michael Overton. A block Lanczos method for computing the singular
values and corresponding singular vectors of a matrix. ACM Trans. Math. Softw., 7(2):149–169, 1981.

[29] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press, 3rd edition, 1996.

[30] Ren-Cang Li and Lei-Hong Zhang. Convergence of the block Lanczos method for eigenvalue clusters.
Numerische Mathematik, 131(1):83–113, 2015.

[31] Ming Gu and Stanley C. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR factor-
ization. SIAM Journal on Scientific Computing, 17(4):848–869, 1996.

18

http://research.facebook.com/blog/294071574113354/fast-randomized-svd/
http://research.facebook.com/blog/294071574113354/fast-randomized-svd/
http://qwone.com/~jason/20Newsgroups/

[32] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimensionality
reduction for k-means clustering and low rank approximation. In Proceedings of the 47th Annual ACM
Symposium on Theory of Computing (STOC), 2015.

[33] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast Monte Carlo algorithms for finding low-rank
approximations. Journal of the ACM, 51(6):1025–1041, 2004. Preliminary version in the 39th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 1998.

[34] Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and V Vinay. Clustering large graphs via
the singular value decomposition. Machine Learning, 56(1-3):9–33, 2004. Preliminary version in the
10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1999.

[35] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo algorithms for matrices II:
Computing a low-rank approximation to a matrix. SIAM Journal on Computing, 36(1):158–183, 2006.

[36] Amit Deshpande and Santosh Vempala. Adaptive sampling and fast low-rank matrix approximation. In
Proceedings of the 10th International Workshop on Randomization and Computation (RANDOM), pages
292–303, 2006.

[37] Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and Santosh Vempala. Latent semantic
indexing: A probabilistic analysis. Journal of Computer and System Sciences, 61(2):217–235, 2000.
Preliminary version in the 17th Symposium on Principles of Database Systems (PODS), 1998.

[38] Michael W Mahoney and Xiangrui Meng. Low-distortion subspace embeddings in input-sparsity time and
applications to robust linear regression. In Proceedings of the 45th Annual ACM Symposium on Theory
of Computing (STOC), pages 91–100, 2013.

[39] Jelani Nelson and Huy L. Nguyen. OSNAP: Faster numerical linear algebra algorithms via sparser sub-
space embeddings. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 117–126, 2013.

[40] Friedrich L. Bauer. Das verfahren der treppeniteration und verwandte verfahren zur lösung algebraischer
eigenwertprobleme. Zeitschrift für angewandte Mathematik und Physik ZAMP, 8(3):214–235, 1957.

[41] H. Rutishauser. Simultaneous iteration method for symmetric matrices. Numerische Mathematik,
16(3):205–223, 1970.

[42] Kin Cheong Sou and Anders Rantzer. On the minimum rank of a generalized matrix approximation
problem in the maximum singular value norm. In Proceedings of the 19th International Symposium on
Mathematical Theory of Networks and Systems (MTNS), 2010.

[43] L. Mirsky. Symmetric gauge functions and unitarily invariant norms. The Quarterly Journal of Mathe-
matics, 11:50–59, 1960.

[44] J. Kuczyński and H. Woźniakowski. Estimating the largest eigenvalue by the power and Lanczos algo-
rithms with a random start. SIAM Journal on Matrix Analysis and Applications, 13(4):1094–1122, 1992.

[45] Per-Gunnar Martinsson, Arthur Szlam, and Mark Tygert. Normalized power iterations for the computation
of SVD. http://www.sci.ccny.cuny.edu/˜szlam/npisvdnipsshort.pdf, 2010. NIPS
Workshop on Low-rank Methods for Large-scale Machine Learning.

[46] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: Densification laws, shrinking
diameters and possible explanations. In Proceedings of the 11th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pages 177–187, 2005.

[47] Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: extreme singular
values. In Proceedings of the International Congress of Mathematicians 2010 (ICM), volume 3, pages
1576–1602, 2010.

[48] J.C. Mason and D.C. Handscomb. Chebyshev Polynomials. CRC Press, 2002.

A Appendix

Frobenius Norm Low-Rank Approximation

We first give a deterministic Lemma, from which the main approximation result follows.

Lemma 14 (Special case of Lemma 4.4 of [14], originally proven in [16]). Let A ∈ Rn×d have SVD A =
UΣVT , let S ∈ Rd×k be any matrix such that rank

(
VT
k S
)
= k, and let C ∈ Rn×k be an orthonormal basis

for the column span of AS. Then:

‖A−CCTA‖2F ≤ ‖A−Ak‖2F + ‖ (A−Ak)S
(
VT
k S
)+
‖2F .

19

http://www.sci.ccny.cuny.edu/~szlam/npisvdnipsshort.pdf

Lemma 4 (Frobenius Norm Low-Rank Approximation). For any A ∈ Rn×d and Π ∈ Rd×k where the entries
of Π are independent Gaussians drawn from N (0, 1). If we let Z be an orthonormal basis for span (AΠ),
then with probability at least 99/100, for some fixed constant c,

‖A− ZZTA‖2F ≤ c · dk‖A−Ak‖2F .

Proof. We follow [14]. Apply Lemma 14 with S = Π. With probability 1, VT
k S has full rank. So, to show

the result we need to show that ‖ (A−Ak)S
(
VT
k S
)+ ‖2F ≤ c‖A − Ak‖2F for some fixed c. For any two

matrices M and N, ‖MN‖F ≤ ‖M‖F ‖N‖2. This property is known as spectral submultiplicativity. Noting
that ‖Ur\kΣr\k‖2F = ‖A−Ak‖2F and applying submultiplicativity,

‖ (A−Ak)S
(
VT
k S
)+
‖2F ≤ ‖Ur\kΣr\k‖2F ‖VT

r\kS‖22‖
(
VT
k S
)+
‖22.

By the rotational invariance of the Gaussian distribution, since the rows of VT are orthonormal, the entries
of VT

k S and VT
r\kS are independent Gaussians. By standard Gaussian matrix concentration results (Fact

6 of [14], also in [47]), with probability at least 99/100, ‖VT
r\kS‖22 ≤ c1 · max{k, r − k} ≤ c1ḋ and

‖
(
VT
k S
)+ ‖22 ≤ c2k for some fixed constants c1, c2. So,

‖Ur\kΣr\k‖2F ‖VT
r\kS‖22‖

(
VT
k S
)+
‖22 ≤ c · dk‖A−Ak‖2F

for some fixed c, yielding the result. Note that we choose probability 99/100 for simplicity – we can obtain a
result with higher probability by simply allowing for a higher constant c, which in our applications of Lemma
4 will only factor into logarithmic terms.

Chebyshev Polynomials

Lemma 5 (Chebyshev Minimizing Polynomial). Given a specified value α > 0, gap γ ∈ (0, 1], and q ≥ 1,
there exists a degree q polynomial p(x) such that:

1. p((1 + γ)α) = (1 + γ)α

2. p(x) ≥ x for all x ≥ (1 + γ)α

3. |p(x)| ≤ α

2q
√
γ−1 for all x ∈ [0, α]

Furthermore, when q is odd, the polynomial only contains odd powered monomials.

Proof. The required polynomial can be constructed using a standard Chebyshev polynomial of degree q, Tq(x),
which is defined by the three term recurrence:

T0(x) = 1

T1(x) = x

Tq(x) = 2xTq−1(x)− Tq−2(x)

Each Chebyshev polynomial satisfies the well known property that Tq(x) ≤ 1 for all x ∈ [−1, 1] and, for
x > 1, we can write the polynomials in closed form [48]:

Tq(x) =
(x+

√
x2 − 1)q + (x−

√
x2 − 1)q

2
. (15)

For Lemma 5, we simply set:

p(x) = (1 + γ)α
Tq(x/α)

Tq(1 + γ)
, (16)

which is clearly of degree q and well defined since, referring to (15), Tq(x) > 0 for all x > 1. Now,

p((1 + γ)α) = (1 + γ)α
Tq(1 + γ)

Tq(1 + γ)
= (1 + γ)α,

so p(x) satisfies property 1. With property 1 in place, to prove that p(x) satisfies property 2, it suffices to show
that p′(x) ≥ 1 for all x ≥ (1 + γ)α. By chain rule,

p′(x) =
(1 + γ)

Tq(1 + γ)
T ′q(x/α).

20

Thus, it suffices to prove that, for all x ≥ (1 + γ),

(1 + γ)T ′q(x) ≥ Tq(1 + γ). (17)

We do this by showing that (1+γ)T ′q(1+γ) ≥ Tq(1+γ) and then claim that T ′′q (x) ≥ 0 for all x > (1+γ),
so (17) holds for x > (1 + γ) as well. A standard form for the derivative of the Chebyshev polynomial is

T ′q =

{
2q (Tq−1 + Tq−3 + . . .+ T1) if q is even,
2q (Tq−1 + Tq−3 + . . .+ T2) + q if q is odd.

(18)

(18) can be verified via induction once noting that the Chebyshev recurrence gives T ′q = 2xT ′q−1 + 2Tq−1 −
T ′q−2. Since Ti(x) > 0 when x ≥ 1, we can conclude that T ′q(x) ≥ 2qTq−1(x). So proving (17) for
x = (1 + γ) reduces to proving that

(1 + γ)2qTq−1(1 + γ) ≥ Tq(1 + γ). (19)

Noting that, for x ≥ 1, (x+
√
x2 − 1) > 0 and (x−

√
x2 − 1) > 0, it follows from (15) that

Tq−1(x)
(
(x+

√
x2 − 1) + (x−

√
x2 − 1)

)
≥ Tq(x),

and thus

Tq(x)

Tq−1(x)
≤ 2x.

So, to prove (19), it suffices to show that 2(1 + γ) ≤ (1 + γ)2q, which is true whenever q ≥ 1. So (17) holds
for all x = (1 + γ).

Finally, referring to (18), we know that T ′′q must be some positive combination of lower degree Chebyshev
polynomials. Again, since Ti(x) > 0 when x ≥ 1, we conclude that T ′′q (x) ≥ 0 for all x ≥ 1. It follows
that T ′q(x) does not decrease above x = (1 + γ), so (17) also holds for all x > (1 + γ) and we have proved
property 2.

To prove property 3, we first note that, by the well known property that Ti(x) ≤ 1 for x ∈ [−1, 1], Tq(x/α) ≤
1 for x ∈ [0, α]. So, to prove p(x) ≤ α

2q
√
γ−1 , we just need to show that

1

Tq(1 + γ)
≤ 1

2q
√
γ−1

. (20)

Equation (15) gives Tq(1+γ) ≥ 1
2
(1+γ+

√
(1 + γ)2 − 1)q ≥ 1

2
(1+
√
γ)q . When γ ≤ 1, (1+

√
γ)1/

√
γ ≥ 2.

Thus, (1 +
√
γ)q ≥ 2q

√
γ . Dividing by 2 gives Tq(1 + γ) ≥ 2q

√
γ−1, which gives (20) and thus property 3.

Finally, we remark that it is well known that odd degree Chebyshev polynomials of the first kind only contain
monomials of odd degree (and this is easy to verify inductively). Accordingly, since pq(x) is simply a scaling
of Tq(x), if we choose q to be odd, pq(x) only contains odd degree terms.

Additive Frobenius Norm Error Implies Additive Spectral Norm Error

Lemma 15 (Theorem 3.4 of [22]). For any A ∈ Rn×d, let B ∈ Rn×d be any rank k matrix satisfying
‖A−B‖2F ≤ ‖A−Ak‖2F + η. Then

‖A−B‖22 ≤ ‖A−Ak‖22 + η.

Proof. We follow the proof given in [22] nearly exactly, including it for completeness. By Weyl’s monotonicity
theorem (Theorem 3.2 in [22]), for any two matrices X,Y ∈ Rn×d with n ≥ d, for all i, j with i+ j − 1 ≤ n
we have σi+j−1(X+Y) ≤ σi(X)+ σj(X). If we write A = (A−B)+B and apply this theorem, then for
all 1 ≥ i ≥ n− k,

σi+k(A) ≤ σi(A−B) + σk+1(B).

21

Note that if n < d, we can just work with AT and BT . Now, σk+1(B) = 0 since B is rank k. Using the
resulting inequality and recalling that ‖A−Ak‖2F =

∑n
i=k+1 σ

2
i (A), we see that:

‖A−B‖2F ≤ ‖A−Ak‖2F + η
n∑
i=1

σ2
i (A−B) ≤

n∑
i=k+1

σ2
i (A) + η

n−k∑
i=1

σ2
i (A−B) ≤

n∑
i=k+1

σ2
i (A) + η

σ2
1(A−B) +

n−k∑
i=2

σ2
i (A) ≤

n∑
i=k+1

σ2
i (A) + η

σ2
1(A−B) ≤

n∑
i=k+1

σ2
i (A)−

n−k∑
i=2

σ2
i (A) + η

σ2
1(A−B) ≤ σ2

k+1(A) + η.

σ2
k+1(A) is equal to the squared top singular value of A−Ak (i.e. ‖A−Ak‖22, so the lemma follows.

22

	Introduction
	Prior Work

	Our Results
	Faster Algorithm
	Stronger Guarantees
	Main Result
	Comparison to Classical Bounds

	Background and Intuition
	Frobenius Norm Error
	Spectral Norm Error via Simultaneous Iteration
	Beating Simultaneous Iteration with Krylov Methods
	Stronger Per Vector Error Guarantees

	Preliminaries
	Singular Value Decomposition and Low-Rank Approximation
	Other Linear Algebra Tools
	Randomized Low-Rank Approximation
	Chebyshev Polynomials

	Implementation and Runtimes
	Simultaneous Iteration
	Block Krylov Iteration

	Error Bounds
	Main Approximation Lemma
	Error Bounds for Simultaneous Iteration and Block Krylov Iteration

	Improved Convergence With Spectral Decay
	Experiments
	Appendix

