
Spectral Norm Regularization of Orthonormal
Representations for Graph Transduction

Rakesh Shivanna
Google Inc.

Mountain View, CA, USA
rakeshshivanna@google.com

Bibaswan Chatterjee
Dept. of Computer Science & Automation

Indian Institute of Science, Bangalore
bibaswan.chatterjee@csa.iisc.ernet.in

Raman Sankaran, Chiranjib Bhattacharyya
Dept. of Computer Science & Automation

Indian Institute of Science, Bangalore
ramans,chiru@csa.iisc.ernet.in

Francis Bach
INRIA - Sierra Project-team
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A Preliminaries and Definitions

For completeness, we state/prove some of the non-trivial results used in the paper.

Notations. Let ‖ · ‖0 and ‖ · ‖∞ be the L0 and L-infinity norms respectively. For y ∈ Y and ŷ ∈ Ŷ;
let `hng(y, ŷ) = (1− yŷ)+

1, `r(y, ŷ) = min{1, (1− yŷ)+} and `0-1(y, ŷ) = 1[yŷ < 0] denote the
hinge, ramp and 0-1 loss respectively. Note that these loss functions upper bound the other in same
order, `hng ≥ `r ≥ `0-1.

Asymptotic Notations [1]. For non-negative functions f1(n) and f2(n)

• f1(n) = O(f2(n)) =⇒ ∃n0 and a constant c > 0 such that ∀n > n0, f1(n) ≤ cf2(n).
• f1(n) = Ω(f2(n)) =⇒ ∃n0 and a constant c > 0 such that ∀n > n0, f1(n) ≥ cf2(n).
• f1(n) = Θ(f2(n)) iff f1(n) = O(f2(n)) and f1(n) = Ω(f2(n)).

B Generalization Bound

Let U ∈ Lab(G) be the orthonormal embedding corresponding to the graph kernel K ∈ K(G).
Note that the classifier learnt by the SVM formulation ωC(K,yS) as in (3) (paper), is of the form
h = Uα, where α is in the feasible set. In general, we define the following function class associated
with the orthonormal embedding

H̃U =
{
h
∣∣h = Uα, α ∈ Rn, ‖α‖∞ ≤ C, ‖α‖0 ≤ m

}
(1)

We follow a similar proof technique as in [3], however specialize to the class of orthonormal repre-
sentation and SPORE formulation.

Theorem 1. (Paper) Let G = (V,E) be a simple graph with unknown binary labels y ∈ Yn on the
vertices V . Let K ∈ K(G). Given G, and labels of a randomly drawn subgraph S, let ŷ ∈ Ŷn be
the predictions learnt by ωC(K,yS) as in (3) (paper). Then, form ≤ n/2, with probability≥ 1−δ
over the choice of S ⊂ V , such that |S| = m

er0-1
S̄ [ŷ] ≤ 1

m

∑
i∈S

`hng(yi, ŷi) + 2C
√

2λ1(K) +O
(√ 1

m
log

1

δ

)
(2)

1(a)+ = max(a, 0).
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Proof. Let U ∈ Lab(G) be the orthonormal representation associated with K. Let π = [π1, . . . , πn]
denote a permutation on [n]. For any π, without loss of generality, let the first m ∈ [n] nodes be

labelled. Let err,πS [ŷ] = 1
m

m∑
i=1

`r(yπi , ŷπi), where `r is the ramp loss as in Section A; and similarly

for err,π
S̄

[ŷ]. Let π̃ = [1, 2, . . . , n] denote the trivial permutation. Introduce a ghost permutation –

err,π̃
S̄

[ŷ] ≤ err,π̃S [ŷ] + err,π̃
S̄

[ŷ]− err,π̃S [ŷ]

≤ err,π̃S [ŷ] + sup
ỹ∈ỸU

[
err,π̃
S̄

[ỹ]− err,π̃S [ỹ]
]
≤ err,π̃S [ŷ] + Φπ̃U[ŷ] (3)

where
Φπ̃U[ŷ] = Eπ sup

ỹ∈ỸU

[
err,π̃
S̄

[ŷ]− err,π
S̄

[ỹ] + err,πS [ỹ]− err,π̃S [ŷ]
]

where ỸU = {ỹ|ỹ = U>h, h ∈ H̃U}, for H̃U as in (1). (3) follows by adding and subtracting
Eπ
[
err,π
S̄

[ŷ]
]

= Eπ
[
err,πS [ŷ]

]
inside the supremum and applying Jensen’s inequality to bring the

expectation of out the supremum.

We use Doob’s martingale process (see [2]) to bound the function Φπ̃U by its expectation –

Lemma 1. Given n ∈ N and m ∈ [n], let π be a random permutation vertor over [n]. Let πij
to denote perturbed permutation, where ith and jth elements are exchanged. Let f(π) be an π-
permutation symmetric function satisfying |f(π)− f(πij)| ≤ β ∀i ∈ [m], j /∈ [m]. Then

Prπ
{
f(π)− Eπ[f(π)] ≥ ε

}
≤ exp

(
− ε2

β2m

)
Using the above for β = 2

m , we get for δ > 0, w.p. ≥ 1− δ over the permutation π̃

Φπ̃U[ŷ] ≤ Eπ
[
ΦπU[ŷ]

]
+ 2

√
1

m
log

1

δ
(4)

Now we bound Eπ
[
ΦπU[ŷ]

]
using results of [3] as follows

Eπ
[
Φπ[ŷ]

]
≤ R

(
LrU,m,

mu

n2

)
+O

(
1√
m

)
(5)

where LrU =
{

[`r(y1, ỹ1), . . . , `r(yn, ỹn)]|ỹ ∈ ỸU
}

, and R(V,m) := 2
mEσ

[
supv∈V v

>σ
]

is the
Rademacher average of the vector space V ⊆ Rn, where σ is an i.i.d. random vector, each entry
taking values +1, −1, 0 with probability p, p, 1 − p respectively; p := m/n. We recall the
following interesting property of Rademacher averages [3] –

Lemma 2. For any V ⊆ Rn, m ∈ [n] and 0 ≤ p1 ≤ p2 ≤ 1
2 , R(V,m, p1) ≤ R(V,m, p2).

Using the above, we get

R
(
LrU,m,

mu

n2

)
≤ R

(
LrU,m,

m

n

)
≤ R

(
ỸU,m,

m

n

)
(6)

where the last inequality follows from the contraction property [3] of the class complexity. Note
that (6) relates to the function class, for which we can derive a tight estimate as follows – We derive
the following tight Rademacher complexity estimate for the class of orthonormal embeddings –

Lemma 3. R
(
ỸU,m, mn

)
≤ 2C

√
2λ1(K)

For any random vector σ, the supremum is given by

sup
ỹ∈ỸU

∑
i∈[n]

σiỹi = sup
h∈H̄U

∑
i∈[n]

σi
〈
h,ui

〉
= sup
h∈H̄U

〈
h,
∑
i∈[n]

σiui

〉
≤ C

√
mλ1(K)

∥∥∥∥ ∑
i∈[n]

σiui

∥∥∥∥
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The last equality from optimality over supremum and the norm constraint

max
h∈H̄U

‖h‖ = max
‖α‖∞≤C,‖α‖0≤m

√
α>Kα ≤ C

√
mλ1(K)

Now, taking expectation over σ, one obtains

R
(
ỸU,m,

m

n

)
= 2C

√
λ1(K)

m
Eσ
[√

σ>Kσ
]

(7)

Using Jensen’s inequality, the expectation term can be upper bounded by
√

Eσ
[
σ>Kσ

]
. Further,

using i.i.d. assumption of σ, the expectation evaluates to (2m/n)
∑
i∈[n]

Kii = 2m. Plugging back

in (7) proves the lemma. Finally, (2) is immediate by combining Lemma 3, (6), (5), (4) and (3).

C SPORE formulation and PAC analysis

We show that the spectral norm of the kernel relates to the structural properties of the graph

Lemma 2. (Paper) Given a simple, undirected graph G = (V,E), maxK∈K(G) λ1(K) = ϑ(Ḡ).

Proof. We recall another definition of the ϑ function [6]

ϑ
(
Ḡ
)

= max
U∈Lab(G)

max
c∈Sd−1

2

∑
i∈[n]

(
u>i c

)2
(8)

For a fixed U ∈ Lab(G) and c ∈ Sd−1
2 , the summation evaluates to c>UU>c. Thus, for any

fixed U ∈ Lab(G), maxc∈Sd−1
2

∑
i∈[n]

(
u>i c

)2
= λ1(UU>). From first principles, λ1(UU>) =

λ1(U>U) = λ1(K), where K = U>U ∈ K(G) (Section 1, paper). As there is correspondence
between the two sets Lab(G) and K(G) (Section 1), (8) evaluates to ϑ(Ḡ) = maxK∈K(G) λ1(K),
thus proving the claim.

Following the proof technique of [7] and [5], we prove –

Lemma 3. (paper) Given G and y, for any S ⊆ V and C > 0

min
K∈K(G)

ωC(KS ,yS) ≤ ϑ(G)/2

Proof. We recall another definition of the ϑ function [6]

ϑ(G) = min
U∈Lab(G)

min
c∈Sd−1

2

max
i∈[n]

1(
c>ui

)2 (9)

For a fixed K, from the primal of SVM formulation, it follows that

ω∞(KS ,yS) = min
w∈Rd

1

2
‖w‖2 s.t. yiw

>ui ≥ 1 ∀i ∈ S

where U is the orthonormal representation corresponding to K (Section 1). Now, writing w = tc,
where c ∈ Sd−1

2

= min
t,c∈Sd−1

2

t2 s.t. t ≥ 1

yic>ui
∀i ∈ S

= min
c∈Sd−1

2

max
i∈S

1

(yic>ui)2

= min
c∈Sd−1

2

max
i∈S

1

(c>ui)2
≤ min

c∈Sd−1
2

max
i∈[n]

1

(c>ui)2

Thus, the proof follows from (9), using a trivial bound ωC(KS ,yS) ≤ ω∞(KS ,yS) and noting that
the sets Lab(G) and K(G) are equivalent Section 1.
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Theorem 4. (paper) Let G = (V,E), V = [n] be a simple graph with unknown binary labels
y ∈ Yn on the vertices V . GivenG, and labels of a randomly drawn subgraph S ⊂ V , m = |S|; let

ŷ be the predictions learnt by SPORE (5), for parameters C =
(

ϑ(G)

m
√
ϑ(Ḡ)

) 1
2

and β = ϑ(G)

ϑ(Ḡ)
. Then,

for m ≤ n/2, with probability ≥ 1− δ over the choice of S ⊂ V , such that |S| = m

er0-1
S̄ [ŷ] = O

( 1

m

(√
nϑ(G) + log

1

δ

)) 1
2

Proof. Let K∗ be the kernel learnt by SPORE (5). Using Theorem 1 (paper) for final predictions ŷ,
we obtain

er0-1
S̄ [ŷ] ≤ 1

m

∑
i∈S

`hng(yi, ŷi) + 2C
√

2λ(K∗) +O
(√ 1

m
log

1

δ

)
Using Lemma 2 (paper) λ(K∗) ≤ ϑ(Ḡ), where Ḡ is complement graph of G

≤ 1

m

∑
i∈S

`hng(yi, ŷi) + 2C
√

2ϑ
(
Ḡ
)

+O
(√ 1

m
log

1

δ

)
(10)

Recall the primal formulation of (3) (paper) for K∗ = U∗>U∗, U∗ ∈ Lab(G) (Section 1)

ωC(K∗,yS) = min
w∈Rd

1

2
‖w‖22 + C

∑
i∈S

`hng(yi,w
>u∗i )

Let w∗ be the solution at optimal, then note that ŷi = w∗>u∗i, ∀i ∈ [n]. Thus, we bound the
empirical error as follows

C
∑
i∈S

`hng(yi, ŷi) = ωC(K∗,yS)− 1

2
‖w‖2 ≤ ωC(K∗,yS)

≤ ΨC,β(G,yS) = min
K∈K(G)

ωC(KS ,yS) + βλ1(K)

≤ min
K∈K(G)

ωC(KS ,yS) + β max
K∈K(G)

λ1(K) ≤ ϑ(G)

2
+ βϑ

(
Ḡ
)

The last inequality follows from Lemma 2 and 3 (paper). Plugging back in (10), we get

er0-1
S̄ [ŷ] ≤ 1

2Cm
ϑ(G) +

β

Cm
ϑ(Ḡ) + 2C

√
2ϑ(Ḡ) +O

(√ 1

m
log

1

δ

)
(11)

Choosing β such that β
Cmϑ

(
Ḡ
)

= 2C
√

2ϑ
(
Ḡ
)

and optimizing for C gives us the choice of param-
eters as in the statement of the theorem. Plugging back in (11), we get

= O

(
1√
m

(√
ϑ(G)

√
ϑ(Ḡ) +

√
log

1

δ

))
Finally, using ϑ(G)ϑ(Ḡ) = n [6], and concavity

√
a+
√
b ≤

√
2(a+ b) proves the result.

D Proposed Algorithms

D.1 The Projection Algorithm

Algorithm 1 lists the steps of the accelerated gradient descent algorithm FISTA applied to 16. The
objective pσX is composed of the smooth term psσX (a, b) = 1

2‖v− a− b‖
2 with the Lipshitz contin-

uous gradients with constant Lp = 1, and the non smooth term pnσX (a, b) = σA(a) + σB(b). Step 6
executes a gradient descent on a with respect to pσX followed by a proximal mapping with σA. The
gradient of pσX equals a+ b−v, and the stepsize chosen to be 1

Lp
= 1. Similarly step 6 perform the
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gradient descent on b followed by the proximal mapping with σB , The definitions for the support
functions and its associated operators are provided in Section D.3.

The algorithm requires as input the current iterate vk = xk −αkgk to project into the set X , and the
number of iterations S and returns an approximate projection xk+1 = vk − aS − bS .

For a graph G = (V,E), the set X = A
⋂
B is defined with

A = {K ∈ Rn×n|K � 0, tr(K) = n} and B = {K ∈ Rn×n||Kii = 1, i ∈ [n],Kij = 0, (i, j) /∈ E}
(12)

Algorithm 1 Accelerated Gradient Descent (FISTA) to solve 11
1: function IIP FISTA(v, S)
2: Initialize a0 = 0, b0 = 0.
3: Initialize (â0, b̂0) = (a0, b0).
4: Initialize t0 = 1.
5: for t = 1, . . . , S do
6: at = proxσA

(v − bt). . Use (14) for proxσA

7: bt = proxσB
(v − at). . Use (21) for proxσB

8: βt =
1+
√

1+4β2
t−1

2

9: ât = at + βt−1−1
βk

(at − at−1)

10: b̂t = bt + βt−1−1
βk

(bt − bt−1)

11: end for
12: return z = v − aS − bS
13: end function

D.2 Subgradient Descent Algorithm With Approximate Projection

We now use the approximate projection on X computed in Algorithm 1 to solve (8). In particular
we analyze the following algorithm

Algorithm 2 Approximate Projected sub-gradient descent

1: function APPROX-PROJ-SUBG(K0, L,R, R̂, T )
2: s = L√

T
· (
√
R2 + R̂2 . compute stepsize

3: Initialize t0 = 1.
4: for t = 1, . . . , T do
5: compute ht−1 . subgradient of f at Kt−1

6: vt = Kt−1 − s
‖ht−1‖ht−1

7: K̃t = IIPF ISTA(vt,
√
T ) . Use Algorithm 1

8: Kt = ProjA(K̃t)) = Kt − proxσA
(Kt) . Use (14)

9: end for
10: end function

D.3 Support Functions and their Proximal operators

D.3.1 Support functions

The expressions for the support functions σA and σB are provided below.

Claim 1. σA(a) = n max(λmax(a), 0)

Proof. σA(a) = maxK∈A tr(a>K). The Eigen decomposition of a gives a =
∑
i λiuiu

>
i =

UΛU>, where the ui’s are chosen to be forming an orthogonal basis. The matrix K can be written

5



using this basis as UMU>, where M need not be a diagonal one.

tr(a>K) = tr(UMU>UΛU>) = tr(UMΛU>) = tr(MΛ) ≤
∑
i:λi>0

Miiλi, (13)

since Mii need to be non-negative. Now,

max
K∈S

tr(a>K) ≤ max
Mii>0,

∑
iMii≤n

∑
i:λi>0

Miiλi = nmax(λmax(X), 0)

Hence, by choosing Mii = n for i corresponding to the largest positive eigen value, or Mii = 0, if
λi < 0,∀i, we get σA(a) = nmax(λmax(a), 0).

Claim 2. σB(b) = maxK∈B tr(b>K) =

{
tr(b) bij = 0,∀(i, j) ∈ E
∞ otherwise.

Proof. Trivial by using the definition of the support function.

D.3.2 Proximal operators

Claim 3. proxασA
(â) = UDiag(proxαm(z))U>, where UDiag(z)U> is the eigen decomposition of

â and m(z) = max([z; 0]). And proxαm(z)|i = min(zi,max(t∗max, 0)) where t∗max is the solution of
n∑
i=1

1

α
(zi − t)+ = 1 (14)

Proof.

proxαm(z) = argmin
x

1

2α
‖x− z‖22 +max([x; 0])

= argmin
z; t≥xi,t≥0

1

2α
‖x− z‖22 + t (15)

Let L(x, t, µ) = 1
2α‖x − z‖

2
2 + t − ξt +

n∑
i=1

µi(xi − t). Equating the gradient of the Lagrangian

function to 0 at optimality,
∂L

∂xi
=

1

α
(x∗i − z∗i ) + µ∗i = 0. (16)

∂L

∂t
=

n∑
i=1

µ∗i + ξ∗ = 1. (17)

The KKT optimality conditions provide
ξ∗t∗ = 0, µ∗i (x

∗
i − t∗) = 0 (18)

µ∗i > 0⇒ xi = t∗. Combining this with the constraint µi ≥ 0 and (16) gives µi = 1
α (zi − t∗)+

n∑
i=1

1

α
(zi − t∗)+ + ξ∗ = 1 (19)

t∗ > 0 solves the above equation if and only if
n∑
i=1

1

α
(zi − t)+ = 1 (20)

since ξ∗ = 0 in that case. Hence t∗ = max(t∗max, 0), where t∗max is the solution for (20). And we
can recover x from the previous equations.

Claim 4. b∗ = proxασB
(b̂) = argminb∈B

1
2α‖b− b̂‖

2 + σB(b)

⇒ b∗i,j =


0 (i, j) ∈ E
b̂i,j i 6= j, (i, j) /∈ E
b̂i,j − σ i = j

(21)

6



D.4 Proof of Theorems

We define

∂εpσX =

{
z

∣∣∣∣12‖z − v‖2 + x>z ≤ min
z∈Rn

pσX (z; v) + ε, ∀x ∈ X
}

(22)

we make the following claims.

Claim 5. If z = v − P εX (v) ∈ ∂εpσX (v), defined in (22), then

‖P εA(v)− PA(v)‖ ≤
√

2ε (23)

For any x ∈ X
‖P εA(v)− x‖2 ≤ ‖v − x‖2 + ε (24)

Proof. To prove (23), note that pσX is strongly convex in z, and for any z ∈ ∂εpσX (v) the following
is true

ε ≥ pσX (z; v)− pσX (z∗; v) ≥ 1

2
‖z − z∗‖2

where z∗ = proxσX (v) = v − PX (v). Plugging z = v − P εX (v) in the above relation proves (23).
To prove (24) we note that for any z ∈ ∂εpσX (v) and x ∈ X

1

2
‖z − v‖2 + x>z ≤ min

z∈Rn
pσX (z; v) + ε ≤ pσX (0; v) + ε =

1

2
‖v‖2 + ε

Setting z = v − P εX (v), and rearranging terms proves (24).

Claim 6.

ProxσX (v) = argmin
(a,b)

pσX (a, b; v)

(
=

1

2
‖(a+ b)− v‖2 + σA(a) + σB(b)

)
(25)

Proof. Check that ιX (x) = ιA(x) + ιB(x) and the σX (z) = maxx x
>z − ιX (z). Following the

definition of indicator function of σX , we have

min
z

1

2
‖z − v‖2 + σX (z) = min

z

1

2
‖z − v‖2 + max

x

{
x>z − ιA(x)− ιB(x)

}
Introducing the support functions σA and σB

= min
z

1

2
‖z − v‖2 + max

x

{
x>z −max

a

(
x>a− σA(a)

)
−max

b

(
x>b− σB(b)

)}
The maximization over a, b can be posed as a minimization because of the negative sign. Using
strong duality, we get

= min
z

1

2
‖z − v‖2 + max

x
min
a,b

{
x>(z − a− b) + σA(a) + σB(b)

}
To be dual feasible the coefficient of xmust be zero, leading to z = a+b, which is used to eliminate
z and we prove the claim.

D.5 Proof of Theorem 5 (paper)

Proof. Starting from x0 ∈ Rn×n, let xk, k ≥ 1 be defined in (12). Let yk = xk − αkhk, rk =
‖xk − x∗‖F . Then, it follows that

r2
k+1 = ‖P εX(yk)− x∗‖2F ≤‖yk − x∗‖2F + ε

=‖xk − αkhk − x∗‖2 + ε

=ε+ r2
k − 2αkh

>
k (xk − x∗) + α2

k‖hk‖2

≤ε+ r2
k − 2αk(f(xk)− f∗) + α2

k‖hk‖2 (26)

7



The first inequality is a consequence of (24), and the last inequality is true because of convexity of
f . If we define f∗T = min

{
f(xi) | i ∈ {0, . . . , T}

}
, then

f∗T − f∗ ≤
1

2
T−1∑
k=0

αk

(
r2
0 +

T−1∑
k=0

(
ε+ α2

k‖hk‖2
))

Under the choice of αk = s
‖hk‖ we have

f∗T − f∗ ≤
L

2sT

(
R2 + T (ε+ s2)

)
Minimizing RHS as a function of s yields s =

√
R2

T + ε and thus proves Theorem 5.

D.6 Proof of Theorem 6 (paper)

Proof. Check that for every t = 1, . . . , T , Algorithm 1 computes ât, b̂t such that

pσX (ât, b̂t; vt) ≤ min
a,b∈Sn

pσX (a, b; vt) +
R̂2

T

and Kt = ProjA(vt−ât−b̂t). Using K∗ ∈ A and the non-expansiveness of the projection operator,
the following holds

‖Kt −K∗‖2F ≤ ‖vt − ât − b̂t −K∗‖2F
The proof follows by retracing the steps in Theorem 5 with ε ≥ R̂2

T .

E Computation of Constants

We need to evaluate the constants involved in proposed projection method, which are necessary to
compute the step size.

E.1 Computation of R̂

Recall that
(a∗(v), b∗(v)) = argmin

a,b

1

2
‖a+ b− v‖2 + σA(a) + σB(b) (27)

We define
R̂2 ≥ ‖a∗(v)‖2 + ‖b∗(v)‖2 ∀v = K + h,K ∈ A, h ∈ ∂f(K)

where

A = {K < 0, tr(K) = n} and B = {diag(K) = 1,Kij = 0 for (i, j) /∈ E} (28)

We have σA(M) = λmax(M) and σB(N) = tr(M) if Mij = 0 as soon as (i, j) ∈ E, and infinity
otherwise. Given a matrix Z, and its projection Ẑ on A ∩ B, we have Y = v − v̂ = M + N with
σA(M) + σB(N) minimal.

We simply need to exhibit a single pair of optimizers M , N . For this, we may use Ã = {K < 0},
for which σÃ(M) = 0 if M 4 0, and infinity otherwise.

We have Y = M +N and thus Y 4 N . Moreover, tr(N) 6 nλmax(Y ) because the decomposition
Y = 0 + λmax(Y )I is feasible.

Thus, λmin(Y ) 6 λmin(N) 6 λmax(N) 6 nλmax(Y ).

This allows to show that
‖N‖2F 6 n‖N‖2op 6 n3‖Y ‖2op (29)

Now to bound the operator norm of Y we proceed as follows: by choice v = K + h where K ∈ A.
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Bound on ‖v − v̂‖F ≤ n+ L
Proof:

‖Z − Ẑ‖ ≤ ‖K− ProjA⋂
B(K)‖+ ‖h‖

We bound the first term as follows. By definition of projection and since I is feasible for both A and
B, we have

‖Y ‖ ≤ ‖K− ProjA⋂
B(Ẑ)‖ ≤ ‖K− I‖

Squaring both sides

‖K− ProjA⋂
B(Ẑ)‖2F ≤ ‖K− I‖2 = ‖K‖2 − 2 tr(K) + tr(I) ≤ n

Substituting this estimate in R̂2 = n3‖Y ‖2op ≤ n5

E.2 Computation of R

For the sets A defined in (28), note that R = maxK∈A ‖K‖F . We derive a bound on the objective
function as follows

‖K‖2F = tr(K2) =

n∑
i=1

λ2
i (K) ≤

( n∑
i=1

λi(K)
)2

=
(
Tr(K)

)2
= n2

and thus the result follows.

E.3 Computation of L

For SPORE, the subgradient is given by − 1
2Yαα

>Y + βvv>, which implies that

L ≤ max
0≤αi≤C, ‖v‖2=1

∥∥∥∥1

2
Yαα>Y + βvv>

∥∥∥∥
F

Using the equality ‖M‖2F =
∑
i λ

2
i (M) from Section E.2 above, and convexity, we get

L ≤ max
0≤αi≤C, ‖v‖2=1

1

2
‖α‖22 + β‖v‖22

The last inequality follows from the fact that for rank 1 matrices uu>, λmax‖u‖22. For the chosen
constant β = ϑ(G)

ϑ(Ḡ)
from Theorem 4, note that β ≤ 1, since whenever ϑ(G) ≥

√
n, we can work

on the complement graph and ϑ(G)ϑ(Ḡ) = n [6]. Thus, from the constraints on α, it follows that
L ≤ C2

√
n.

F Multiple Graph Transduction

Recalling the notations in the paper – let G = {G(1), . . . , G(M)} be a set of simple graphs G(k) =
(V,E(k)), defined on a common vertex set V = [n]. We introduce some more notations – let

K(G) =
{
K|K = {K(1), . . . ,K(M)},K(k) ∈ K(G(k))

}
(30)

and let K̃η =
∑

k∈[M ]

ηkK
(k), for η ∈ SM−1.

At this point, we would like to gather some important results before we prove the improved graph-
dependent generalization bound. We define an analog of ϑ for the multiple graphs setting –

ϑ(G) = min
K∈K(G)

min
η∈SM−1

ω̄(K̃η) (31)

where ω̄(·) is the 1-class SVM dual formulation, defined as –

ω̄(K) = max
α∈Rn

+

2α>1− α>Kα (32)
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We also define k∗, for convenience of the subsequent proofs –

k∗ = argmin
k∈[M ]

ϑ(G(k)) = argmax
k∈[M ]

ϑ(Ḡ(k)) (33)

where Ḡ(k) is the complement graph of G(k). The second equivalence follows from the fact that
ϑ(G)ϑ(Ḡ) = n [6] for any graph G. We state some important lemmas, used in the generaliza-
tion analysis. We begin with a trivial bound on the spectral norm of convex combination of graph
orthonormal embeddings –
Lemma 4. For any K ∈ K(G) and η ∈ SM−1,

λ1(K̃η) ≤ λ1(K(l∗)) where l∗ = argmax
l∈[M ]

λ1(K(l)) (34)

Proof. We use convexity of the spectral norm to prove our result –

λ1(K̃η) = λ1

( ∑
k∈[M ]

ηkK
(k)
)
≤
∑
k∈[M ]

ηkλ1(K(k)) ≤ max
τ∈SM−1

∑
k∈[M ]

τkλ1(K(k)) = λ(K(l∗))

where l∗ as in the statement of the Lemma.

We bound the spectral norm over all possible orthonormal embeddings of multiple graphs by ϑ –
Lemma 5. Given a set of simple graphs G

max
K∈K(G)

max
k∈[M ]

λ1(K(k)) = ϑ
(
Ḡ(k∗)

)
where Ḡk is the complement graph of Gk, and k∗ as in (33).

Proof. From Lemma 2 (paper), it follows that maxK∈K(G) λ1(K) = ϑ(Ḡ). Thus, we get

max
K(k)∈K(G(k)), k∈[M ]

max
k∈[M ]

λ1(K(k)) = max
k∈[M ]

max
K∈K(G(k))

λ1(K) = max
k∈[M ]

ϑ(Ḡ(k))

The proof follows from the definition of k∗ in (33).

Similar to Lemma 3 (paper), we relate MKL formulation to ϑ –
Lemma 6. Given a set of simple graphs G = {G(1), . . . , G(M)} defined on a common vertex set V ,
let y ∈ Yn be the unknown binary labels. Then, for any subgraph S ⊆ V ,

min
K∈K(G)

min
η∈SM−1

ωC(K̃η,yS) ≤ ϑ(G)/2

where ϑ(G) as in (31).

Proof. For any simple graph G = (V,E), with unknown binary labels y ∈ Yn over the set V ;
we note an interesting property of orthonormal embedding that if U ∈ Lab(G), then Ũ = UY ∈
Lab(G), where Yij = yi, for i = j; 0 otherwise. Also, before we proceed, we recall a trivial bound
ωC(K̃η,yS) ≤ ω∞(K̃η,y), which follows from the primal formulation of SVM. Now, we bound
the quantity of interest as follows –

min
K∈K(G)

min
η∈SM−1

ωC(K̃η,yS) ≤ min
K∈K(G)

min
η∈SM−1

ω∞(K̃η,y)

= min
U(k)∈Lab(G(k))

min
η∈SM−1

min
w(k)∈Rdk

1

2

∑
k∈[M ]

ηk‖w(k)‖22 s.t. yi
∑
k∈[M ]

ηkw
(k)>u

(k)
i ≥ 1, ∀i ∈ [N ]

Note that here u
(k)
i is the ith column of the orthonormal embedding of kth graph. Also, we assume

that each orthonormal embedding U(k) is of the dimension dk × n. Now, using the property of
orthonormal embedding in the beginning of the proof, we get

= min
Ũ(k)∈Lab(G(k))

min
η∈SM−1

min
w(k)∈Rdk

1

2

∑
k∈[M ]

ηk‖w(k)‖22 s.t.
∑
k∈[M ]

ηkw
(k)>ũ

(k)
i ≥ 1, ∀i ∈ [N ]

where Ũ(k) = U(k)Y. Finally, using the dual formulation of MKL proves the result.
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We relate ϑ of the multiple graphs (31) to that of individual graphs –

Lemma 7. ϑ(G) ≤ ϑ(G(k∗)), where ϑ(G) as in (31), and k∗ as in (33).

Proof. Proof follows by applying an alternate definition of ϑ as in [4] –

ϑ(G) = min
K∈K(G)

ω̄(K)

where ω(·) as in (32). Now, expanding ϑ(G), we get

ϑ(G) = min
K(k)∈K(G(k)),∀k∈[M ]

min
η∈SM−1

ω̄
( ∑
k∈[M ]

ηkK
(k)
)

≤ min
K(k)∈K(G(k)),∀k∈[M ]

min
k∈[M ]

ω̄
(
K(k)

)
≤ min
k∈[M ]

(
min

K∈K(G(k))
ω̄
(
K
))

Using the definition of ϑ above, and k∗ as in (33) proves the result.

Now, we prove the main result on multiple graph transduction. Let K∗ be the optimal graph embed-
dings computed from (17) (paper). Let α∗, η∗ be the solution to minη∈SM−1 ωC(K̃∗

η
,yS), then the

final predictions of (17) (paper) is given by ŷi =
∑
j∈S

η∗kK
∗(k)
ij α

∗
jyj , ∀i ∈ [n]. The proposed MKL

style solution allows is to extend Theorem 4 (paper) to the multiple graphs setting –
Theorem 8. Given a set of simple graphs G and labels of a randomly drawn subgraph S ⊂ V, m =

|S|; let ŷ be the predictions learnt by MKL-SPORE (17) for parameters C =
(

ϑ(G)

m
√
ϑ(Ḡ(k∗))

) 1
2

and

β = ϑ(G)

ϑ(Ḡ(k∗))
, where k∗ as in (33). Then, for m ≤ n/2, with probability ≥ 1− δ over the choice of

S ⊆ V , such that |S| = m

er0-1
S̄ [ŷ] = O

( 1

m

(√
nϑ(G) + log

1

δ

)) 1
2

where ϑ(G) as in (31).

Proof. Let K∗ = {K∗(1), . . . ,K∗(M)}, η∗ be the kernels learnt by MKL-SPORE (17) (paper). Let

K̃∗
η∗

=
∑

k∈[M ]

η∗kK
∗(k). Applying Theorem 1 (paper) for the final predictions ŷ, we obtain

er0-1
S̄ [ŷ] ≤ 1

m

∑
i∈S

`hng(yi, ŷi) + 2C

√
2λ1

(
K̃∗

η∗)
+O

(√ 1

m
log

1

δ

)
Using λ1

(
K̃∗

η∗) ≤ λ1

(
K∗(l

∗)
)

from Lemma 4, where l∗ as in (34) and λ1

(
K∗(l

∗)
)
≤ ϑ

(
Ḡ(l∗)

)
from Lemma 2 (paper), we get

≤ 1

m

∑
i∈S

`hng(yi, ŷi) + 2C
√

2ϑ
(
Ḡ(l∗)

)
+O

(√ 1

m
log

1

δ

)
(35)

where Ḡ(l∗) is complement graph of G(l∗). Using a similar argument as in the proof of Theorem 4
(paper), using the primal formulation of (3) (paper), we get

C
∑
i∈S

`hng(yi, ŷi) ≤ ωC(K̃∗
η∗

,yS) ≤ ΦC,β(G,yS)

= min
K∈K(G)

(
min

η∈SM−1
ωC(K̃η,yS) + β max

k∈[M ]
λ1(K(k))

)
≤ min

K∈K(G)
min

η∈SM−1
ωC(K̃η,yS) + β max

K∈K(G)
max
k∈[M ]

λ1(K) ≤ ϑ(G)

2
+ βϑ

(
Ḡ(k∗)

)
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The last inequality follows from Lemma 5 and Lemma 6. Plugging back in (35) –

er0-1
S̄ [ŷ] ≤ 1

2Cm
ϑ(G) +

β

Cm
ϑ(Ḡ(k∗)) + 2C

√
2ϑ(Ḡ(k∗)) +O

(√ 1

m
log

1

δ

)
where the last inequality follows by using ϑ(Ḡ(l∗)) ≤ ϑ(Ḡ(k∗)), from the definition of k∗ (33).

Choosing β such that β
Cmϑ

(
Ḡ(k∗)

)
= 2C

√
2ϑ
(
Ḡ(k∗)

)
and optimizing for C gives us the choice

of parameters as in the statement of the theorem. Plugging back in (35), we get

= O

(
1√
m

(√
ϑ(G)

√
ϑ(Ḡ(k∗)) +

√
log

1

δ

))
= O

(
1

m

(
ϑ(G)

√
ϑ(Ḡ(k∗)) + log

1

δ

)) 1
2

where the last inequality follows from concavity
√
a +
√
b ≤

√
2(a+ b). Finally, using ϑ(G) ≤

ϑ(G(k∗)) from the definition of k∗, and ϑ(G(k∗))ϑ(Ḡ(k∗)) = n [6] proves the result.

We can also apply the proposed algorithm in Section 4 to solve for (17) efficiently. Let Y be a
diagonal matrix such that Yii = yi, for i ∈ S, and 0 otherwise. The subgradient at tth iteration, for
the kth graph is given by ∂

K
(k)
t
ḡ(Kt) = − 1

2ηtkYαtα
>
t Y + 1[k = l∗]βvtv

>
t , where ηt, αt are the

solutions returned by MKL minη∈SM−1 ωC(K̃t
η
,yS), and vt = argmaxv∈Rn,‖v‖=1 v

>K
(l∗)
t v is

maximum Eigen vector of K(l∗)
t , where l∗ = argmaxl∈[M ] λ1(K

(l)
t ) as in Lemma 4.
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