
Appendix

8 Background

8.1 Optimization

The main results in this paper rely strongly on the work of Schmidt et al. [26] on the convergence of
proximal gradient methods with errors in estimated gradients. The first result used is the following
theorem for the convergence of gradient descent on convex functions with errors in the estimated
gradients.

Theorem 10. (Special case of [26, Proposition 1]) Suppose that a function f is convex with an
L-Lipshitz gradient (meaning ∥f ′(φ) − f ′(θ)∥2 ≤ L∥φ− θ∥2). If Θ is a closed convex set and one
iterates

θk ← ΠΘ

[

θk−1 −
1

L
(f ′(θk−1) + ek)

]

,

then, defining θ∗ ∈ argminθ∈Θ f(θ), for all K ≥ 1, we have, for AK :=
∑K

k=1
∥ek∥
L , that

f

(

1

K

K
∑

k=1

θk

)

− f(θ∗) ≤
L

2K
(∥θ0 − θ∗∥2 + 2AK)2 .

This section will show that this is indeed a special case of .[26] To start with, we simply restate
exactly the previous result [26, Proposition 1], with only trivial changes in notation.

Theorem 11. Assume that:

• f is convex and has L-Lipschitz continuous gradient

• h is a lower semi-continuous proper convex function.

• The function r = f + h attains it’s minimum at a certain θ∗ ∈ Rn.

• θk is an ϵk-optimal solution, i.e. that

L

2
∥θk − y∥2 + h(θk) ≤ ϵk + min

θ∈Rn

L

2
∥θ − y∥2 + h(θ)

where

y = θk−1 −
1

L
(f ′(θk−1) + ek) .

Then, for all K ≥ 1, one has that

r

(

1

K

K
∑

k=1

θk

)

− r(θ∗) ≤
L

2K

(

∥θ0 − θ∗∥+ 2AK +
√

2BK

)2

with

AK =
K
∑

k=1

(

∥ek∥
L

+

√

2ϵk
L

)

, BK =
K
∑

k=1

ϵk
K

.

The first theorem follows from this one by setting h to be the indicator function for the set Θ, i.e.

h(θ) =

{

0 θ ∈ Θ
∞ θ ̸∈ Θ

and assuming that ϵk = 0. By the convexity of Θ, h will be a lower semi-continuous proper convex
function. Further, from the fact that Θ is closed, r will attain its minimum. Now, we verify that this

10



results in the theorem statement at the start of this section. θk takes the form

θk = arg min
θ∈Rn

L

2
∥θ − y∥2 + h(θ)

= argmin
θ∈Θ
∥θ − y∥

= argmin
θ∈Θ
∥θ − θk−1 +

1

L
(f ′(θk−1) + ek) ∥

= ΠΘ

[

θk−1 −
1

L
(f ′(θk−1) + ek)

]

.

We will also use the following result for strongly-convex optimzation. The special case follows from
the same construction used above.

Next, consider the following result on optimization of strongly convex functions, which follows
from [26] by a very similar argument.

Theorem 12. (Special case of [26, Proposition 3]) Suppose that a function f is λ-strongly convex
with an L-Lipshitz gradient (meaning ∥f ′(φ) − f ′(θ)∥2 ≤ L∥φ− θ∥2). If Θ is a closed convex set
and one iterates

θk ← ΠΘ

[

θk−1 −
1

L
(f ′(θk−1) + ek)

]

,

Then, defining θ∗ = argminθ∈Θ f(θ), for all K ≥ 1, we have, for Āk =
∑K

k=1(1−
λ
L )

−k ∥ek∥
L that

∥θK − θ∗∥2 ≤ (1 −
λ

L
)K
(

∥θ0 − θ∗∥2 + Āk

)

Corollary 13. Under the same conditions, if ∥ek∥ ≤ r for all k, then

∥θK − θ∗∥2 ≤ (1−
λ

L
)K∥θ0 − θ∗∥2 +

rL

λ

Proof. Using the fact that
∑K

k=1 a
−k = a−K

∑K−1
k=0 ak ≤ a−K

∑∞
k=0 a

k = a−K

1−a , we get that

ĀK ≤ r
K
∑

k=1

(1 −
λ

L
)−k ≤ r

L

λ
(1−

λ

L
)−K ,

and therefore that

∥θK − θ∗∥2 ≤ (1 −
λ

L
)K
(

∥θ0 − θ∗∥2 + r
L

λ
(1 −

λ

L
)−K

)

.

8.2 Concentration Results

Three concentration inequalities, are stated here for reference. The first is Bernstein’s inequality.

Theorem 14. (Bernstein’s inequality) SupposeZ1, ..., ZK are independent with mean 0, that |Zk| ≤
c and that σ2

i = V[Zi]. Then, if we define σ2 = 1
K

∑K
k=1 σ

2
k,

P

[

1

K

K
∑

k=1

Zk > ϵ

]

≤ exp

(

−
Kϵ2

2σ2 + 2cϵ/3

)

.

The second is the following Hoeffding-type bound to control the difference between the expected
value of t(X) and the estimated value using M samples.

Theorem 15. If X1, ..., XM are independent variables with mean µ, and ∥Xi − µ∥ ≤ c, then for
all ϵ ≥ 0, with probability at least 1− δ,

∥X̄ − µ∥ ≤
√

c

4M

(

1 +

√

2 log
1

δ

)

.
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Proof. Boucheron et al. [2013, Ex. 6.3] show that, under the same conditions as stated, for all
s ≥
√
v,

P

[

∥X̄ − µ∥ >
s

M

]

≤ exp

(

−
(s−

√
v)2

2v

)

,

where v = cM
4 . We will fix δ, and solve for the appropriate s. If we set δ = exp(− (s−

√
v)2

2v ), then

we have that s =
√

2v log 1
δ +
√
v, meaning that, with probability at least 1− δ,

∥X̄ − µ∥ ≤
1

M

(

√

2
cM

4
log

1

δ
+

√

cM

4

)

,

which is equivalent to the result with a small amount of manipulation.

The third is the Efron-Stein inequality [4, Theorem 3.1].

Theorem 16. If X = (X1, ..., Xm) is a vector of independent random variables and f(X) is a
square-integrable function, then

V[f(X)] ≤
1

2

M
∑

i=1

E

[

(

(f(X)− f(X(i))
)2
]

,

where X(i) is X with Xi independently re-drawn, i.e.

X(i) = (X1, ..., Xi−1, X
′
i′ , Xi+1, ..., Xm).

9 Preliminary Results

A result that we will use several times below is that, for 0 < α < 1, − 1
log(α) ≤

1
1−α . This bound is

tight in the limit that α→ 1.

Lemma 17. The difference of two estimated mean vectors is bounded by

∥Eq[t(X)]− Ep[t(X)]∥2 ≤ 2R2∥q − p∥TV .

Proof. Let the distribution functions of p and q be P and Q, respectively. Then, we have that

∥E
p
[t(X)]− E

q
[t(X)]∥2 =

∥

∥

∥

∥

ˆ

x
t(x) (dP (x)− dQ(x))

∥

∥

∥

∥

2

≤
ˆ

x
|dP (x)− dQ(x)| · ∥t(x)∥2.

Using the definition of total-variation distance, and the bound that ∥t(x)∥2 ≤ R2 gives the result.

Lemma 18. If 1/a+ 1/b = 1, then the difference of two log-partition functions is bounded by

|A(θ) −A(φ)| ≤ Ra∥θ − φ∥b.

Proof. By the Lagrange remainder theorem, there must exist some γ on the line segment between θ
and φ such that A(φ) = A(θ)+ (φ− θ)T∇γA(γ). Thus, applying Hölder’s inequality, we have that

|A(φ) −A(θ)| = |(φ− θ)T∇γA(γ)| ≤ ∥φ− θ∥b · ∥∇γA(γ)∥a.

The result follows from the fact that ∥∇γA(γ)∥a = ∥Epγ t(X)∥a ≤ Ra.

Next, we observe that the total variation distance between pθ and pφ is bounded by the distance
between θ and φ.

Theorem 19. If 1/a+ 1/b = 1, then the difference of distributions is bounded by

∥pθ − pφ∥TV ≤ 2Ra∥θ − φ∥b.
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Proof. If we assume that pθ is a density, we can decompose the total-variation distance as

||pθ − pφ||TV

=
1

2

ˆ

x
pθ(x)|1 −

pφ(x)

pθ(x)
|

=
1

2

ˆ

x
pθ(x) |1− exp ((φ− θ) · t(x)−A(φ) +A(θ))|

≤
1

2

ˆ

x
pθ(x) |1− exp |(φ− θ) · t(x)−A(φ) +A(θ)|| .

If pθ is a distribution, the analogous expression is true, replacing the integral over x with a sum.

We can upper-bound the quantity inside exp by applying Hölder’s inequality and the previous
Lemma as

|(φ − θ) · t(x) −A(φ) +A(θ))|
≤ |(φ− θ) · t(x)|+ |A(φ) −A(θ))|
≤ 2Ra∥θ − φ∥b.

From which we have that

∥pθ − pφ∥TV ≤
1

2
|1− exp (2Ra∥θ − φ∥b)| .

If 2Ra∥θ − φ∥b > 1, the theorem is obviously true, since ∥ · ∥TV ≤ 1. Suppose instead that that
2Ra∥θ− φ∥b ≤ 1. If 0 ≤ c ≤ 1, then 1

2 |1− exp(c)| ≤ c e−1
2 . Applying this with c = 2Ra∥θ− φ∥b

gives that ||pθ−pφ||TV ≤ (e−1)R2||θ−φ||b. The result follows from the fact that 2 > (e−1).

10 Lipschitz Continuity

This section shows that the ridge-regularized empirical log-likelihood does indeed have a Lipschitz
continuous gradient.

Theorem 20. The regularized log-likelihood function is L-Lipschitz with L = 4R2
2 + λ, i.e.

∥f ′(θ)− f ′(φ)∥2 ≤ (4R2
2 + λ)∥θ − φ∥2.

Proof. We start by the definition of the gradient, with

∥f ′(θ)− f ′(φ)∥2 =

∥

∥

∥

∥

(

dA

dθ
− t̄+ λθ

)

−
(

dA

dφ
− t̄+ λφ

)∥

∥

∥

∥

2

= ∥
dA

dθ
−

dA

dφ
+ λ(θ − φ)∥2.

≤ ∥
dA

dθ
−

dA

dφ
∥2 + λ∥θ − φ∥2.

Now, looking at the first two terms, we can apply Lemma 17 to get that
∥

∥

∥

∥

dA

dθ
−

dA

dφ

∥

∥

∥

∥

2

=
∥

∥Epθ
[t(X)]− Epφ

[t(X)]
∥

∥

2

≤ 2R2∥pθ − pφ∥TV .

Observing by Theorem 19 that ∥pθ − pφ∥TV ≤ 2R2∥θ − φ∥2 gives that

∥f ′(θ)− f ′(φ)∥2 ≤ 4R2
2∥θ − φ∥2 + λ∥θ − φ∥2
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11 Convex Convergence

This section gives the main result for convergence this is true both in the regularized case where
λ > 0 and the unregularized case where λ = 0. The main difficulty in this proof is showing that the
sum of the norms of the errors of estimated gradients is small.

Theorem 21. Assuming that X1, ..., XM are independent and identically distributed with mean µ
and that ∥Xm∥2 ≤ R2, then

E

[

∥
1

M

M
∑

m=1

Xm − µ∥2

]

≤
2R2√
M

Proof. Using that E
[

Z2
]

= V [Z] +E [Z]2and the fact that the variance is non-negative (Or simply
Jensen’s inequality), we have

E

[

∥
1

M

M
∑

m=1

Xm − µ∥2

]2

≤ E

[

∥
1

M

M
∑

m=1

Xm − µ∥22

]

=
1

M
E
[

∥Xm − µ∥22
]

≤
1

M
(2R2)

2

=
4R2

2

M
.

Taking the square-root gives the result.

Theorem 22. Assuming that X1, ..., XM are iid with mean µ and that ∥Xm∥ ≤ R2, then

V

[

∥
1

M

M
∑

m=1

Xm − µ∥

]

≤
2R2

2

M
.

Proof.

V

[

∥
1

M

M
∑

m=1

Xm − µ∥

]

= V

[

∥
1

M

M
∑

m=1

(Xm − µ)∥

]

=
1

M2
V

[

∥
M
∑

m=1

(Xm − µ)∥

]

Now, the Efron-Stein inequality tells us that

V[f(X1, ..., Xm)] ≤
1

2

M
∑

m′=1

E

[

(

(f(X)− f(X(m′))
)2
]

where X(m′) is X with Xm′ independently re-drawn. Now, we identify f(X1, ..., Xm) =

∥
∑M

m=1(Xm − µ)∥ to obtain that

V

[

∥
M
∑

m=1

(Xm − µ)∥

]

≤
1

2

M
∑

m′=1

E

⎡

⎣

(

∥
M
∑

m=1

(Xm − µ)∥ − ∥
M
∑

m=1

(X(m′)
m − µ)∥

)2
⎤

⎦ .

Further, since we know that

M
∑

m=1

(X(m′)
m − µ) =

M
∑

m=1

(Xm − µ) +X(m′)
m′ −Xm′ ,
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we can apply that that (∥a+ b∥ − ∥a∥)2 ≤ ∥b∥2 to obtain that

(

∥
M
∑

m=1

(Xm − µ)∥ − ∥
M
∑

m=1

(X(m′)
m − µ)∥

)2

= ∥X(m′)
m′ −Xm′∥2,

and so

V

[

∥
M
∑

m=1

(Xm − µ)∥

]

≤
1

2

M
∑

m′=1

E

[

∥X(m′)
m′ −Xm′∥2

]

.

And, since we assume that ∥Xm∥ ≤ R2, ∥X
(m′)
m′ −Xm′∥ ≤ 2R2, which leads to

V

[

∥
M
∑

m=1

(Xm − µ)∥

]

≤ 2MR2
2,

from which it follows that

V

[

∥
1

M

M
∑

m=1

Xm − µ∥

]

≤
2R2

2

M
.

Theorem 23. With probability at least 1− δ,

K
∑

k=1

∥
1

M

M
∑

i=1

t(xk
i )− Eqk [t(X)]∥2 ≤ Kϵ(δ) +

2R2K√
M

,

where ϵ(δ) is the solution to

δ = exp

(

−
Kϵ2

4R2
2/M + 4R2ϵ/3

)

. (5)

Proof. Let dk = 1
M

∑M
i=1 t(x

k
i ) − Eqk [t(X)]. Applying Bernstein’s inequality immediately gives

us that

P

[

1

K

K
∑

k=1

(∥dk∥2 − E∥dk∥2) > ϵ

]

≤ exp

(

−
Kϵ2

2σ2 + 2cϵ/3

)

.

Here, we can bound σ2 by

σ2 =
1

K

K
∑

k=1

σ2
k =

1

K

K
∑

k=1

V [∥dk∥2 − E∥dk∥2] =
1

K

K
∑

k=1

V [∥dk∥2] ≤
2R2

2

M
,

where the final inequality follows from Theorem 22. We also know that ∥dk∥ ≤ 2R2 = c, from
which we get that

P

[

1

K

K
∑

k=1

∥dk∥2 − E[∥dk∥2] > ϵ

]

≤ exp

(

−
Kϵ2

4R2
2/M + 4R2ϵ/3

)

.

So we have that, with probability 1− δ

1

K

K
∑

k=1

∥dk∥2 − E[∥dk∥2] ≤ ϵ(δ)

1

K

K
∑

k=1

∥dk∥2 ≤ ϵ(δ) + E[∥dk∥2]

≤ ϵ(δ) +
2R2√
M

,

where the final inequality follows from Theorem 21.
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Corollary 24. If M ≥ 3K/ log(1δ ), then with probability at least 1− δ,

K
∑

k=1

∥
1

M

M
∑

i=1

t(xk
i )− Eqk [t(X)]∥2 ≤ 2R2

(

K√
M

+ log
1

δ

)

.

Proof. Solving Equation 5 for ϵ yields that

ϵ(δ) =
2R2

3K

⎛

⎝log
1

δ
+

√

(

log
1

δ

)2

+
9K log 1

δ

M

⎞

⎠ .

Now, suppose that 3K
M ≤ log 1

δ , as assumed here. Then,

ϵ(δ) ≤
2R2

3K

⎛

⎝log
1

δ
+

√

(

log
1

δ

)2

+ 3(log
1

δ
)2

⎞

⎠

≤
2R2

3K

(

log
1

δ
+ 2 log(

1

δ
)

)

=
2R2

K
log

1

δ
.

Substituting this bound into the result of Theorem 23 gives the result.

Now, we can prove the main result.

Theorem 25. With probability at least 1− δ, at long as M ≥ 3K/ log(1δ ),

f

(

1

K

K
∑

k=1

θk

)

− f(θ∗) ≤
8R2

2

KL

(

L∥θ0 − θ∗∥2
4R2

+ log
1

δ
+

K√
M

+KCαv

)2

.

Proof. Applying Theorem 10 gives that

f

(

1

K

K
∑

k=1

θk

)

− f(θ∗) ≤
L

2K
(∥θ0 − θ∗∥2 + 2AK)2 ,

for AK = 1
L

∑K
k=1 ∥ek∥, where

ek =
1

M

M
∑

i=1

t(xk−1
i )− t̄+ λθk−1 − f ′(θk−1)

=
1

M

M
∑

i=1

t(xk−1
i )− Epk−1

[t(X)].

Now, we know that

K
∑

k=1

∥ek∥ ≤
K
∑

k=1

∥
1

M

M
∑

i=1

t(xk−1
i )− Eqk−1

[t(X)]∥2 +
K
∑

k=1

∥Eqk−1
[t(X)]− Epk−1

[t(X)]∥2.

We have by Lemma 17 and the assumption of mixing speed that

∥Eqk−1
[t(X)]− Epk−1

[t(X)]∥2 ≤ 2R2∥qk−1 − pk−1∥TV ≤ 2R2Cαv .

Meanwhile, the previous Corollary tells us that, with probability 1− δ,

K
∑

k=1

∥
1

M

M
∑

i=1

t(xk−1
i )− Eqk−1

[t(X)]∥2 ≤ 2R2

(

K√
M

+ log
1

δ

)
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Thus, we have that

f

(

1

K

K
∑

k=1

θk

)

− f(θ∗) ≤
L

2K

(

∥θ0 − θ∗∥2 +
2

L

(

2R2

(

K√
M

+ log
1

δ

)

+ 2R2KCαv

))2

=
L

2K

(

∥θ0 − θ∗∥2 +
4R2

L

(

K√
M

+ log
1

δ
+KCαv

))2

=
8R2

2

KL

(

L∥θ0 − θ∗∥2
4R2

+ log
1

δ
+

K√
M

+KCαv

)2

.

Now, what we really want to do is guarantee that f
(

1
K

∑K
k=1 θk

)

− f(θ∗) ≤ ϵ, while ensuring the

the total work MKv is not too large. Our analysis will use the following theorem.

Theorem 26. Suppose that a, b, c,α > 0. If β1 + β2 + β3 = 1, β1,β2,β3 > 0, then setting

K =
a2

β2
1ϵ

, M = (
ab

β1β2ϵ
)2, v =

log ac
β1β3ϵ

(− logα)

is sufficient to guarantee that 1
K

(

a+ b K√
M

+Kcαv
)2
≤ ϵ with a total work of

KMv =
1

β4
1β

2
2

a4b2

ϵ3
log ac

β1β3ϵ

(− logα)
.

Proof. Firstly, we should verify the ϵ bound. We have that

a+ b
K√
M

+Kcαv = a+ b
a2

β2
1ϵ

β1β2ϵ

ab
+

a2

β2
1ϵ

c
β1β3ϵ

ac

= a+ a
β2

β1
+ a

β3

β1
,

and hence that

1

K

(

a+ b
K√
M

+Kcαv

)2

=
a2

K

(

1 +
β2

β1
+

β3

β1

)2

=
1

K

a2

β2
1

(β1 + β2 + β3)
2

≤ ϵ.

Multiplying together th terms gives the second part of the result.

We can also show that this solution is not too sub-optimal.

Theorem 27. Suppose that a, b, c,α > 0. If K,M, v > 0 are set so that

1
K

(

a+ b K√
M

+Kcαv
)2
≤ ϵ, then

KMv ≥
a4b2

ϵ3
log ac

ϵ

(− logα)
.

Proof. The starting condition is equivalent to stating that

a√
K

+ b

√

K

M
+
√
Kcαv ≤

√
ϵ.
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Since all terms are positive, clearly each is less than
√
ϵ. From this follows that

K ≥
a2

ϵ

M ≥
b2a2

ϵ2

v ≥
log ac

ϵ

(− logα)
.

Multiplying these together gives the result.

Theorem 28. If D ≥ max
(

∥θ0 − θ∗∥2, 4R2

L log 1
δ

)

, then for all ϵ there is a setting of KMv such

that f
(

1
K

∑K
k=1 θk

)

− f(θ∗) ≤ ϵf with probability 1− δ and

KMv ≤
32LR2

2D
4

β4
1β

2
2ϵ

3
f (1− α)

log
4DR2C

β1β3ϵf

= O

(

LR2
2D

4

ϵ3f (1− α)
log

1

ϵf

)

= Õ

(

LR2
2D

4

ϵ3f (1− α)

)

.

Proof. So, we apply this to the original theorem. Our settings are

f

(

1

K

K
∑

k=1

θk

)

− f(θ∗) ≤
8R2

2

KL

(

L∥θ0 − θ∗∥2
4R2

+ log
1

δ
+

K√
M

+KCαv

)2

.

a =
L∥θ0 − θ∗∥2

4R2
+ log

1

δ
b = 1

c = C

ϵ =
ϵfL

8R2
2

Note that, by the definition of D, a ≤ LD
2R2

and so ac ≤ LDC
2R2

. Thus, the total amount of work is

KMv =
1

β4
1β

2
2

a4b2

ϵ3
log β1β3ϵ

ac

logα

=
1

β4
1β

2
2

a4b2

ϵ3
log ac

β1β3ϵ

− logα

≤
1

β4
1β

2
2

1

ϵ3

(

LD

2R2

)4 log LDC
β1β32R2ϵ

logα

=
1

β4
1β

2
2

83R6
2

ϵ3fL
3

(

LD

2R2

)4 log LDC8R2

2

β1β32R2ϵfL

logα

=
1

β4
1β

2
2

32LD4R2
2

ϵ3f

log 4DR2C
β1β3ϵf

logα

≤
32LD4R2

2

β4
1β

2
2ϵ

3(1− α)
log

4DR2C

β1β3ϵ
.
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12 Strongly Convex Convergence

This section gives the main result for convergence this is true both only in the regularized case where
λ > 0. Again, the main difficulty in this proof is showing that the sum of the norms of the errors
of estimated gradients is small. This proof is relatively easier, as we simply bound all errors to be
small with high probability, rather than jointly bounding the sum of errors.

Lemma 29. With probability at least 1− δ,

∥ek+1∥2 ≤
R2√
M

(

1 +

√

2 log
1

δ

)

+ 2R2Cαv

Proof. Once we have the difference of the distributions, we can go after the error in the gradient
estimate. By definition,

∥ek+1∥2 = ∥
1

M

M
∑

i=1

t(xk
i )− Epθk

[t(X)]∥2

≤ ∥
1

M

M
∑

i=1

t(xk
i )− Eqk [t(X)]∥2

+ ∥Eqk [t(X)]− Epθk
[t(X)]∥2.

Consider the second term. We know by Lemma 17 and the assumption of mixing speed

∥Eqk [t(X)]− Epk
[t(X)]∥2 ≤ 2R2∥qk − pk∥TV ≤ 2R2Cαv. (6)

Now, consider the first term. We know that Eqk [t(X)] is the expected value of 1
M

∑M
i=1 t(x

k
i ). We

also know that ||t(xk
i ) − Eqk [t(X)]|| ≤ 2R2. Thus, we can apply Theorem 15 to get that, with

probability 1− δ,
∥

∥

∥

∥

∥

1

M

M
∑

i=1

t
(

xk
i

)

− Eqk [t(X)]

∥

∥

∥

∥

∥

≤
R2√
M

(

1 +

√

2 log
1

δ

)

. (7)

Adding together Equations 6 and 7 gives the result.

Theorem 30. With probability at least 1− δ,

∥θK − θ∗∥2 ≤ (1 −
λ

L
)K∥θ0 − θ∗∥2 +

L

λ

(

√

R2

2M

(

1 +

√

2 log
K

δ

)

+ 2R2Cαv

)

Proof. Apply the previous Lemma to bound bound on ∥ek+1∥2 with probability at least 1−δ′ where
δ′ = δ/K . Then, plug this into the main optimization result in Corollary 13.

Theorem 31. Suppose a, b, c > 0. Then for any K,M, v such that γKa+ b√
M

√

log K
δ + cαv ≤ ϵ.

it must be the case that

KMv ≥
b2

ϵ2
log a

ϵ log
c
ϵ

(− log γ)(− logα)
log

(

log a
ϵ

δ(− log γ)

)

Proof. Clearly, we must have that each term is at most ϵ, yielding that

K ≥
log ϵ

a

log γ

M ≥
b2

ϵ2
log

K

δ
≥

b2

ϵ2
log

log ϵ
a

δ log γ

v ≥
log(c/ϵ)

(− logα)
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From this we obtain that

KMv ≥
b2

ϵ2
log a

ϵ log(c/ϵ)

(− log γ)(− logα)
log

(

log a
ϵ

δ(− log γ)

)

.

Theorem 32. Suppose that a, b, c,α > 0. If β1 + β2 + β3 = 1, βi > 0, then setting

K = log(
a

β1ϵ
)/(− log γ)

M =
b2

ϵ2β2
2

(

1 +

√

2 log
K

δ

)2

v = log

(

c

β3ϵ

)

/(− logα)

is sufficient to guarantee that γKa+ b√
M
(1 +

√

2 log K
δ ) + cαv ≤ ϵ with a total work of at most

KMV ≤
b2

ϵ2β2
2

log
(

a
β1ϵ

)

log
(

c
β3ϵ

)

(− log γ)(− logα)

⎛

⎝1 +

√

2 log
log( a

β1ϵ
)

δ(− log γ)

⎞

⎠

2

Proof. We define the errors so that

γKa = ϵβ1

b√
M

(1 +

√

2 log
K

δ
) = ϵβ2

cαv = ϵβ3.

Solving, we obtain that

K = log(
a

β1ϵ
)/(− log γ)

M =
b2

ϵ2β2
2

(

1 +

√

2 log
K

δ

)2

v = log

(

c

β3ϵ

)

/(− logα).

This yields that the final amount of work is

KMv ≤
log
(

a
β1ϵ

)

log
(

c
β3ϵ

)

(− log γ)(− logα)

b2

ϵ2β2
2

⎛

⎝1 +

√

2 log
log( a

β1ϵ
)

δ(− log γ)

⎞

⎠

2

Remark 33. For example, you might choose β2 = 1
2 ,β1 = 1

4 and β3 = 1
4 , in which case the total

amount of work is bounded by

KMv ≤
4b2

ϵ2
log
(

4a
ϵ

)

log
(

4c
ϵ

)

(− log γ)(− logα)

⎛

⎝1 +

√

2 log
log(4aϵ )

δ(− log γ)

⎞

⎠

2

=
4b2

ϵ2

(

log
(

a
ϵ

)

+ log 4
)

(log
(

4c
ϵ

)

+ log 4)

(− log γ)(− logα)

(

1 +

√

2 log
log(aϵ ) + log 4

δ(− log γ)

)2

Or, if you choose β2 = 1/
√
2 and β1 = β3 = (1− 1/

√
2)/2 ≈ 0.1464, then you get the bound of

KMV ≤
2b2

ϵ2

(log
(

a
ϵ

)

+ 1.922)(log
(

c
β3

)

+ 1.922)

(− log γ)(− logα)

(

1 +

√

2 log
log(aϵ ) + 1.922

δ(− log γ)

)2

which is not too much worse than the lower-bound.
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Corollary 34. If we choose

K ≥
L

λ
log

(

∥θ0 − θ∥2
β1ϵ

)

M ≥
L2R2

2ϵ2β2
2λ

2

(

1 +

√

2 log
K

δ

)2

v ≥
1

1− α
log

(

2LR2C

β3ϵλ

)

then ∥θK − θ∗∥2 ≤ ϵ with probability at least 1− δ, and the total amount of work is bounded by

KMv ≤
1

ϵ2

(

L

λ

)3 R2

2β2
2(1− α)

log

(

∥θ0 − θ∥2
β1ϵ

)

(

1 +

√

2 log

(

L

λδ
log

(

∥θ0 − θ∥2
β1ϵ

))

)2

Proof. Apply the previous convergence theory to our setting. We equate

(1−
λ

L
)K∥θ0−θ∗∥2+

L

λ

(

√

R2

2M

(

1 +

√

2 log
K

δ

)

+ 2R2Cαv

)

= γKa+
b√
M

(1+

√

2 log
K

δ
)+cαv.

This requires the constants

γ = 1−
λ

L
a = ∥θ0 − θ∥2

b =
L

λ

√

R2

2
c = 2LR2C/λ

Thus, we will make the choices

K = log(
a

β1ϵ
)/(− log γ)

≤ log(
∥θ0 − θ∥2

β1ϵ
)/(1− γ)

=
L

λ
log(
∥θ0 − θ∥2

β1ϵ
)

M =
b2

ϵ2β2
2

(

1 +

√

2 log
K

δ

)2

=
L2R2

2ϵ2β2
2λ

2

(

1 +

√

2 log
K

δ

)2

v = log

(

c

β3ϵ

)

/(− logα)

= log

(

2LR2C

β3ϵλ

)

/(− logα)

≤
1

1− α
log

(

2LR2C

β3ϵλ

)

This means a total amount of work of

KMv = =
L

λ
log(
∥θ0 − θ∥2

β1ϵ
)

L2R2

2ϵ2β2
2λ

2(1 − α)

(

1 +

√

2 log

(

L

λδ
log

(

∥θ0 − θ∥2
β1ϵ

))

)2

log

(

2LR2C

β3ϵλ

)

=
1

ϵ2

(

L

λ

)3 R2

2β2
2(1 − α)

log

(

∥θ0 − θ∥2
β1ϵ

)

(

1 +

√

2 log

(

L

λδ
log

(

∥θ0 − θ∥2
β1ϵ

))

)2

.
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