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MIT

Cambridge, MA, 02139
tlp@csail.mit.edu

In this supplementary material, we provide the proofs of the theoretical results. Along the way, we
also prove regret bounds for a general class of algorithms, the result of which may be used to design
a new algorithm.

We first provide a known property of the upper confidence bound of GP.

Lemma 1. (Bound Estimated by GP) According to the belief encoded in the GP prior/posterior1,
for anyx, f(x) ≤ U(x|D) holds during the execution of Algorithm 1 with probability at least1− η.

Proof. It follows the proof of lemma 5.1 of [1]. From the property of the standard gaussian distri-
bution,Pr(f(x) > U(x|D)) < 1

2e−ς2
M /2. Taking union bound on the entire execution of Algorithm

1, Pr(f(x) > U(x|D) ∀M ≥ 1) < 1
2

∑∞
M=1 e−ς2

M /2. SubstitutingςM =
√

2 log(π2M2/12η), we
obtain the statement. �

Our algorithm has a concrete division procedure in line 27 of Algorithm 1. However, one may im-
prove the algorithm with different division procedures. Accordingly, we first derive abstract version
of regret bound for the IMGPO (Algorithm 1) under a family of division procedures that satisfy
Assumptions 3 and 4. After that, we provide a proof for the main results in the paper.

A With Family of Division Procedure

In this section, we modify the result obtained by [2]. Let xh,i to be any point in the region covered
by theith hyperinterval at depthh, andx∗

h,i be the global optimizer that may exist in theith hy-
perinterval at depthh. The previous work provided the regret bound of the SOO algorithm with a
family of division procedure that satisfies the following two assumptions.

Assumption 3. (Decreasing diameter) There exists a diameter functionδ(h) > 0 such that, for
any hyperintervalωh,i ⊂ Ω and its centerch,i ∈ ωh,i and anyxh,i ∈ ωh,i, we haveδ(h) ≥
supxh,i

`(xh,i, ch,i) andδ(h − 1) ≥ δ(h) for all h ≥1.

Assumption 4. (Well-shaped cell) There existsν > 0 such that any hyperintervalωh,i contains at
least aǹ -ball of radiusνδ(h) centered inωh,i.

Thus, in this section, hyperinterval is not restricted to hyperrectangle. We now revisit the definitions
of several terms and variables used in [2]. Let theε-optimal spaceXε be defined asXε := {x ∈ Ω :
f(x)+ ε ≥ f(x∗)}. That is, theε-optimal space is the set of input vectors whose function value is at
leastε-close to the global optima. To bound the number of hyperintervals relevant to thisε-optimal
space, we define a near-optimality dimension as follows.

Definition 3. (Near-optimality dimension) The near-optimality dimension is the smallestd > 0
such that, there existsC > 0, for all ε > 0, the maximum number of disjoint̀-balls of radiusνε
with center in theε-optimal spaceXε is less thanCε−d.

1Thus, the probability in this analysis should be seen as that ofthe subjective view. If we assume thatf is
indeed a sample from the GP, we have the same result withthe objective viewof probability.
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Finally, we define the set ofδ-optimal hyperintervalsIδ(h) asIδ(h) := {ωh,i 3 ch,i : f(ch,i) +
δ(h) ≥ f(x∗)}. The δ-optimal hyperintervalIδ(h) is used to relate the hyperintervals to theε-
optimal space. Indeed, theδ-optimal hyperintervalIδ(h) is almost identical to theδ(h)-optimal
spaceXδ(h), except thatIδ(h) is focused on the center points whereasXδ(h) considers the whole
input vector space. In the following, we use|Iδ(h)| to denote the number ofIδ(h) and derive its upper
bound.

Lemma 2. (Lemma 3.1 in [2]) Let d be the near-optimality dimension andC denote the corre-
sponding constant in Definition 1. Then, the number ofδ-optimal hyperintervals is bounded by
|Iδ(h)|≤ Cδ(h)−d.

We are now ready to present the main result in this section. In the following, we use the termoptimal
hyperintervalto indicate a hyperinterval that contains a global optimizerx∗. We say a hyperinterval
is dominatedby other intervals when it is rejected or not selected in step (i)-(iii). In Lemma 3, we
bound the maximum size of the optimal hyperinterval. From Assumption 1, this can be translated to
the regret bound, as we shall see in Theorem 2.

Lemma 3. Let Ξn ≤ min(Ξ, Ξmax) be the largestξ used so far withn total node expansions. Let
h∗

n be the depth of the deepest expanded node that contains a global optimizerx∗ aftern total node
expansions (i.e.,h∗

n ≤ n determines the size of theoptimal hyperinterval). Then, with probability
at least1 − η, h∗

n is bounded below by someh′ that satisfies

n ≥

∑h′+Ξ
l=0 |Il|∑

τ =1

ρτ .

Proof. Let Th denote the time at which the optimal hyperinterval is further divided. We prove the
statement by showing that the time differenceTh+1 − Th is bounded by the number ofδ-optimal
hyperintervals. To do so, we first note that there are three types of hyperinterval that can dominate
an optimal hyperintervalch+1,∗ during the time[Th, Th+1 − 1], all of which belong toδ-optimal
hyperintervalsIδ. The first type has the same size (i.e., same depthh), ch+1,i. In this case,

f(ch+1,i) ≥ f(ch+1,∗) ≥ f(x∗
h+1,∗) − δ(h + 1),

where the first inequality is due to line 10 (step (i)) and the second follows Assumptions 1 and
2. Thus, it must bech+1,i ∈ Ih+1. The second case is where the optimal hyperinterval may be
dominated by a hyperinterval of larger size (depthl < h + 1), cl,i. In this case, similarly,

f(cl,i) ≥ f(ch+1,∗) ≥ f(x∗
h+1,∗) − δ(l),

where the first inequality is due to lines 11 to 12 (step (ii)) and thuscl,i ∈ Il. In the final scenario,
the optimal hyperinterval is dominated by a hyperinterval of smaller size (depthh+1+ξ), ch+1+ξ,i.
In this case,

f(ch+1+ξ,i) ≥ z(h + 1, ∗) ≥ f(x∗
h+1,∗) − δ(h + 1 + ξ)

with probability at least1 − η wherez(∙, ∙) is defined in line 21 of Algorithm 1. The first inequality
is due to lines 19 to 23 (step (iii)) and the second inequality follows Lemma 1 and Assumptions 1
and 3. Hence, we can see thatch+1+ξ,i ∈ Ih+1+ξ.

For all of the above arguments, the temporarily assignedU under GP has no effect. This is because
the algorithm still covers the above three types ofδ-optimal hyperintervalsIδ, asU ≥ f with
probability at least1 − η (Lemma 1). However, these are only expanded based onf because of the
temporary nature ofU . Putting these results together,

Th+1 − Th ≤

∑h+1+Ξn
l=1 |Iδ(l)|∑

τ=1

ρτ .

Since if one of theIδ is divided during[Th, Th+1 − 1], it cannot be divided again during another
time period,

h∗
n∑

h=0

Th+1 − Th ≤

∑h∗
n+1+Ξn

l=1 |Il|∑

τ=1

ρτ ,
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where on the right-hand side, we could combine the summation
∑h∗

n

h=0 and
∑∑h+1+Ξn

l=1 |Iδ(l)|
τ=1 into the

one, because eachh in the summation refers to the sameδ-optimal intervalIδ(l) with l ≤ h∗
n+1+Ξn,

and should not be double-counted. As
∑h∗

n

h=0 Th+1 − Th = Th∗
n+1 − T0, T0 = 1 and|Iδ(0)|= 1,

Th∗
n+1 ≤ 1 +

∑h∗
n+1+Ξn

l=1 |Il|∑

τ=1

ρτ ≤

∑h∗
n+1+Ξn

l=0 |Il|∑

τ=1

ρτ .

As Th∗
n+1 > n by definition, for anyh′ such that

∑∑h′+Ξn
l=0 |Il|

τ=1 ρτ ≤ n <
∑∑h∗

n+1+Ξn
l=0 |Il|

τ=1 ρτ , we
haveh∗

n > h′. �

With Lemmas 2 and 3, we are ready to present a finite regret bound with the family of division
procedures.

Theorem 2.Assume Assumptions 1, 3, and 4. Leth(n) be the smallest integerh such that

n ≤
C
∑h+Ξn

l=0 δ(l)−d

∑

τ=1

ρτ .

Then, with probability at least1 − η, the regret of the IMGPO with any general division procedure
is bounded as

rn ≤ δ(h(n) − 1).

Proof. Let c(n) andch∗
n,∗ be the center point expanded at thenth expansion and the optimal hy-

perinterval containing a global optimizerx∗, respectively. Then, from Assumptions 1, 3, and 4,
f(c(n)) ≥ f(ch∗

n,∗) ≥ f∗ − δ(h∗
n), wheref∗ is the global optima. Hence, the regret bound is

rh ≤ δ(h∗
n). To find a lower bound for the quantityh∗

n, we first relateh(n) to Lemma 3 by

n >

C
∑h(n)+Ξn−1

l=0 δ(l)−d

∑

τ=1

ρτ ≥

∑h(n)+Ξn−1
l=0 |Il|∑

τ=1

ρτ ,

where the first inequality comes from the definition ofh(n), and the second follows from Lemma 2.
Then, from Lemma 3, we haveh∗

n ≥ h(n) − 1. Therefore,rn ≤ δ(h∗
n) ≤ δ(h(n) − 1). �

Assumption 5. (Decreasing diameter revisit) The decreasing diameter defined in Assumption 3 can
be written asδ(h) = c1γ

h/D for somec1 > 0 andγ < 1 with a division procedure that requiresc2

function evaluations per node expansion.

Corollary 1. Assume Assumptions 1, 3, 4, and 5. Then, ifd = 0, with probability at least1 − η,

rN ≤ O

(

exp

(

−
N + Ngp

c2CDρ̄t

))

.

If d > 0, with probability at least1 − η,

rN ≤ O

((
1

N + Ngp

)1/d(

−
c2Cρ̄t

1 − γd/D

)1/d

γ− 1
D

)

.

Proof. For the cased = 0, we haven ≤
∑C

∑h(n)+Ξn
l=0 δ(l)−d

τ=1 ρτ ≤
∑C(h(n)+Ξn+1)

τ=1 ρ̄t, where the
first inequality follows from the definition ofh(n), and the second comes from the definition ofρ̄t

and the assumptiond = 0. The second inequality holds for̄ρt that only considersρτ with τ ≤ t.
This is computable, becauseτ ≤ t by construction. Indeed, the condition of Lemma 3 implies

t ≥
∑h′+Ξn

l=0 |Il|. Therefore, the two inequalities hold, and we can deduce thath(n) ≥ n
Cρ̄t

−Ξn−1
by algebraic manipulation. By Assumption 5,n = (N + Ngp)/c2. With this, substituting the lower
bound ofh(n) into the statement of Theorem 2 with Assumption 5,

rN ≤ c1 exp

(

−

[
N + Ngp

c2D

1
Cρ̄t

− Ξn − 2

]

ln
1
γ

)

.
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Similarly, for the cased > 0,

n ≤
C
∑h(n)+Ξn

l=0 δ(l)−d

∑

τ=1

ρτ ≤

c−dC γ−(h(n)+Ξn+1)d/D−1

γ−d/D−1∑

τ=1

ρ̄t,

and hencecγ
h(n)+Ξn

D ≤
(

n(1−γd/D)
Cρ̄t

)−1/d

by algebraic manipulation. Substituting this into the

result of Theorem 2, we arrive at the desired result. �

B With a Concrete Division Procedure

In this section, we prove the main result in the paper. In Theorem 1, we show that the exponential
convergence rate boundO

(
λN+Ngp

)
with λ < 1 is achievedwithout Assumptions 3, 4 and 5 and

without the assumption thatd = 0.

Theorem 1.Assume Assumptions 1 and 2. Letβ = supx,x′∈Ω
1
2‖x−x′‖∞. Letλ = 3−

α
2Cρ̄tD < 1.

Then,without Assumptions 3, 4 and 5 andwithout the assumption ond, with probability at least
1 − η, the regret of IMGPO with the division procedure in Algorithm 1 is bounded as

rN ≤ L(3βD1/p)α exp

(

−α

[
N + Ngp

2Cρ̄tD
− Ξn − 2

]

ln 3

)

= O
(
λN+Ngp

)
.

Proof. To prove the statement, we show that Assumptions 3, 4, and 5 can all be satisfied
while maintainingd = 0. From Assumption 2, and based on the division procedure that
the algorithm uses,supx∈ωh,i

`(x, ch,i) ≤ supx∈ωh,i
L||x − ch,i||αp≤ L

(
3−bh/DcβD1/p

)α
.

This upper bound corresponds to the diagonal length of each hyperrectangle with respect to
p-norm, where3−bh/Dcβ corresponds to the length of the longest side. We fix the form ofδ as
δ(h) = L3αDα/p3−hα/Dβα ≥ L(3−bh/DcβD1/p)α, which satisfies Assumption 3. This form
of δ(h) also satisfies Assumption 5 withγ = 3−α andc1 = L3αDα/pβα. Every hyperrectangle
contains at least onè-ball with a radius corresponding to the length of the shortest side of the
hyperrectangle. Thus, we have at least one`-ball of radiusνδ(h) = L3−αdh/De ≥ L3−α3−αh/D

for every hyperrectangle withν ≥ 3−2αD−α/p. This satisfies Assumption 4. Finally, to show
d = 0 in this case, we note that, by Assumption 2, the volumeV of an `-ball of radiusνδ(h) is
proportional to(νδ(h))D asV p

D(νδ(h)) = (2νδ(h)Γ(1 + 1/p))D/Γ(1 + D/p). Now, by definition,
the δ(h)-optimal spaceXδ(h) is covered by aǹ-ball of radiusδ(h), and is therefore covered by
(δ(h)/(νδ(h)))D = ν−D`-balls of radiusνδ(h). Therefore, the number of`-balls does not depend
on δ(h) in this case, which meansd = 0. Now that we have satisfied Assumptions 3, 4, and 5 with
d = 0, γ = 3−α, andc1 = L3αDα/pβα, we follow the proof of Corollary 1 and deduce the desired
statement. �
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