Appendix of “Convolutional LSTM Network: A Machine Learning Approach

for Precipitation Nowcasting”

Table 1: Best parameters for the optical flow estimator in ROVER.

| Parameter | Meaning | Value |
Loz Coarsest spatial scale level 6
Lstart Finest spatial scale level 0
Npre Number of pre-smoothing steps 2
Npost Number of post-smoothing steps 2
p Gaussian convolution parameter for local vector field smoothing 1.5
@ Regularization parameter in the energy function 2000
o Gaussian convolution parameter for image smoothing 4.5
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Figure 1: (Larger Version) Comparison of different models based on four precipitation nowcasting
metrics over time.
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Figure 2: (Larger Version) Two prediction examples for the precipitation nowcasting problem.
All the predictions and ground truths are sampled with an interval of 3. From top to bottom: input
frames; ground truth; prediction by ConvLSTM network; prediction by ROVER?2.
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Figure 3: An illustrative example showing the in-domain prediction results of different
models. From top to bottom: input frames; ground truth; FC-LSTM; ConvLSTM-5X5-5X5-
1-layer; ConvLSTM-5X5-5X5-2-layer; ConvLSTM-5X5-5X5-3-layer; ConvLSTM-9X9-1X1-2-
layer; ConvLSTM-9X9-1X1-3-layer.
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Figure 4: (Larger Version) An illustrative example showing an out-domain run. From top to
bottom: input frames; ground truth; predictions of the 3-layer network.
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Figure 5: Comparison of the 3-layer ConvLSTM and FC-LSTM in the online setting. In each
iteration, we generate a new set of training samples and record the average cross entropy of that
mini-batch. The z-axis is the number of data cases (starting from 25600) and the y-axis is the
average cross entropy of the mini-batches. We can find that the loss of ConvLSTM decreases faster
than FC-LSTM.



