
Algorithm 1 Alternative Minimization for DirtyIMC with Squared Loss

Input: feature matrix X , Y , parameters (λM ,λN ) in objective (2), max iteration tmax.

t = 0,M (t) ← 0, N (t) ← 0.
while Not converged and t < tmax do

Solve M (t+1) ← argminM
∑

(i,j)∈Ω(XMY T
ij − (R−N (t))ij)2 + λM∥M∥∗

Solve N (t+1) ← argminN
∑

(i,j)∈Ω(Nij − (R−XM (t+1)Y T )ij)2 + λN∥N∥∗
t← t+ 1

end while
return recovered matrix XM (t)Y T +N (t).

Appendix A: Solving DirtyIMC Objectives

To solve problem (2), we propose an alternative minimization scheme where at each step we fix one
of the variables (M or N ) and solve for the other. For simplicity, here we focus on the case where
ℓ is squared loss, which is also considered in our experiments. The algorithm is summarized in
Algorithm 1. As one variable is fixed, the subproblem reduces to either standard matrix completion
or IMC, which is easy to solve as discussed below. This algorithm can be viewed as applying a
block coordinate descent algorithm on convex (but non-smooth) function, and thus is guaranteed to
converge to global optimal using standard analysis (e.g. [15]).

We now briefly discuss how to solve two subproblems in Algorithm 1. First, when fixing N , the
subproblem becomes an IMC objective with observed matrix to be R−N . We then apply proximal
gradient descent to update M . Notice that in our setting, feature dimensions (d1, d2) are much
smaller than number of entities (n1, n2). Therefore, for small d, it is relatively inexpensive to
compute a full SVD for a d1 × d2 matrix in each proximal step.

On the other hand, when fixing M , the subproblem becomes standard matrix completion problem
for the residual matrix R − XMY T . We then apply active subspace selection algorithm (Active-
ALT) [17] to solve the matrix completion problem.

Another possibility is to consider the non-convex relaxation of problem (2) as:

min
U,V,W,H

∑

(i,j)∈Ω

ℓ((XUTV Y T+WTH)ij , Rij)+
λM

2
(∥W∥2F+∥H∥2F )+

λN

2
(∥U∥2F+∥V ∥2F ), (5)

in which M , N is factorized to low rank matrices U ∈ Rd1×k1 , V ∈ Rd2×k1 and W ∈ Rn1×k2 , H ∈
Rn2×k2 . A similar alternative minimization scheme, i.e. fix three variables and solve for the other,
can be applied to obtain a solution for U, V,W,H . Although problem (5) is equivalent to the convex
problem (2) if k1 ≥ rank(M∗) and k2 ≥ rank(N∗) [34], it is not jointly convex for all variables.
So unlike Algorithm 1, using alternative minimization to solve (5) may not obtain the global opti-
mum. However, the analysis in [3] shows that the algorithm converges to stationary points if each
subproblem has a unique minimizer, which is indeed the case in (5) because of the regularizations.
Researchers found that such non-convex relaxation to be useful since it is easier to solve, and em-
pirically yields a competitive result compared to convex problem [22].

Finally, we notice that a recently proposed method “Boosted IMC” [33] could also be represented as
a special case of our alternative scheme for non-convex relaxation (5). The method could be viewed
as an one iteration heuristic of Algorithm 1 (i.e. tmax = 1), in which they first solve N (1) and then
solve M (1) using matrix factorization. Although this method is proposed as a heuristic for Blog
recommendation rather than an algorithm for solving a formal defined matrix completion objective,
it could also be interpreted as an algorithm that approximately solves our DirtyIMC model. We also
compare our DirtyIMC with Boosted IMC in Appendix C.

Appendix B: Proofs

Proof of Lemma 2

Proof. To begin with, we introduce a lemma to bound the Rademacher complexity for the function
class with bounded trace norm.
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Lemma 4. Let Sw = {W ∈ Rn×n | ∥W∥∗ ≤W} and A = maxi ∥Ai∥2, where each Ai ∈ Rn×n,
then:

Eσ

[

sup
W∈Sw

1

m

m
∑

i=1

σitrace(WAi)
]

≤ 2AW
√

log 2n

m
.

This Lemma is a special case of Theorem 1 in [20] with the fact that the dual norm of the matrix
2-norm is trace norm. Thus, by using Rademacher contraction principle (e.g. Lemma 5 in [27]),
R(FΘ) can be written as:

R(FΘ) ≤ LℓEσ

[

sup
θ∈Θ

1

m

m
∑

σ=1

σα(XMY T +N)iαjα

]

= LℓEσ

[

sup
∥M∥∗≤M

1

m

m
∑

σ=1

σαx
T
iαMyjα

]

+ LℓEσ

[

sup
∥N∥∗≤N

1

m

m
∑

σ=1

σαNiαjα

]

= LℓEσ

[

sup
∥M∥∗≤M

1

m

m
∑

α=1

σαtrace(Myjαx
T
iα)

]

+ LℓEσ

[

sup
∥N∥∗≤N

1

m

m
∑

α=1

σαtrace(Nejαe
T
iα)

]

≤ 2Lℓ

(

Mmax
i,j
∥yjx

T
i ∥2

√

log 2d

m
+N

√

log 2n

m

)

,

where the last equation is derived by applied Lemma 4. Since maxi,j ∥yjx
T
i ∥2 =

maxj ∥yj∥2 maxi ∥xi∥2, we derive an upper bound of R(FΘ):

EΩ

[

R(FΘ)
]

≤ 2LℓMXY
√

log 2d

m
+ 2LℓN

√

log 2n

m
. (6)

However, in some circumstances, the above bound (6) will become too loose for our sample com-
plexity analysis. As a result, we need to deal with these cases by introducing a tighter bound on
trace norm of residual (i.e. N ). The following bound mainly follows the proof step in [32], which
provides a tighter bound on trace-norm regularized function class. To begin with, we can rewrite
R(FΘ) as:

R(FΘ) = Eσ

[

sup
f∈FΘ

1

m

m
∑

α=1

σαℓ(f(iα, jα), Riα,jα))
]

= Eσ

[

sup
f∈FΘ

1

m

∑

(i,j)

Γijℓ(f(i, j), Rij)
]

,

where Γ ∈ Rn1×n2 with each entry Γij =
∑

α:iα=i,jα=j σα. Now, using the same trick in [32], we

can divide Γ based on the “hit-time” on entry (i, j) of Ω, with some threshold p > 0 whose value
will be set later. Formally, let hij = |{α : iα = i, jα = j}|, and let A,B ∈ Rn1×n2 be defined as:

Aij =

{

Γij , if hij > p,
0, otherwise.

Bij =

{

0, if hij > p,
Γij , otherwise.

(7)

By construction, Γ = A+B. Therefore, we can separate R(FΘ) as:

R(FΘ) = Eσ

[

sup
f∈FΘ

1

m

∑

(i,j)

Aijℓ(f(i, j), Rij)
]

+ Eσ

[

sup
f∈FΘ

1

m

∑

(i,j)

Bijℓ(f(i, j), Rij)
]

. (8)

For the first term of (8), by the assumption |ℓ(f(i, j), Rij)| ≤ B, it can be upper bounded by:

B
m
Eσ

[

∑

(i,j)

|Aij |
]

≤ B
√
p

by using the Lemma 10 in [32]. Now consider the second term of (8). Again, by using Rademacher
contraction principle, it can be upper bounded by:

Lℓ

m
Eσ

[

sup
f∈FΘ

∑

(i,j)

Bijf(i, j)
]

=
Lℓ

m
Eσ

[

sup
M :∥M∥∗≤M

∑

(i,j)

Bijx
T
i Myj

]

+
Lℓ

m
Eσ

[

sup
N :∥N∥∗≤N

∑

(i,j)

BijNij

]

, (9)
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which is separated by feature-covered part and residual part. We first consider the residual part (i.e.
the second term of (9)). By applying Hölder’s inequality, the second term of (9) is upper bounded
by:

Lℓ

m
sup

N :∥N∥∗≤N
∥B∥2∥N∥∗ =

LℓN
m

Eσ

[

∥B∥2
]

≤
2.2CLℓN

√
p(
√
n1 +

√
n2)

m
,

where the last inequality is derived by applying Lemma 11 in [32]. Now, for the first term of (9),
notice that we can upper bound this term by:

Lℓ

m
Eσ

[

sup
M :∥M∥∗≤M

m
∑

α=1

σαx
T
iαMyjα

]

= LℓEσ

[

sup
∥M∥∗≤M

1

m

m
∑

α=1

σαtrace(Myjαx
T
iα)

]

≤ 2LℓMmax
i,j
∥yjx

T
i ∥2

√

log 2d

m

= 2LℓMXY
√

log 2d

m
.

Therefore, putting back all above upper bound to (8), with p chosen to be mB/(2.2CLℓN (
√
n1 +√

n2)), we can get another bound on R(FΘ) by:

EΩ

[

R(FΘ)
]

≤ 2LℓMXY
√

log 2d

m
+

√

9CLℓB
N (
√
n1 +

√
n2)

m
. (10)

The Theorem thus follows by combining two bounds from (6) and (10).

Proof of Lemma 3

We first need the following lemma to bound the largest singular value σx of feature matrix X (and
also σy of Y ) .

Lemma 5. Let X ∈ Rn×d be a feature matrix. Then there exists a constant C ′′ (i.e. not a function
of n), such that:

σx ≥ C ′′γX
√
n.

Proof. Let x̃i be normalized feature vectors that x̃i =
xi

∥xi∥ for all i = 1 . . . n, so that each x̃i lies on

the d dimensional unit sphere Sd = {x̃ ∈ Rd | ∥x̃∥ = 1}. From Lemma 21 of [14], for any η > 0,
the d dimensional unit sphere can be partitioned into N = (c/η)d equal volume cells (denoted as
P1 . . . PN ) whose diameter is at most η, where c is some constant. Therefore, if two unit vectors
x,y are in the same cell Pi, since ∥x− y∥ ≤ η, the angle θ between x and y will satisfy

θ

2
≤ sin−1(

η

2∥x∥ ) = sin−1 η

2
,

which leads the inner product of x and y to be:

xTy = cos θ = 1− 2 sin2(
θ

2
) ≥ 1− 2(

η

2
)2 = 1− η2

2
.

Thus, taking η = 1, we can partition the unit sphere into N = cd cells such that

xTy ≥ 1

2
, if x,y ∈ Pi.

Now reconsider n normalized feature vectors x̃1, . . . , x̃n, each of which belongs to one of the cell
Pi. By Pigeonhole Theorem, there exists one cell P ∗ ∈ {Pi}Ni=1 such that at least n/N vectors lie
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in P ∗. Consider any unit vector w in P ∗, then we have x̃T
i w ≥ 1

2 for all x̃i ∈ P ∗. Therefore,

∥Xw∥2 ≥
√

∑

i:xi∈P∗

(xT
i w)2

≥
√

∑

i:xi∈P∗

γ2X 2(x̃T
i w)2

≥ γX
√

n

N
(
1

2
)2

=

(

1

2
√
N

)

γX
√
n,

which concludes that
σx ≥ C ′′γX

√
n

where C ′′ = 1
2
√
N

is a constant with respect to n.

With Lemma 5, we can now prove the Lemma 3 as follows:

Proof. To begin with, we have:

∥XT
µ RYν∥2 ≤ ∥Xµ∥2∥R∥2∥Yν∥2 ≤ σxσy∥R∥∗.

On the other hand, by the closed form solution of M̂ , we have:

∥M̂∥∗ ≤ ∥M̂∥2d̂
= ∥(XT

µ Xµ)
−1XT

µ RY (Y T
ν Yν)

−1∥2d̂

≤ σxσy∥R∥∗d̂
σ2
xmσ2

ym

,

where σxm, σym are the smallest singular value of Xµ, Yν respectively. Also, by construction of
Xµ and Yν , we have σxm ≥ µσx and σym ≥ νσy . Combining Lemma 5, we have:

∥M̂∥∗ ≤
∥R∥∗d̂

µ2ν2σxσy

≤ ∥R∥∗d̂
C ′√n1n2γ2µ2ν2XY ,

where C ′ is a constant independent to n1, n2. By the fact that ∥R∥∗ ≤ R√n1n2, the lemma is
proved.

Proof of Theorem 2

Proof. By the construction of feature space, we can rewrite X and Y as follows:

X =
t−1
∑

i=1

uie
T
i +

d
∑

i=t

ũie
T
i Y =

t−1
∑

i=1

vie
T
i +

d
∑

i=t

ṽie
T
i , (11)

where for each ũi, ũ
T
i uj = 0, ∀j. Therefore, the trace norm of residual can be bounded by:

∥R−XM̂Y T ∥∗ = ∥Ũ ŨTR+RṼ Ṽ T − Ũ ŨTRṼ Ṽ T ∥∗
≤ 2∥Ũ ŨTUΣV T ∥∗ + ∥UΣV T Ṽ Ṽ T ∥∗

≤ 3
k

∑

i=t

σi,
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where Ũ , Ṽ are the second term of X and Y in (11). Moreover, we have σi = o(
√
n) for all i ≥ t.

To see this, suppose σp = Ω(
√
n) for any t ≤ p ≤ k, then:

lim
n→∞

σt√
n
≥ lim

n→∞

σp√
n
> 0,

leading a contradiction to the definition of σt. Therefore we can conclude:

N = ∥R−XM̂Y T ∥∗ ≤ 3
k

∑

i=t

σi ≤ 3k × o(
√
n) = o(

√
n),

and the Theorem is thus proved by plugging the above bound to Corollary 1.

Proof of Theorem 3

Proof. We prove the Theorem by showing that the trace norm of R −XM̂Y T will be O((g(n) +
h(n)) log n) in this scenario given that other dimensions (d and k) do not grow as a function of
n. First, note that in this scenario, we can denote X = U + ∆U and Y = V + ∆V , where
U ⊆ col(R), V ⊆ row(R) and ∆U,∆V are g(n), h(n) column sparse respectively. The following

Lemma then bounds the trace norm of R−XM̂Y T in terms of ∆U and ∆V .

Lemma 6. Let ∆U,∆V be defined as above. Then with high probability,

∥R−XM̂Y T ∥∗ ≤ c1ξ1

√

k

g(n)
∥∆UTR∥∗ + c2ξ2

√

k

h(n)
∥R∆V ∥∗ (12)

with some universal constants c1 and c2.

Proof. Let ∆U = U1Σ1V T
1 and ∆V = U2Σ2V T

2 be the reduced SVD of the perturbation matrix
∆U,∆V accordingly. Then we have:

∥R−XM̂Y T ∥∗ ≤ ∥U1U
T
1 R+RU2U

T
2 − U1U

T
1 RU2U

T
2 ∥∗

≤ 2∥U1U
T
1 R∥∗ + ∥RU2U

T
2 ∥∗

= 2∥∆U(V1Σ
−2
1 V T

1 )∆UTR∥∗ + ∥R∆V (V2Σ
−2
2 V T

2 )∆V T ∥∗. (13)

For the first term of (13), using Hölder’s inequality, we can upper bound it by:

∥∆U∥2∥V1Σ
−2
1 V T

1 ∥2∥∆UTR∥∗ = ∥∆U∥2∥Σ−2
1 ∥2∥∆UTR∥∗, (14)

which suggests that we need to bound the largest and smallest singular values of ∆U to bound (14).
Consider ∆U ′ ∈ Rg(n)×k to be the truncated ∆U where only non-zero rows in ∆U are left. The
spectrum of ∆U ′ is same as ∆U . Moreover, its two norm can be bounded by:

∥∆U ′∥2 ≤ ∥ξ1E1∥2 ≤ ξ1
√

kg(n),

where E1 ∈ Rg(n)×k is the matrix with all entries are one. Also, using the result of [31], we can

guarantee that with high probability σk(∆U ′) ≥ Ω(
√

g(n)−
√
k), which suggests w.h.p.:

∥Σ−2
1 ∥ =

1

σk(∆U)2
=

1

σk(∆U ′)2
≤ O(

1

g(n)
).

Thus, combining the above two bounds, the first term of (13) can be upper bounded by:

c1ξ1

√

k

g(n)
∥∆UTR∥∗,

with some universal constant c1. Similarly, the second term of (13) can be upper bounded by

c2ξ2
√

k/h(n)∥R∆V ∥∗. The lemma is thus proved.
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Therefore, given Lemma 6, we now need to bound ∥∆UTR∥∗ and ∥R∆V ∥∗. We first focus on
bounding the term ∥∆UTR∥∗. By R = UV T and the construction of U , V , we have:

∥∆UTR∥∗ = ∥∆UTUV T ∥∗ ≤ ∥GV T ∥∗

where G ∈ Rk×k with each entry in Gij ∼ ξ1g(n)N (0,σ2). Thus, let Z = GV T , Z ∈ Rk×n, then

each entry Zij ∼ ξ1g(n)
σ2

2 χ2
k, where χ2

k is a chi-square distribution with degree of freedom k.

We next show that the trace norm of Z will be bounded in small enough order with high probabil-
ity. To begin with, the following Lemma is used as an exponentially decreasing bound on the tail
distribution of chi-square statistics.

Lemma 7 (Exponential Tail Bound of χ2
k). Let X be a random variable which follows χ2

k. Then for
any t > 1, we have:

Pr(X ≥ tk) ≤ exp

{

−k(
√

(t− 1)2 + 1− 1)

2

}

This Lemma is a corollary of Lemma 1 in [23]. Given this lemma, we can now derive the following
lemma to upper bound ∥∆UTR∥∗:

Lemma 8. Let ∆UTR ∈ Rk×n where ∆U and R are set as in Theorem 3. Then its trace norm can
be upper bounded by:

∥∆UTR∥∗ ≤ C1k
3

2 g(n)
√
n log n

with probability at least 1− kn− k−2

2 .

Proof. Since ∥∆UTR∥∗ ≤ ∥Z∥∗ where Zij ∼ ξ1g(n)
σ2

2 χ2
k, by applying Lemma 7 with t = log n,

we can guarantee that with probability at least 1− n
−k
2 :

Zij ≤ ξ1g(n)
σ2

2
k log n.

Thus, by applying union bound on each Zij , with probability at least 1− kn− k−2

2 :

∥∆UTR∥∗ ≤ ∥Z∥∗ ≤ ξ1g(n)
σ2

2
k log n∥E∥∗,

where E ∈ Rk×n is a rank-1 matrix with all entries are 1. We can thus conclude the Lemma by the

fact that ∥E∥∗ = ∥E∥2 =
√
nk.

Similarly, by using the same proof steps, it could also be shown that ∥R∆V ∥∗ ≤
C2k3/2h(n)

√
n log n. Therefore, substituting above bounds back to Lemma 6, we obtain:

N = ∥R−XM̂Y T ∥∗

≤ c1ξ1

√

k

g(n)
∥∆UTR∥∗ + c2ξ2

√

k

h(n)
∥R∆V ∥∗

= O
(

max(
√

g(n),
√

h(n))
√
n log n

)

,

and the proof is thus completed by plugging this result into Corollary 1.

Appendix C: More Synthetic experiments for DirtyIMC

Experiment on random orthogonal model

Here we conduct an experiment based on random orthogonal model stated in Theorem 2. We create
a low rank matrix R = UΣV T where U, V ∈ Rn×20 are both random orthogonal matrix, and the
singular values to be ,10α=1{αn,α log n}, so there are 10 singular values have smaller growth rate
O(log n). Follow Theorem 2, we construct X,Y by replacing the bottom 10 singular vectors in
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Figure 3: A synthetic experiment where noise only corrupts the insignificant part of true latent
features (i.e. space spanned by smaller singular values). We see that in this case, given O(n) obser-
vations, DirtyIMC could still recover the underlying matrix using sufficiently informative features,
while matrix completion fails to recover as the error becomes unbounded with larger n. The result
supports guarantee provided in Theorem 2.

U and V with bases orthogonal to U and V . We increase n from 250 to 3000, and for each n we
randomly sample m = 100n observations, apply our model and matrix completion to complete
the matrix, and evaluate the recovered matrix using relative error. From Theorem 2, our DirtyIMC
model should be able to approximately recover the matrix given 100n > o(n) observations, which
is indeed true as Figure 3 suggests. As a comparison, standard matrix completion fails to recover the
matrix with only O(n) observations as n increases. This result empirically supports our theoretical
analysis on the usefulness of noisy features.

Finer results for synthetic experiments in Section 5

Figure 4 and 5 show finer plots under each sparsity of observation ρs and feature noise level ρf .

Comparisons between DirtyIMC and Boosted IMC

As we mentioned in Appendix A, a recently proposed method “Boosted IMC” [33] could be viewed
as a special case of our model, where their method is basically Algorithm 1 with tmax = 1, and
in each subproblem they replace the trace norm regularized objective with matrix factorization ob-
jective. Here we compare our DirtyIMC (Algorithm 1) with Boosted IMC on synthetic datasets
generated as same as Section 5 stated. We follow their implementation with rank of U, V,W,H are
all set to be 40. The result is shown in Figure 6.

We observe that though Boosted IMC has a similar trend to DirtyIMC, in general, DirtyIMC per-
forms better than Boosted IMC. However, Boosted IMC may be still good enough as an approxi-
mation of DirtyIMC in certain cases where efficiency is critical, since it only requires one iteration
update of M and N .

Appendix D: Details for applying DirtyIMC to semi-supervised clustering

Here we follow the discussion in Section 5 for semi-supervised clustering. Suppose we are given
m pairwise constraints describing similarity (or dissimilarity) of some pairs of items, then we can
construct the following pairwise similarity matrix S as:

Sij =

{

1, if i and j are similar,

0, if i and j are dissimilar.

Obviously, S has many missing entries since only m ≪ n2 pairwise constraints are known. In
addition, ideally S should be a subset of observations sampled from UUT , where U ∈ Rn×k with
each i-th column of U is an indicator vector of the i-th cluster. Therefore, one can try to recover
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Figure 4: Finer results for synthetic experiments where completion methods are applied under dif-
ferent feature quality with a fixed ρs

(or complete) the matrix back with DirtyIMC objective, and the column space of recovered matrix,
spanned by its top-k eigenvectors, will (ideally) reveal the indicator vectors. Our detailed algorithm
is summarized in Algorithm 2.

One subtle yet critical issue in Algorithm 2 is to compute the top-k eigenvectors of recovered S
(denoted as R). Note that after solving DirtyIMC objective, we are only given the low rank expres-
sion of N∗ and M∗. Compute R explicitly and then compute its leading eigenvectors is expensive
and not scalable. Therefore, we instead run subspace iteration on N∗ + ZM∗ZT to solve for top-k
eigenvectors efficiently. Also, since the resulting top-k eigenvectors are used for running k-means,
we do not need to obtain a very accurate eigenvectors in this case. Therefore, parameters associated
with precision (tmax and ϵ) could be set relatively loose for efficiency in practice.
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Figure 5: Finer results for synthetic experiments where completion methods are applied under dif-
ferent sparsity of observations with a fixed ρf
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(c) ρs = 0.4
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(d) ρf = 0.1
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(e) ρf = 0.5
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(f) ρf = 0.9

Figure 6: Performance of DirtyIMC and Boosted IMC (an approximation of DirtyIMC model) on
synthetic datasets.

Algorithm 2 Semi-supervised clustering with DirtyIMC

Input: feature matrix Z, pairwise similarity matrix S, number of clusters k, regularization pa-
rameters (λM , λN ) in (2).
// Solve DirtyIMC objective with Algorithm 1.
(M∗, N∗)← argminM,N

∑

(i,j)∈S((ZMZT +N)ij − Sij)2 + λM∥M∥∗ + λN∥N∥∗
// Subspace iterations for finding top-k eigenvectors.
ϵ← 10−3, tmax ← 10, t← 1
[UM ,ΣM , VM ]← SVD(M∗)
initialize U(t) ← QR(ZUM , k)
while t ≤ tmax do

U(t+1) ← QR(ZM∗ZTU(t) +N∗U(t), k)
t← t+ 1
if σk(UT

(t)U(t+1)) < ϵ then

break
end if

end while
idx← kmeans(U(t), k)
return idx
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