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Abstract

The paper presents and evaluates the power of parallel search for exact MAP
inference in graphical models. We introduce a new parallel shared-memory recur-
sive best-first AND/OR search algorithm, called SPRBFAOO, that explores the
search space in a best-first manner while operating with restricted memory. Our
experiments show that SPRBFAOO is often superior to the current state-of-the-art
sequential AND/OR search approaches, leading to considerable speed-ups (up to
7-fold with 12 threads), especially on hard problem instances.

1 Introduction

Graphical models provide a powerful framework for reasoning with probabilistic information. These
models use graphs to capture conditional independencies between variables, allowing a concise
knowledge representation and efficient graph-based query processing algorithms. Combinatorial
maximization, or maximum a posteriori (MAP) tasks arise in many applications and often can be
efficiently solved by search schemes, especially in the context of AND/OR search spaces that are
sensitive to the underlying problem structure [1].

Recursive best-first AND/OR search (RBFAOO) is a recent yet very powerful scheme for exact MAP
inference that was shown to outperform current state-of-the-art depth-first and best-first methods by
several orders of magnitude on a variety of benchmarks [2]. RBFAOO explores the context minimal
AND/OR search graph associated with a graphical model in a best-first manner (even with non-
monotonic heuristics) while running within restricted memory. RBFAOO extends Recursive Best-
First Search (RBFS) [3] to graphical models and thus uses a threshold controlling technique to drive
the search in a depth-first like manner while using the available memory for caching.

Up to now, search-based MAP solvers were developed primarily as sequential search algorithms.
However, parallel, multi-core processing can be a powerful approach to boosting the performance
of a problem solver. Now that multi-core computing systems are ubiquitous, one way to extract
substantial speed-ups from the hardware is to resort to parallel processing. Parallel search has been
successfully employed in a variety of AI areas, including planning [4], satisfiability [5], and game
playing [6, 7]. However, little research has been devoted to solving graphical models in parallel.
The only parallel search scheme for MAP inference in graphical models that we are aware of is
the distributed AND/OR Branch and Bound algorithm (daoopt) [8]. This assumes however a large
and distributed computational grid environment with hundreds of independent and loosely connected
computing systems, without access to a shared memory space for caching and reusing partial results.

Contribution In this paper, we take a radically different approach and explore the potential of
parallel search for MAP tasks in a shared-memory environment which, to our knowledge, has not
been attempted before. We introduce SPRBFAOO, a new parallelization of RBFAOO in shared-
memory environments. SPRBFAOO maintains a single cache table shared among the threads. In
this way, each thread can effectively reuse the search effort performed by others. Since all threads
start from the root of the search graph using the same search strategy, an effective load balancing is
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(a) Primal graph (b) Pseudo tree (c) Context minimal AND/OR search graph

Figure 1: A simple graphical model and its associated AND/OR search graph.

obtained without using sophisticated schemes, as done in previous work [8]. An extensive empirical
evaluation shows that our new parallel recursive best-first AND/OR search scheme improves consid-
erably over current state-of-the-art sequential AND/OR search approaches, in many cases leading to
considerable speed-ups (up to 7-fold using 12 threads) especially on hard problem instances.

2 Background

Graphical models (e.g., Bayesian Networks [9] or Markov Random Fields [10]) capture the fac-
torization structure of a distribution over a set of variables. A graphical model is a tuple M =
〈X,D,F〉, where X = {Xi : i ∈ V } is a set of variables indexed by set V and D = {Di : i ∈ V }
is the set of their finite domains of values. F = {ψα : α ∈ F} is a set of discrete positive real-
valued local functions defined on subsets of variables, where F ⊆ 2V is a set of variable subsets. We
use α ⊆ V and Xα ⊆ X to indicate the scope of function ψα, i.e., Xα = var(ψα) = {Xi : i ∈ α}.
The function scopes yield a primal graph whose vertices are the variables and whose edges connect
any two variables that appear in the scope of the same function. The graphical model M defines a
factorized probability distribution on X, as follows: P (X) = 1

Z

∏
α∈F ψα(Xα) where the partition

function, Z, normalizes the probability.

An important inference task which appears in many real world applications is maximum a posteriori
(MAP, sometimes called maximum probable explanation or MPE). MAP/MPE finds a complete
assignment to the variables that has the highest probability (i.e., a mode of the joint probability),
namely: x∗ = argmaxx

∏
α∈F ψα(xα) The task is NP-hard to solve in general [9]. In this paper

we focus on solving MAP as a minimization problem by taking the negative logarithm of the local
functions to avoid numerical issues, namely: x∗ = argminx

∑
α∈F − log (ψα(xα)).

Significant improvements for MAP inference have been achieved by using AND/OR search spaces,
which often capture problem structure far better than standard OR search methods [11]. A pseudo
tree of the primal graph captures the problem decomposition and is used to define the search space.
A pseudo tree of an undirected graph G = (V,E) is a directed rooted tree T = (V,E′), such that
every arc of G not included in E′ is a back-arc in T , namely it connects a node in T to an ancestor
in T . The arcs in E′ may not all be included in E.

Given a graphical model M = 〈X,D,F〉 with a primal graph G and a pseudo tree T of G, the
AND/OR search tree ST has alternating levels of OR nodes corresponding to the variables and AND
nodes corresponding to the values of the OR parent’s variable, with edges weighted according to F.
We denote the weight on the edge from OR node n to AND node m by w(n,m). Identical sub-
problems, identified by their context (the partial instantiation that separates the sub-problem from
the rest of the problem graph), can be merged, yielding an AND/OR search graph [11]. Merging all
context-mergeable nodes yields the context minimal AND/OR search graph, denoted by CT . The
size of CT is exponential in the induced width of G along a depth-first traversal of T [11].

A solution tree T of CT is a subtree such that: (1) it contains the root node of CT ; (2) if an internal
AND node n is in T then all its children are in T ; (3) if an internal OR node n is in T then exactly
one of its children is in T ; (4) every tip node in T (i.e., nodes with no children) is a terminal node.
The cost of a solution tree is the sum of the weights associated with its edges.
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Each node n in CT is associated with a value v(n) capturing the optimal solution cost of the condi-
tioned sub-problem rooted at n. It was shown that v(n) can be computed recursively based on the
values of n’s children: OR nodes by minimization, AND nodes by summation (see also [11]).

Example 1. Figure 1(a) shows the primal graph of a simple graphical model with 5 variables and
7 binary functions. Figure 1(c) displays the context minimal AND/OR search graph based on the
pseudo tree from Figure 1(b) (the contexts are shown next to the pseudo tree nodes). A solution tree
corresponding to the assignment (A = 0, B = 1, C = 1, D = 0, E = 0) is shown in red.

Current state-of-the-art sequential search methods for exact MAP inference perform either depth-
first or best-first search. Prominent methods studied and evaluated extensively are the AND/OR
Branch and Bound (AOBB) [1] and Best-First AND/OR Search (AOBF) [12]. More recently, Re-
cursive Best-First AND/OR Search (RBFAOO) [2] has emerged as the best performing algorithm
for exact MAP inference. RBFAOO belongs to the class of RBFS algorithms and employs a local
threshold controlling mechanism to explore the AND/OR search graph in a depth-first like manner
[3, 13]. RBFAOO maintains at each node n a lower-bound q(n) (called q-value) on v(n). During
search, RBFAOO improves and caches in a fixed size table q(n) which is calculated by propagating
back the q-values of n’s children. RBFAOO stops when q(r) = v(r) at the root r or it proves that
there is no solution, namely q(r) = v(r) = ∞.

3 Our Parallel Algorithm

Algorithm 1 SPRBFAOO
for all i from 1 to nr CPU cores do

root.th←∞− ε; root.thub←∞
launch tRBFS(root) on a separate thread

wait for threads to finish their work
return optimal cost (e.g., as root’s q-value in the cache)

We now describe SPRBFAOO, a parallelization of RBFAOO in shared-memory environments.
SPRBFAOO’s threads start from the root and run in parallel, as shown in Algorithm 1. Threads
share one cache table, allowing them to reuse the results of each other. An entry in the cache table,
corresponding to a node n, is a tuple with 6 fields: a q-value q(n), being a lower bound on the
optimal cost of node n; n.solved, a flag indicating whether n is solved optimally; a virtual q-value
vq(n), defined later in this section; a best known solution cost bs(n) for node n; the number of
threads currently working on n; and a lock. When accessing a cache entry, threads lock it temporar-
ily for other threads. The method Ctxt(n) identifies the context of n, which is further used to access
the corresponding cache entry. Besides the cache, shared among threads, each thread will use two
threshold values, n.th and n.thub, for each node n. These are separated from one thread to another.

Algorithm 2 shows the procedure invoked on each thread. When a thread examines a node n, it
first increments in the cache the number of threads working on node n (line 1). Then it increases
vq(n) by an increment ζ, and stores the new value in the cache (line 2). The virtual q-value vq(n) is
initially set to q(n). As more threads work on solving n, vq(n) grows due to the repeated increases
by ζ. In effect, vq(n) reflects both the estimated cost of node n (through its q(n) component) and
the number of threads working on n. By computing vq(n) this way, our goal is to dynamically
control the degree to which threads overlap when exploring the search space. When a given area
of the search space is more promising than others, more than one thread are encouraged to work
together within that area. On the other hand, when several areas are roughly equally promising,
threads should diverge and work on different areas. Indeed, in Algorithm 2, the tests on lines 13 and
23 prevent a thread from working on a node n if n.th < vq(n). (Other conditions in these tests are
discussed later.) A large vq(n), which increases the likelihood that n.th < vq(n), may reflect a less
promising node (i.e., large q-value), or many threads working on n, or both. Thus, our strategy is
an automated and dynamic way of tuning the number of threads working on solving a node n as a
function of how promising that node is. We call this the thread coordination mechanism.

Lines 4–7 address the case of nodes with no children, which are either terminal nodes or deadends.
In both cases, method Evaluate sets the solved flag to true. The q-value q is set to 0 for terminal
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Algorithm 2 Method tRBFS. Handling locks skipped for clarity.

Require: node n
1: IncrementNrThreadsInCache(Ctxt(n))
2: IncreaseVQInCache(Ctxt(n), ζ))
3: if n has no children then
4: (q, solved)← Evaluate(n)
5: SaveInCache(Ctxt(n), q, solved, q, q)
6: DecrementNrThreadsInCache(Ctxt(n))
7: return
8: GenerateChildren(n)
9: if n is an OR node then

10: loop
11: (cbest, vq, vq2, q, bs)← BestChild(n)
12: n.thub← min(n.thub, bs)
13: if n.th < vq∨q ≥ n.thub∨n.solved then
14: break
15: cbest.th←min(n.th, vq2+δ)−w(n, cbest)
16: cbest.thub← n.thub− w(n, cbest)
17: tRBSF(cbest)

18: [continued from previous column]
19: if n is an AND node then
20: loop
21: (q, vq, bs)← Sum(n)
22: n.thub← min(n.thub, bs)
23: if n.th < vq∨q ≥ n.thub∨n.solved then
24: break
25: (cbest, qcbest , vqcbest)← UnsolvedChild(n)
26: cbest.th← n.th− (vq − vqcbest)
27: cbest.thub← n.thub− (q − qcbest)
28: tRBSF(cbest)
29: if n.solved ∨ NrThreadsCache(Ctxt(n)) = 1

then
30: vq ← q
31: DecrementNrThreadsInCache(Ctxt(n))
32: SaveInCache(Ctxt(n), q, n.solved, vq, bs)

nodes and to ∞ otherwise. Method SaveInCache takes as argument the context of the node, and four
values to be stored in order in these fields of the corresponding cache entry: q, solved, vq and bs.

Lines 10–17 and 20–28 show respectively the cases when the current node n is an OR node or an
AND node. Both these follow a similar high-level sequence of steps:

• Update vq, q, and bs for n, from the children’s values (lines 11, 21). Also update n.thub
(lines 12, 22), an upper bound for the best solution cost known for n so far. Methods
BestChild and Sum are shown in Algorithm 3. In these, child node information is either
retrieved from the cache, if available, or initialized with an admissible heuristic function h.

• Perform the backtracking test (lines 13–14 and 23–24). The thread backtracks to n’s parent
if at least one of the following conditions hold: th(n) < vq(n), discussed earlier; q(n) ≥
n.thub i.e., a solution containing n cannot possibly beat the best known solution (we call
this the suboptimality test); or the node is solved. The solved flag is true iff the node cost
has been proven to be optimal, or the node was proven not to have any solution.

• Otherwise, select a successor cbest to continue with (lines 11, 25). At OR nodes n, cbest
is the child with the smallest vq among all children not solved yet (see method BestChild).
At AND nodes, any unsolved child can be chosen. Then, update the thresholds of cbest
(lines 15–16 and 26–27), and recursively process cbest (lines 17, 28). The threshold n.th is
updated in a similar way to RBFAOO, including the overestimation parameter δ (see [2]).
However, there are two key differences. First, we use vq instead of q, to obtain the thread
coordination mechanism presented earlier. Secondly, we use two thresholds, th and thub,
instead of just th, with thub being used to implement the suboptimality test q(n) ≥ n.thub.

When a thread backtracks to n’s parent, if either n’s solved flag is set, or no other thread currently
examines n, the thread sets vq(n) to q(n) (lines 29–30 in Algorithm 2). In this way, SPRBFAOO
reduces the frequency of the scenarios where n is considered to be less promising. Finally, the thread
decrements in the cache the number of threads working on n (line 31), and saves in the cache the
recalculated vq(n), q(n), bs(n), and the solved flag (line 32).

Theorem 3.1. With an admissible heuristic in use, SPRBFAOO returns optimal solutions.

Proof sketch. SPRBFAOO’s bs(r) at the root r is computed from a solution tree, therefore, bs(r) ≥
v(r). Additionally, SPRBFAOO determines solution optimality by using not vq(n) but q(n) saved
in the cache table. By an induction-based discussion similar to Theorem 3.1 in [2], q(n) ≤ v(n)
holds for any q(n) saved in the cache table with admissible h, which indicates q(r) ≤ v(r). When
SPRBFAOO returns a solution, bs(r) = q(r), therefore, bs(r) = q(r) = v(r).

We conjecture that SPRBFAOO is also complete, and leave a more in-depth analysis as future work.
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Algorithm 3 Methods BestChild (left) and Sum (right)

Require: node n
1: n.solved← ⊥ (⊥ stands for false);
2: initialize vq, vq2, q, bs to∞
3: for all ci child of n do
4: if Ctxt(ci) in cache then
5: (qci , sci , vqci , bsci)← FromCache(Ctxt(ci))
6: else
7: (qci , sci , vqci , bsci)← (h(ci),⊥, h(ci),∞)
8: qci ← w(n, ci) + qci
9: vqci ← w(n, ci) + vqci

10: bs = min(bs, w(n, ci) + bsci)
11: if (qci < q) ∨ (qci = q ∧ ¬n.solved) then
12: n.solved← sci ; q ← qci
13: if vqci < vq ∧ ¬sci then
14: vq2 ← vq; vq ← vqci ; cbest ← ci
15: else if vqci < vq2 ∧ ¬sci then
16: vq2 ← vqci
17: return (cbest, vq, vq2, q, bs)

Require: node n
1: n.solved← > (> stands for true)
2: initialize vq, q, bs to 0
3: for all ci child of n do
4: if Ctxt(ci) in cache then
5: (qci , sci , vqci , bsci)← FromCache(Ctxt(ci))
6: else
7: (qci , sci , vqci , bsci)← (h(ci),⊥, h(ci),∞)
8: q ← q + qci
9: vq ← vq + vqci

10: bs← bs+ bsci
11: n.solved← n.solved ∧ sci
12: return (q, vq, bs)

4 Experiments

We evaluate empirically our parallel SPRBFAOO and compare it against sequential RBFAOO and
AOBB. We also considered parallel shared-memory AOBB, denote by SPAOBB, which uses a mas-
ter thread to explore centrally the AND/OR search graph up to a certain depth and solves the remain-
ing conditioned sub-problems in parallel using a set of worker threads. The cache table is shared
among the workers so that some workers may reuse partial search results recorded by others. In our
implementation, the search space explored by the master corresponds to the first m variables in the
pseudo tree. The performance of SPAOBB was very poor across all benchmarks due to noticeably
large search overhead as well as poor load balancing, and therefore its results are omitted hereafter.

All competing algorithms (SPRBFAOO, RBFAOO and AOBB) use the pre-compiled mini-bucket
heuristic [1] for guiding the search. The heuristic is controlled by a parameter called i-bound which
allows a trade-off between accuracy and time/space requirements – higher values of i yield a more
accurate heuristic but take more time and space to compute. The search algorithms were also re-
stricted to a static variable ordering obtained as a depth-first traversal of a min-fill pseudo tree [1].

Our benchmark problems1 include three sets of instances from genetic linkage analysis (denoted
pedigree) [14], grid networks and protein side-chain interaction networks (denoted protein)
[15]. In total, we evaluated 21 pedigrees, 32 grids and 240 protein networks. The algorithms were
implemented in C++ (64-bit) and the experiments were run on a 2.6GHz 12-core processor with
80GB of RAM. Following [2], RBFAOO ran with a 10-20GB cache table (134,217,728 entries)
and overestimation parameter δ = 1. However, SPRBFAOO allocated only 95,869,805 entries with
the same amount of memory, due to extra information such as virtual q-values. We set ζ = 0.01
throughout the experiments (except those where we vary ζ). The time limit was set to 2 hours. We
also record typical ranges of problem specific parameters shown in Table 1 such as the number of
variables (n), maximum domain size (k), induced width (w∗), and depth of the pseudo tree (h).

Table 1: Ranges (min-max) of the bench-
mark problems parameters.

benchmark n k w∗ h
grid 144 – 676 2 15 – 36 48 – 136
pedigree 334 – 1289 3 – 7 15 – 33 51 – 140
protein 26 – 177 81 6 – 16 15 – 43

Table 2: Number of unsolved problem in-
stances (1 vs 12 cores).

grid pedigree protein
method i = 6 i = 14 i = 6 i = 14 i = 2 i=4
RBFAOO 9 5 8 6 41 16
SPRBFAOO 7 5 7 3 32 9

The primary performance measures reported are the run time and node expansions during search.
When the run time of a solver is discussed, the total CPU time reported in seconds is one metric to
show overall performance. The total CPU time consists of the heuristic compilation time and search

1http://graphmod.ics.uci.edu
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Table 3: Total CPU time (sec) and nodes on grid and pedigree instances. Time limit 2 hours.

instance algorithm i = 6 i = 8 i = 10 i = 12 i = 14
(n, k, w∗, h) time nodes time nodes time nodes time nodes time nodes

(mbe) (0.06 (0.07) (0.1) (0.2) (0.7)
75-22-5 AOBB 5221 761867041 2100 314622599 884 144092486
(484,2,30,107) RBFAOO 629 133143216 2018 331885596 2036 334441548 638 113597702 85 18728991

SPRBFAOO 116 153612683 483 410230906 466 385071090 152 129817500 17 25076772
(mbe) (0.08) (0.1) (0.1) (0.3) (0.8)

75-24-5 AOBB
(576,2,32,116) RBFAOO 4182 665237411 2792 465384385 229 47015068

SPRBFAOO 2794 2273916962 2959 2309390159 1012 804068930 579 511894256 43 59504303
(mbe) (0.2) (0.2) (0.3) (0.5) (1.4)

90-30-5 AOBB
(900,2,42,151) RBFAOO 3783 565053698

SPRBFAOO 869 665947009
(mbe) (0.1) (0.2) (0.3) (0.6) (2.1)

pedigree7 AOBB
(1068,4,28,140) RBFAOO 1873 226436502 1642 201063828 1239 135387634

SPRBFAOO 4560 3062954989 353 249562472 314 222896697 267 151794050
(mbe) (0.1) (0.2) (0.2) (0.5) (1.6)

pedigree9 AOBB
(1119,7,25,123) RBFAOO

SPRBFAOO 3021 2807834881
(mbe) (0.1) (0.2) (0.4) (1.3) (10)

pedigree19 AOBB
(793,5,21,107) RBFAOO

SPRBFAOO 3792 2721253097 2083 1914585138
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Figure 2: Total CPU time (sec) for RBFAOO vs. SPRBFAOO with smaller (top) and larger (bottom)
i-bounds. Time limit 2 hours. i ∈ {6, 14} for grid and pedigree, i ∈ {2, 4} for protein.

time. SPRBFAOO does not reduce the heuristic compilation time calculated sequentially. Note that
parallelizing the heuristic compilation is an important extension as future work.

Parallel versus sequential search Table 3 shows detailed results (as total CPU time in seconds and
nodes expanded) for solving grid and pedigree instances using parallel and sequential search.
The columns are indexed by the i-bound. For each problem instance, we also record the mini-bucket
heuristic pre-compilation time, denoted by (mbe), corresponding to each i-bound. SPRBFAOO
ran with 12 threads. We can see that SPRBFAOO improves considerably over RBFAOO across
all reported i-bounds. The benefit of parallel search is more clearly observed at smaller i-bounds
that correspond to relatively weak heuristics. In this case, the heuristic is less likely to guide the
search towards more promising regions of the search space and therefore diversifying the search
via multiple parallel threads is key to achieving significant speed-ups. For example, on grid 75-22-
5, SPRBFAOO(6) is almost 6 times faster than RBFAOO(6). Similarly, SPRBFAOO(8) solves the
pedigree7 instance while RBFAOO(8) runs out of time. This is important since on very hard problem
instances it may only be possible to compute rather weak heuristics given limited resources. Notice
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Figure 3: Total search time (sec) and average speed-up as a function of parameter ζ. Time limit 2
hours. i = 14 for grid and pedigree, i = 4 for protein.

also that the pre-processing time (mbe) increases with the i-bound. Table 2 shows the number of
unsolved problems in each domain. Note that SPRBFAOO solved all instances solved by RBFAOO.

Figure 2 plots the total CPU time obtained by RBFAOO and SPRBFAOO using smaller (resp. larger)
i-bounds corresponding to relatively weak (resp. strong) heuristics. We selected i ∈ {6, 14} for
grid and pedigree, and i ∈ {2, 4} for protein. Specifically, i = 6 (grids, pedigrees) and
i = 2 (proteins) were the smallest i-bounds for which SPRBFAOO could solve at least two thirds of
instances within the 2 hour time limit, while i = 14 (grids, pedigrees) and i = 4 (proteins) were the
largest possible i-bounds for which we could compile the heuristics without running out of memory
on all instances. The data points shown in green correspond to problem instances that were solved
only by SPRBFAOO. As before, we notice the benefit of parallel search when using relatively weak
heuristics. The largest speed-up of 9.59 is obtained on the pdbilk protein instance with i = 2. As
the i-bound increases and the heuristics become more accurate, the difference between RBFAOO(i)
and SPRBFAOO(i) decreases because both algorithms are guided more effectively towards the sub-
space containing the optimal solution. In addition, the overhead associated with larger i-bounds,
which is calculated sequentially, offsets considerably the speed-up obtained by SPRBFAOO(i) over
RBFAOO(i) (see for example the plot for protein instances with i = 4).

We also observed that SPRBFAOO’s speed-up over RBFAOO increases sublinearly as more threads
are used (we experimented with 3, 6, and 12 threads, respectively). In addition to search overhead,
synchronization overhead is another cause for achieving only sublinear speed-ups. The synchro-
nization overhead can be estimated by checking the node expansion rate per thread. For example, in
case of SPRBFAOO with 12 threads, the node expansion rate per thread slows down to 47 %, 50 %,
and 61 % of RBFAOO in grid (i = 6), pedigree (i = 6), and protein (i = 2), respectively.
This implies that the overhead related to locks is large. Since these numbers with 6 threads are 73
%, 79 %, and 96 %, respectively, the slowdown becomes severer with more threads. We hypothesize
that due to the property of the virtual q-value, SPRBFAOO’s threads tend to follow the same path
from the root until search directions are diversified, and frequently access the cache table entries of
the these internal nodes located on that path, where lock contentions occur non-negligibly.

Finally, SPRBFAOO’s load balance is quite stable in all domains, especially when all threads are
invoked and perform search after a while. For example, its load balance ranges between 1.005-
1.064, 1.013-1.049, and 1.004-1.117 for grid (i = 6), pedigree (i = 6), and protein (i = 2),
especially on those instances where SPRBFAOO expands at least 1 million nodes with 12 threads.

Impact of parameter ζ In Figure 3 we analyze the performance of SPRBFAOO with 12 threads
as a function of the parameter ζ which controls the way different threads are encouraged or discour-
aged to start exploring a specific subproblem (see also Section 3). For this purpose and to better
understand SPRBFAOO’s scaling behavior, we ignore the heuristic compilation time. Therefore,
we show the total search time (in seconds) over the instances that all parallel versions solve, and the
search-time-based average speed-ups based on the instances where RBFAOO needs at least 1 second
to solve. We obtained these numbers for ζ ∈ {0.001, 0.01, 0.1}. We see that all ζ values lead to
improved speed-ups. This is important because, unlike the approach of [8] which involves a sophis-
ticated scheme, it is considerably simpler yet extremely efficient and only requires tuning a single
parameter (ζ). Of the three ζ values, while SPRBFAOO with ζ = 0.1 spends the largest total search
time, it yields the best speed-up. This indicates a trade-off about selecting ζ. Since the instances
used to calculate speed-up values are solved by RBFAOO, they contain relatively easy instances.
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Table 4: Total CPU time (sec) and node expansions for hard pedigree instances. SPRBFAOO ran
with 12 threads, i = 20 (type4b) and i = 16 (largeFam). Time limit 100 hours.

instance (n, k, w∗, h) (mbe) RBFAOO SPRBFAOO
time time nodes time nodes

type4b-100-19 (7308,5,29,354) 400 132711 22243047591 42846 50509174040
type4b-120-17 (7766,5,24,319) 191 210 4297063 195 6046663
type4b-130-21 (8883,5,29,416) 281 290760 51481315386 149321 177393525747
type4b-140-19 (9274,5,30,366) 488 248376 39920187143 74643 85152364623
largeFam3-10-52 (1905,3,36,80) 13 154994 19363865449 50700 44073583335

On the other hand, several difficult instances solved by SPRBFAOO with 12 threads are included
in calculating the total search time. In case of ζ = 0.1, because of increased search overhead,
SPRBFAOO needs more search time to solve these difficult instances. There is also one protein
instance unsolved with ζ = 0.1 but solved with ζ = 0.01 and 0.001. This phenomenon can be
explained as follows. With large ζ, SPRBFAOO searches in more diversified directions which could
reduce lock contentions, resulting in improved speed-up values. However, due to larger diversifi-
cation, when SPRBFAOO with ζ = 0.1 solves difficult instances, it might focus on less promising
portions of the search space, resulting in increased total search time.

Summary of the experiments In terms of search-time-based speed-ups, our parallel shared-
memory method SPRBFAOO improved considerably over its sequential counterpart RBFAOO, by
up to 7 times using 12 threads. At relatively larger i-bounds, their corresponding computational
overhead typically outweighed the gains obtained by parallel search. Still, parallel search had an
advantage of solving additional instances unsolved by serial search. Finally, in Table 4 we report the
results obtained on 5 very hard pedigree instances from [2] (mbe records the heuristic compilation
time). We see again that SPRBFAOO improved over RBFAOO on all instances, while achieving a
total-time-based speed-up of 3 on two of them (i.e., type4b-100-19 and largeFam3-10-52).

5 Related Work

The distributed AOBB algorithm daoopt [8] which builds on the notion of parallel tree search
[16], explores centrally the search tree up to a certain depth and solves the remaining conditioned
sub-problems in parallel using a large grid of distributed processing units without a shared cache.

In parallel evidence propagation, the notion of pointer jumping has been used for exact probabilistic
inference. For example, Pennock [17] performs a theoretical analysis. Xia and Prasanna [18] split
a junction tree into chains where evidence propagation is performed in parallel using a distributed-
memory environment, and the results are merged later on.

Proof-number search (PNS) in AND/OR spaces [19] and its parallel variants [20] have been shown
to be effective in two-player games. As PNS is suboptimal, it cannot be applied as is to exact
MAP inference. Kaneko [21] presents shared-memory parallel depth-first proof-number search with
virtual proof and disproof numbers (vpdn). These combine proof and disproof numbers [19] and the
number of threads examining a node. Thus, our vq(n) is closely related to vpdn. However, vpdn
has an over-counting problem, which we avoid due to the way we dynamically update vq(n). Saito
et al. [22] uses threads that probabilistically avoid the best-first strategy. Hoki et al. [23] adds small
random values the proof and disproof numbers of each thread without sharing any cache table.

6 Conclusion

We presented SPRBFAOO, a new shared-memory parallel recursive best-first AND/OR search
scheme in graphical models. Using the virtual q-values shared in a single cache table, SPRBFAOO
enables threads to work on promising regions of the search space with effective reuse of the search
effort performed by others. A homogeneous search mechanism across the threads achieves an effec-
tive load balancing without resorting to sophisticated schemes used in related work [8]. We prove the
correctness of the algorithm. In experiments, SPRBFAOO improves considerably over current state-
of-the-art sequential AND/OR search approaches, in many cases leading to considerable speed-ups
(up to 7-fold using 12 threads) especially on hard problem instances. Ongoing and future research
directions include proving the completeness conjecture, extending SPRBFAOO to distributed mem-
ory environments, and parallelizing the mini-bucket heuristic for shared and distributed memory.
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