Generalized Dantzig Selector: Application to the k-support norm

Part of Advances in Neural Information Processing Systems 27 (NIPS 2014)

Bibtex Metadata Paper Reviews Supplemental


Soumyadeep Chatterjee, Sheng Chen, Arindam Banerjee


We propose a Generalized Dantzig Selector (GDS) for linear models, in which any norm encoding the parameter structure can be leveraged for estimation. We investigate both computational and statistical aspects of the GDS. Based on conjugate proximal operator, a flexible inexact ADMM framework is designed for solving GDS. Thereafter, non-asymptotic high-probability bounds are established on the estimation error, which rely on Gaussian widths of the unit norm ball and the error set. Further, we consider a non-trivial example of the GDS using k-support norm. We derive an efficient method to compute the proximal operator for k-support norm since existing methods are inapplicable in this setting. For statistical analysis, we provide upper bounds for the Gaussian widths needed in the GDS analysis, yielding the first statistical recovery guarantee for estimation with the k-support norm. The experimental results confirm our theoretical analysis.