
Supplementary Material

A Missing proofs from Section 2

A.1 Proof of Theorem 2.2

Proof. Fix a feature f ∈ F and a feature f̃ /∈ F . Recall we used aj to denote the jth column of the test matrix
A. For each row i ∈ [t], define the random variable Xi := aifsi − aif̃si, which is the contribution of the ith
test to the difference ρ(f)− ρ(f̃). In particular,

ρ(f)− ρ(f̃) = �af , s� − �af̃ , s� =
t�

i=1

Xi.

The variables Xi are identically and independently distributed. We first estimate E[Xi]. Let Ti denote the ith
test, i.e. Ti = {j | aij = 1}. Then, it is easy to see that E[Xi | both f, f̃ ∈ Ti] = 0, and E[Xi | both f, f̃ /∈
Ti] = 0. Thus, letting q = 1− p to shorten the notations, we have

E[Xi]

= E[Xi | f ∈ Ti, f̃ /∈ Ti] · P[f ∈ Ti, f̃ /∈ Ti] +

E[Xi | f /∈ Ti, f̃ ∈ Ti] · P[f /∈ Ti, f̃ ∈ Ti]

= pqE[Xi | f ∈ Ti, f̃ /∈ Ti] + pqE[Xi | f /∈ Ti, f̃ ∈ Ti]

= pq


 �

T⊆[N ]−{f,f̃}

s(Ti) · P[Ti = T ∪ {f} | f ∈ Ti, f̃ /∈ Ti]




−pq


 �

T⊆[N ]−{f,f̃}

s(Ti) · P[Ti = T ∪ {f̃} | f /∈ Ti, f̃ ∈ Ti]




= pq


 �

T⊆[N ]−{f,f̃}

s(T ∪ {f}) · p|T |qN−2−|T |




−pq


 �

T⊆[N ]−{f,f̃}

s(T ∪ {f̃}) · p|T |qN−2−|T |




= pq


 �

T⊆[N ]−{f,f̃}

�
s(T ∪ {f})− s(T ∪ {f̃})

�
· p|T |qN−2−|T |




≥ Cpq


 �

T⊆F−{f,f̃}

p|T |qN−2−|T |


 = Cpq.

Consequently, when C ≥ 0 every term in the summation above is non-negative, implying that
E[Xi] ≥ 0, which in turn implies E[ρ(f)] ≥ E[ρ(f̃)]. Since the Xi are i.i.d. in [−1, 1], by Hoeffd-
ing’s inequality [8], when C > 0 we have

P[ρ(f)− ρ(f̃) ≤ 0] ≤ exp

�−2t2C2p2q2

4t

�
.

The probability that there is some pair f ∈ F, f̃ /∈ F for which ρ(f) − ρ(f̃) ≤ 0 is thus at most
d(N − d) exp

�
−tC2p2q2

2

�
. The last expression is at most δ when t satisfies (1).

A.2 Proof of Proposition 2.4 and Proposition 2.5

A special case of separable scoring function is a scoring function satisfying a monotonicity condition: if a
subset T2 of features has more relevant features than another subset T1, then s(T2) has to be better than s(T1).

Definition A.1 (Monotone scoring function). LetC ≥ 0 be a real number. The score function s : 2[N ] → [0, 1]
is said to be C-monotone if the following property holds: for any two subsets T1, T2 ⊆ [N ] such that T1 ∩F is
a proper subset of T2∩F , we have s(T2)−s(T1) ≥ C. The 0-monotone scoring functions are called monotone
for short.
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Proposition A.2. If s is a C-monotone scoring function, then it is a C-separable scoring function.

Proof. Fix f ∈ F , f̃ /∈ F , and T ⊂ [N ] − {f, f̃}. Let T2 = T ∪ {f} and T1 = T ∪ {f̃}. Then,
T1 ∩ F ⊂ T2 ∩ F . Hence, s(T2)− s(T1) ≥ C, as desired.

From the above proposition, to show that a function is separable it is sufficient to show that it is monotone.

Proof of Proposition 2.4. Due to conditional independence, it can be checked that s(T ) =
�

f∈T s(f). From
this the claim can be easily verified.

Proof of Proposition 2.5. Due to a basic property of mutual information, s(T ∪ {f}) = I(XT∪{f};Y ) =
H(XT∪{f}) −H(XT∪{f}|Y ) = H(XT∪{f}) −H(XT |Y ) −H(Xf |Y ), where the last identity is due to
the conditional independence assumption. Fix f ∈ F and f̃ /∈ F . SinceH(XT∪{f}) = H(XT )+H(Xf )−
I(XT ;Xf ), we have s(T ∪{f}) = I(XT ;Y )+ I(Xf ;Y )− I(XT ;Xf ). Combine with a similar formulae
for s(T ∪ {f̃}), we obtain:

s(T ∪ {f})− s(T ∪ {f̃}) = (I(Xf ;Y )− I(XT ;Xf ))− (I(Xf̃ ;Y )− I(XT ;Xf̃ )) ≥ 0,

which concludes the proof.

A.3 On eliminating irrelevant features

The rank ρ(f) of a feature is proportional to the average score of all tests that the feature f participates in. If f is
“lucky” enough to participate in tests that contain relevant features, its rank might be inflated. This observation
leads to our second idea: we need a way to quickly eliminate features that are likely to be irrelevant.

Theorem A.3. Let F be the set of hidden relevant features. Let d = |F |. Let A be the random t × N test
matrix obtained by setting each entry to be 1 with probability p ∈ [0, 1] and 0 with probability 1 − p. For an
irrelevant feature f̃ /∈ F , let Uf̃ denote the total number of tests that f̃ belongs, and Vf̃ the total number of
tests that f̃ belongs but none of the relevant features belong.

For any δ ∈ (0, 1), and any β such that 0 < β < (1− p)d, the following holds:

P[Vf̃ ≥ βUf̃ for all f̃ /∈ F ] ≥ 1− δ,

provided that the total number of tests is at least

t ≥ 1

2
· (1 + β)2

p2((1− p)d − β)2
log((N − d)/δ). (2)

Proof. Let f̃ be an arbitrary irrelevant feature. For each j ∈ [t], let Xj be the indicator variable for the event
that f̃ is in test j, and Yj be the indicator variable for the event that f̃ belongs to the jth test but none of the
relevant features are in test j. Then, Uf̃ =

�
j∈[t] Xj and Vf̃ =

�
j∈[t] Yj . It follows that E[Yj − βXj ] =

p(1 − p)d − βp. Furthermore, we have Yj − βXj ∈ [−β, 1], and for j ∈ [t] the variables Yj − βXj are
independent. Hence, by Hoeffding bound we have

P[Vf̃ < βUf̃ ] = P[
�

j∈[t]

(Yj − βXj) < 0]

≤ exp

�−2t2p2((1− p)d − β)2

t(1 + β)2

�

= exp

�−2tp2((1− p)d − β)2

(1 + β)2

�
.

Hence, due to condition 2,

P[Vf̃ < βUf̃ for some f̃ /∈ F ] ≤ (N − d) exp

�−2tp2((1− p)d − β)2

(1 + β)2

�
≤ δ.
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Figure 6: Box plot from synthetic data on a) the identifiability of original features with abundant
data from multinomial distribution, b) the identifiability of original features with reasonable-sized
data from multinomial distribution, c) the identifiability of original features with abundant data from
discretized Gaussian distribution, d) the identifiability of original features with reasonable-sized data
from discretized Gaussian distribution.

The above theorem is useful when we can find a score function such that the tests that contain no relevant have
low scores, say less than some threshold θ. In that case, the natural algorithm is to first eliminate all features
such that at least a β fraction of its tests score lower than θ.

To make use of the above algorithm, we need to set the parameters. For example, suppose we set p = 1/d.
Then (1 − p)d = (1 − 1/d)d is an increasing function in d that tends to 1/e ≈ 0.37 fairly quickly. Hence,
d ≥ 4 we can pick β = 0.25 (or more). But there is a tradeoff between β and the number of tests t, hence we
do not want to pick β to be too close to (1− p)d.

As a second example, suppose we set p = 1/(2d). Then, (1− p)d = (1− 1/
√
d)d → 1/

√
e ≈ 0.61. In this

case we can even pick β = 1/2.

B Additional details on synthetic experiment results

We evaluate the entire PFS idea synthetically. We generate a simple categorical binary class dataset using two
multinomial distributions. Let No be the number of original data dimensions (i.e. where the data is actually
dependent on). TheNn noisy dimensions are generated with uniform probability for allNn dimensions, so the
synthetic data generated is of dimension N = No + Nn. The number of trials were restricted to five in our
data generation. As theorem 2.2 suggests, by setting p = 0.5 we only need logarithmic number of tests with
respect to the number of feature dimensions, but it will lead to inaccurate score estimation whenN is large and
the number of data samples are small. Therefore, we first simulate a case where we have abundant samples
by sampling 10, 000 samples for each class with No ∈ {2, 4, 10} and Nn ∈ {10, 20, 30}. We set p = 0.5
and t = � 2

p2(1−p)2
log(NoNn/δ)� where δ = 0.01. In addition, to attain a more realistic setting, we generate

1, 000 samples for each class, with No ∈ {4, 10, 50, 100} and Nn ∈ {10, 50, 100, 500}. We set p = 3
N
so

that we can get reasonable score estimate and t = 10N . To account for the randomness of the test, we ran
every experiment 100 times; the result is shown in Figure 6(a) and (b) respectively. It is clear that most of the
time all the original dimensions are contained in the top Do ranked features, in particular, when the score can
be estimated reasonably well, the topDo features contains exactly all the original features (see figure 6 (a) and
(c)).

Since not all real world data are categorical valued, we simulated another real-valued binary dataset. The No

original data dimensions are generated from two Gaussian with mean 3 and−3. They share the same variance,
and it is uniformly sampled from the interval (0, 1]. The Nn noisy dimensions are generated from Gaussian
with mean sample uniformly from interval [−1, 1] and variance uniformly sampled from interval (0, 1]. We
then quantize each dimension into five equal distanced bins. We use the exactly same settings as the previous
experiments, and the result is illustrated in figure 6 (c) and (d), it can be observed that the performance are
consistent with the last set of experiments.

C Additional results on the small and medium data sets

C.1 Accuracy and runtime results on Micro-array dataset

The Colon and Leukemia dataset are both binary class dataset that contains 62 samples with 2,000 dimensions
and 72 data points with 7,070 dimensions respectively; the Lymph and NCI9 dataset both have 9 classes and
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respectively contain 96 samples with 4,026 dimensions and 60 samples with 9,712 dimensions; The Lung
dataset contains 73 data samples of 325 dimensions and is a 7-class dataset.

We set the maximum number of selected features to be 50. d Models were trained for each dataset with the
top d features where d varies from 1 to 50, and we report the best overall leave-one-out classification error
among all 50 combinations of features. For the wrapper method we set p = 10/N and for filter method we set
p = 4/N , where N is the dimension of data.

Table 2: Leave one out error on micro-array datasets from various methods
Method/Dataset Colon Leukemia Lung Lymph NCI9

MIM 10 2 14 13 25
MIM (Filtered) 10 2 13 13 25
MRMR 9 2 13 7 23
MRMR (Filtered) 9 2 13 7 23
CMIM 9 1 9 9 26
CMIM (Filtered) 9 1 9 9 26
JMI 9 1 11 9 24
JMI (Filtered) 9 1 11 9 24
DISR 8 1 13 11 24
DISR (Filtered) 8 1 13 11 24
CIFE 9 3 19 26 31
CIFE (Filtered) 9 3 9 10 35
ICAP 8 3 10 8 24
ICAP (Filtered) 7 2 9 9 24
FCBF 9 4 11 6 24
FCBF (Filtered) 1 2 9 14 25
LOGO 10 2 8 12 27
LOGO (Filtered) 7 1 11 11 28
FGM 9 2 8 7 21
FGM (Filtered) 10 1 9 15 25
ours (F3) 6 1 11 13 31
ours (W3) 8 0 9 11 28
ours (F10) 6 1 11 12 28
ours (W10) 9 1 15 13 29

C.2 Accuracy and runtime results on the NIPS Datasets

The results on NIPS dataset from different methods are shown in table 4 below.

Note that the numbers we reported are runtimes without running tests in parallel. Since our tests are totally
independent, the parallel speed up factor will be essentially linear in the partition size.

The NIPS and micro-array datasets experiments were all completed on a machine with I7-3930K 3.20GHZ
6-core CPU and 32GB RAM with 12 threads. The running time of different methods are listed in the following
table 5. and 3.

D Additional results on the large dataset

D.1 Top-features on all relations

As we shown inf Figure 2(b), the top-features extracted by our method makes intuitive sense for relations
Spouse, MemberOf, and TopMember. Figure 8 shows the result for other relations using the same protocol
we described in the body of this paper.

We see that for most relations, the top features selected by our method makes intuitive sense, which implies the
effectiveness of our approach. For relations like per:stateorprovinces of residence, the top keywords are not
direct indicator of the relation (although they strongly imply the relation), this is a known problem of how the
training set is generated [27, 17], and is orthogonal to the feature selection process.
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Table 3: Micro-array dataset runtime performance (in seconds)
Methods/Dataset Colon Leukemia Lung Lymph NCI9

MIM 1.77 7.27 0.36 6.17 9.08
MIM (Filtered) 0.23 0.78 0.09 0.70 0.96
MRMR 10.96 50.36 2.02 41.72 57.27
MRMR (Filtered) 1.26 4.99 0.39 4.41 5.78
JMI 17.46 76.29 4.45 90.43 127.78
JMI (Filtered) 1.99 7.75 0.83 9.15 12.93
ICAP 37.80 167.25 8.73 180.59 248.40
ICAP (Filtered) 4.28 17.24 1.65 18.38 25.01
DISR 28.13 118.22 7.20 144.71 206.25
DISR (Filtered) 3.17 12.07 1.36 15.22 20.75
CMIM 1.19 3.47 1.12 5.49 2.78
CMIM (Filtered) 0.77 1.42 0.75 2.64 1.16
CIFE 37.53 166.53 8.85 185.69 259.42
CIFE (Filtered) 4.25 16.76 1.64 18.25 25.73
FCBF 14.01 87.17 34.70 3991.4 838.07
FCBF (Filtered) 2.10 18.76 5.50 114.24 158.39
LOGO 32.51 180.58 66.99 156.66 86.84
LOGO (Filtered) 14.87 27.53 52.37 102.49 53.34
FGM 1.73 3.30 4.54 86.71 142.44
FGM (Filtered) 1.15 1.15 0.83 5.33 5.61
ours (F3) 1.01 5.35 0.25 5.01 6.61
ours (W3) 19.72 82.87 46.21 1112.22 1599.15
ours (F10) 2.80 14.79 0.74 14.50 19.68
ours (W10) 66.71 274.12 153.23 3699.2 5233.84

Table 4: Accuracy results from different methods on NIPS datasets
Datasets

GISETTE MADELON
Methods BER Features BER Features

(%) (%) (%) (%)

MIM 3.15 9.40 12.33 2.80
MIM (Filtered) 3.08 6.42 12.33 2.80
MRMR 3.69 8.04 47.83 9.40
MRMR (Filtered) 4.58 4.62 46.17 9.20
JMI 4.02 1.94 11.28 2.00
JMI (Filtered) 4.63 5.62 11.28 2.00
ICAP 4.58 6.24 12.33 2.80
ICAP (Filtered) 4.17 4.62 12.33 2.80
DISR 3.06 7.32 10.61 1.80
DISR (Filtered) 2.92 7.02 14.22 2.60
CMIM 4.46 3.16 12.33 2.80
CMIM (Filtered) 4.82 2.22 12.33 2.80
CIFE 7.82 9.74 39.83 10.20
CIFE (Filtered) 7.80 9.62 39.33 3.60
FCBF 16.86 0.02 45.50 0.20
FCBF (Filtered) 16.86 0.02 45.50 0.20
LOGO 3.09 4.00 43.94 17.80
LOGO (Filtered) 3.40 1.38 21.11 11.60
FGM 2.15 0.70 39.50 9.00
FGM (Filtered) 2.54 1.00 39.11 1.40
ours (F3) 4.85 9.34 22.61 4.40
ours (W3) 2.72 6.30 10.17 2.40
ours (F10) 4.69 9.94 18.39 1.40
ours (W10) 2.89 9.18 10.50 2.40
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Table 5: NIPS dataset runtime performance (in seconds)
Methods/Dataset GISETTE MADELON

MIM 0.79 0.04
MIM (Filtered) 0.22 0.01
MRMR 23807.11 5.39
MRMR (Filtered) 3439.96 4.68
JMI 5303.93 7.86
JMI (Filtered) 963.97 2.07
ICAP 30901.43 59.68
ICAP (Filtered) 5866.00 20.08
DISR 5533.05 12.49
DISR (Filtered) 864.76 3.16
CMIM 3162.91 12.88
CMIM (Filtered) 3030.55 11.61
CIFE 30658.80 45.52
CIFE (Filtered) 5715.51 17.72
FCBF 107.57 0.94
FCBF (Filtered) 13.65 0.44
LOGO 19303.79 18.17
LOGO (Filtered) 2441.69 9.73
FGM 36.11 6.48
FGM (Filtered) 27.87 4.09
ours (F3) 3.32 0.23
ours (W3) 11.03 0.32
ours (F10) 10.48 0.72
ours (W10) 36.12 1.05
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Figure 7: Precision/Recall on TAC-KBP with Number of FeaturesK = 10 andK = 100.
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D.2 On varying the number selected features

Figure 2(a) shows the Precision/Recall on TAC-KBP data set with the number of selected featuresK = 1000.
Figure 7 shows the result forK = 10 andK = 100. We can see that different approaches perform similarly as
K = 1000 case.

Rela%on Keywords	
  
org:city_of_headquarters based headquarters COXnet directed seized control of rulers
org:founded_by founder leader chairman co-­‐founder	
   execu=ve	
  
org:parents employees owned	
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   subsidiary
org:subsidaries employees ar=cles owned	
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   divisions	
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org:top_members_employees head execu=ve	
   chairman general president	
  
per:children son	
   father daughter mother said
per:ci=es_of_residence execu=ve	
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   chairman execu=ve	
   born	
  in	
  
per:city_of_birth born	
   ARodriguez	
   Peavy told in na=ve
per:city_of_death died	
   died	
  home died hospital killed aEack city assassina=on
per:countries_of_residence mayor said in born	
  in	
   Democrat	
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per:employee_of execu=ve	
   chairman president	
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per:member_of leader member	
   rebels commander iraq leader
per:parents son	
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  from standout	
   graduate student	
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per:siblings brother sister half-­‐brother found along-­‐with pregnancy give shops
per:spouse wife	
   pictures husband married widower	
  
per:stateorprovinces_of_residence governor	
  of senator from Republican Democrat	
   Republican of

Figure 8: Top Keywords for All 17 Relations We Considered in TAC-KBP

E Stability Experiments

Given different data samples from the same distribution, the feature selection algorithm should ideally identify
the same set of features assuming there is a unique set of “true” features10. However, due to biases incurred
during data sampling and the redundancy present in the data, the algorithm may end up identifying different
sets of features leading to inconsistency. Kuncheva [13] presented a consistency index which measures the
consistency between two sets, with a positive value indicating similar sets, negative value for anti-correlation
and zero for random relations.

For measuring the consistency index, we take 50 bootstraps from a dataset and select feature on the bootstraps.
The consistency index of the dataset from a particular method is taken as the median value from the 50 boot-
straps. The box plot of consistency index from different methods on the 15 UCI datasets are shown in figure 9.
In general, filter method has relatively higher stability as compared to wrapper method. The stability measure

Figure 9: Consistency index across 15 UCI datasets.

of the filter method is very similar to JMI and MIM method, which is attributed to the similarity in obtaining
the scores. From the stability measure of our method in figure 9, we can also observe that as we increase the
number of tests, the algorithm gets more stable, which confirms the experiments we did in previous section.

10This will not hold in case there are multiple subsets of features that are equally good.
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