
Online Decision-Making in
General Combinatorial Spaces

A Supplement to Section 2 (Preliminaries and Background)

A.1 Online Mirror Descent (OMD) for Online Linear Optimization

Algorithm Online Mirror Descent (OMD) for Online Linear Optimization

Inputs:
Convex set Ω ⊆ Rn

Parameters:
η > 0
Closed convex set K ⊇ Ω, Legendre function F : K→R

Initialize:
x1 ∈ argminx∈Ω F (x) (or x1 = any other point in Ω)

For t = 1 . . . T :
– Receive loss vector `t ∈ Rn
– Incur loss xt · `t
– Update:

x̃t+1 ← ∇F ∗(∇F (xt)− η`t)
xt+1 ← argminx∈ΩBF (x, x̃t+1)

The following bound on the regret of OMD (in the linear setting) is well known (e.g. see [7]):
Theorem 4 (Regret bound for OMD). Let BF (x, x1) ≤ D2 ∀x ∈ Ω. Let ‖ · ‖ be any norm in Rn
such that ‖`t‖ ≤ G ∀t ∈ [T], and such that the restriction of F to Ω is α-strongly convex w.r.t. ‖ ·‖∗,
the dual norm of ‖ · ‖. Then setting η∗ = D

G

√
2α
T gives

RT
[

OMD(η∗)
] (

=
∑T
t=1 x

t · `t − infx∈Ω

∑T
t=1 x · `t

)
≤ DG

√
2T
α .

A.2 Hedge/Naı̈ve OMD for Online Combinatorial Decision-Making

Algorithm Hedge/Naı̈ve OMD for Online Combinatorial Decision-Making [10]

Inputs:
Finite set of combinatorial structures C
Mapping φ : C→Rd

Parameters:
η > 0

Initialize:
p1 =

(
1
|C| , . . . ,

1
|C|
)
∈ ∆C

For t = 1 . . . T :
– Randomly draw ct ∼ pt
– Receive loss vector `t ∈ [0, 1]d

– Incur loss φ(ct) · `t
– Update:

∀c ∈ C : pt+1
c ← ptc exp(−η φ(c) · `t)

Zt
,

where Zt =
∑
c′∈C p

t
c′ exp(−η φ(c′) · `t)

10

A.3 Follow the Perturbed Leader (FPL) for Online Combinatorial Decision-Making

Algorithm Follow the Perturbed Leader (FPL) for Online Combinatorial Decision-Making [13]

Inputs:
Finite set of combinatorial structures C
Mapping φ : C→Rd

Parameters:
η > 0

For t = 1 . . . T :

– Draw zt ∈
[
0, 1

η

]d
uniformly at random

– Predict ct ∈ argminc∈C φ(c) ·
(∑t−1

s=1 `
s + zt

)
– Receive loss vector `t ∈ [0, 1]d

– Incur loss φ(ct) · `t

B Supplement to Section 7 (Transportation Polytopes)
The decomposition step in applying LDOMD to transportation polytopes requires finding a suitable
extreme point on each iteration. Here we give details of how one can find such an extreme point.

We start by giving a procedure which, given a matrixX ∈ T (a, b), efficiently finds an extreme point
Q ∈ T (a, b) such that Xij = 0 =⇒ Qij = 0 (note that such an extreme point always exists, since
X can be written as a convex combination of extreme points, all of which must necessarily have a
zero entry wherever X does). We will make use of the following characterization of extreme points
of transportation polytopes in terms of spanning forests of complete bipartite graphs (e.g. see [6]):
Theorem 5 (Characterization of extreme points of transportation polytopes). Let a ∈ Zm+ , b ∈ Zn+.
A matrix X ∈ T (a, b) is an extreme point of T (a, b) if and only if the edges {(i, j) : Xij > 0} form
a spanning forest of the complete bipartite graph Km,n.

The basic idea behind the procedure below is as follows: given X ∈ T (a, b), let E = {(i, j) :
Xij > 0}. If E forms a spanning forest of Km,n, then by Lemma 5, X is already an extreme point.
Otherwise, successively remove cycles from E and adjust corresponding entries in X so that X
remains in T (a, b) while satisfying Xij > 0 ⇐⇒ (i, j) ∈ E. Eventually, E must be a spanning
forest of Km,n, and therefore by Lemma 5, X must be an extreme point of T (a, b).

Algorithm Procedure for finding an extreme point Q of T (a, b) such that
Xij = 0 =⇒ Qij = 0 for a given matrix X ∈ T (a, b)

Input:
X ∈ T (a, b) (where a ∈ Zm+ , b ∈ Zn+)

Initialize:
E ← {(i, j) : Xij > 0}

While
(
E does not form a spanning forest of Km,n

)
do:

– Find a cycle E′ = {(i1, j1), (i2, j1), (i2, j2), . . . , (is, js), (is+1 = i1, js)} ⊆ E for some s ≥ 2

– Let emin ∈ argmine∈E′ Xe

– θ ←
{

+1 if emin = (ir, jr) for some r ∈ [s]

−1 if emin = (ir+1, jr) for some r ∈ [s]
– For r = 1 . . . s do:

Xir,jr ← Xir,jr − θXemin

Xir+1,jr ← Xir+1,jr + θXemin

– E ← {(i, j) : Xij > 0}
end while
Q← X

Output: Q

11

Applying the above procedure to implement decomposition step. The above procedure can be
used to implement the decomposition step for transportation polytopes in Section 7 by doing the
following on each iteration k:

• Apply the above procedure to the matrixAk, which can be verified to belong to T (γka, γkb)

for suitable γk ∈ R+ (specifically, γk = 1 −
∑k−1
r=1 αr), to get an extreme point Q̃k ∈

T (γka, γkb) satisfying Akij = 0 =⇒ Q̃kij = 0.

• Set Qk ← 1
γk
Q̃k.

It can be verified that Qk is then an extreme point of T (a, b) and satisfies Akij = 0 =⇒ Qkij = 0 as
desired.

12

