
A Proofs

Our main results utilize an elementary fact about smooth functions with Lipschitz continuous gradi-
ent, called the co-coercivity of the gradient. We state the lemma and recall its proof for completeness.

A.1 The Co-coercivity Lemma

Lemma A.1 (Co-coercivity) For a smooth function f whose gradient has Lipschitz constant L,
‖∇f(x)−∇f(y)‖22 ≤ L 〈x− y,∇f(x)−∇f(y)〉 .

Proof. Since∇f has Lipschitz constant L, if x? is the minimizer of f , then
1

2L
‖∇f(x)−∇f(x?)‖22 =

1

2L
‖∇f(x)−∇f(x?)‖22 + 〈x− x?,∇f(x?)〉 ≤ f(x)− f(x?);

(A.1)
see, for instance, [[13], page 26]. Now define the convex functions

G(z) = f(z)− 〈∇f(x), z〉 , and H(z) = f(z)− 〈∇f(y), z〉 ,
and observe that both have Lipschitz constants L and minimizers x and y, respectively. Applying
(A.1) to these functions therefore gives that

G(x) ≤ G(y)− 1

2L
‖∇G(y)‖22, and H(y) ≤ H(x)− 1

2L
‖∇H(y)‖22.

By their definitions, this implies that

f(x)− 〈∇f(x),x〉 ≤ f(y)− 〈∇f(x),y〉 − 1

2L
‖∇f(y)−∇f(x)‖22

f(y)− 〈∇f(y),y〉 ≤ f(x)− 〈∇f(y),x〉 − 1

2L
‖∇f(x)−∇f(y)‖22.

Adding these two inequalities and canceling terms yields the desired result.
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A.2 Proof of Theorem 2.1

With the notation of Theorem 2.1, and where i is the random index chosen at iteration k, we have
‖xk+1 − x?‖22 = ‖xk − x? − γ∇fi(xk)‖22

= ‖(xk − x?)− γ(∇fi(xk)−∇fi(x?))− γ∇fi(x?)‖22
= ‖xk − x?‖22 − 2γ 〈xk − x?,∇fi(xk)〉+

γ2‖∇fi(xk)−∇fi(x?) +∇fi(x?)‖22
≤ ‖xk − x?‖22 − 2γ 〈xk − x?,∇fi(xk)〉+

2γ2‖∇fi(xk)−∇fi(x?)‖22 + 2γ2‖∇fi(x?)‖22
≤ ‖xk − x?‖22 − 2γ 〈xk − x?,∇fi(xk)〉

+ 2γ2Li 〈xk − x?,∇fi(xk)−∇fi(x?)〉+ 2γ2‖∇fi(x?)‖22,
where we have employed Jensen’s inequality in the first inequality and the co-coercivity Lemma A.1
in the final line. We next take an expectation with respect to the choice of i. By assumption, i ∼ D
such that F (x) = Efi(x) and σ2 = E‖∇fi(x?)‖2. Then E∇fi(x) = ∇F (x), and we obtain:

E‖xk+1 − x?‖22 ≤ ‖xk − x?‖22 − 2γ 〈xk − x?,∇F (xk)〉
+ 2γ2E [Li 〈xk − x?,∇fi(xk)−∇fi(x?)〉] + 2γ2E‖∇fi(x?)‖22

≤ ‖xk − x?‖22 − 2γ 〈xk − x?,∇F (xk)〉
+ 2γ2 sup

i
LiE 〈xk − x?,∇fi(xk)−∇fi(x?)〉+ 2γ2E‖∇fi(x?)‖22

= ‖xk − x?‖22 − 2γ 〈xk − x?,∇F (xk)〉
+ 2γ2 supL 〈xk − x?,∇F (xk)−∇F (x?)〉+ 2γ2σ2
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We now utilize the strong convexity of F (x) and obtain that

≤ ‖xk − x?‖22 − 2γµ(1− γ supL)‖xk − x?‖22 + 2γ2σ2

= (1− 2γµ(1− γ supL))‖xk − x?‖22 + 2γ2σ2

when γµ ≤ 1. Recursively applying this bound over the first k iterations yields the desired result,

E‖xk − x?‖22 ≤
(
1− 2γµ(1− γ supL)

))k
‖x0 − x?‖22 + 2

k−1∑
j=0

(
1− 2γµ(1− γ supL)

))j
γ2σ2

≤
(
1− 2γµ(1− γ supL)

))k
‖x0 − x?‖22 +

γσ2

µ
(
1− γ supL

) .
We next turn to the second part of the theorem, where we optimize the step size γ for a fixed tolerance
ε. Recall the main recursive step in the previous proof,

E‖xk+1 − x?‖22 ≤ (1− 2µγ(1− γ supL)) ‖xk − x?‖22 + 2γ2σ2, (A.2)

which is valid as long as µγ ≤ 1. The minimal value of the quadratic

Fξ(γ) = (1− 2γµ(1− γ supL)) ξ + 2σ2γ2

is achieved at

γ∗ξ =
µξ

2ξµ supL+ 2σ2
, (A.3)

and

Fξ(γ
∗
ξ ) =

(
1− µ2ξ

2µ supLξ + 2σ2

)
ξ (A.4)

Note that because supL/µ ≥ 1, it follows that µγ∗ξ ≤ 1/2. Thus if we choose step-size γ∗ = γ∗ε ,

E‖xk+1 − x?‖22 ≤ F‖xk−x?‖22(γ
∗) (A.5)

=
(
F‖xk−x?‖22(γ

∗)− Fε(γ∗)
)
+ Fε(γ

∗) (A.6)

≤
(
1− µ2ε

2µε supL+ 2σ2

)
‖xk − x?‖22. (A.7)

(A.8)

Iterating the expectation,

E‖xk+1 − x?‖22 ≤
(
1− µ2ε

2µε supL+ 2σ2

)k
ε0. (A.9)

It follows that if ε ≤ E‖xk+1 − x?‖22, then

log(ε/ε0) ≤ k log
(
1− µ2ε

2µε supL+ 2σ2

)
(A.10)

≤ −k
( µ2ε

2µ supLε+ 2σ2

)
(A.11)

or, equivalently

k ≤ log(ε0/ε)
(2µ supLε+ 2σ2

µ2ε

)
(A.12)

= log(ε0/ε)
(2 supL

µ
+

2σ2

µ2ε

)
. (A.13)
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