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Here we provide details of the variational inference method for the mixPLDS model. To this end, we first
discuss variational inference for the case of a single mixture component M = 1, a model that is equivalent to
the Poisson linear dynamical system (PLDS) model defined in Macke et al. (2011).

1 Variational inference for Poisson linear dynamical system

1.1 Notation

We first introduce the “vectorized” notation for the PLDS model. The PLDS is equivalent to the mixPLDS
model for M = 1. We therefore drop the group index m when focussing on the PLDS.
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X7 yr b
W = block-diag(C,...,C) (2)
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T-times
n = Wx+b (3)
p(x) = N(x|u,X) (4)
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p(v1%x) = ] pWalnm) ()
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P(ynlmm) = Poisson(yn|exp(nn)), (6)
where the index n = 1,..., KT runs over all observations, i.e. over all observed neurons £ = 1,..., K for all
time steps t = 1,...,T. Slightly overloading the notation, we denote the corresponding observation as y,, for

alln =1,...,KT. The precision A := X~ of the LDS prior is block-tri-diagonal:
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1.2 Gaussian variational inference

We make the following Gaussian approximation to the posterior :

pxly) = q(x) = N(xm,V). (9)
The variational lower bound reads:
L(m,V) < logp(y) (10)
1
Lm,V) = 5 (log [V| = tr[27'V] = (m — ) TS (m — ) + Y Eq[log p(yn|nn)] (11)
=3 lon(yat) — 5 lox [z + 2L (12)

constant in m,V

For Poisson observations with exponential link function we can compute Eq(x)[log p(yn|nn)]:

Eyeollogp(ynlnm)] =1 —fulhn, pn) (13)
fa(h napn) = —Ynhn +exp(hn + pp/2) (14)
= Wm+b (15)
p = diag(WVWT). (16)
The bound then reads (ignoring additive constants):
1 _ _
L(m,V) = 3 (log |V = tx[S7'V] = (m — p) 'S (m — p)) — an(hn,pn). (17)

Variational inference can now be cast as optimizing this lower bound over the variational parameters m, V:
max L(m,V) (18)
m,V

subject to vV =0.

1.3 Variational inference via dual optimization

As shown in Emtiyaz Khan et al. (2013), instead of optimizing the original problem (18), we can solve following
dual problem:

m)%n D()\) (19)
subject to A >0,

where A € RET and A > 0 denotes the element-wise positivity constraints ¥n A, > 0. The dual cost function
is given by:

DO = SOy WS (A —y) — (Wut B) (A —y) — Jlogl [+ 327 0n) (20)
ffn) = Ap(logh, —1) (21)
Ay = XU wT diag( W)W (22)

The dual optimization problem is strictly convex. Given the optimal value A*, we can express the optimal
variational parameters for ¢(x) = N (x|m*, V*) as:

m* = p-ISWT(\ —y) (23)
Ve o= (2T 4+ W diag(\)W) T = AL (24)
The variational lower bound at the optimum m*, V* reads:
1

L = D)= logya! - 5 log (%] (25)
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= log| A+ T diag(WATWT) — (A —y) TWEWT (A —) Z Fa(hyph)  (26)

1
= logyn! — 5 log|Z], (27)

n



where h* = Wm* + b and p* = diag(WV*W ). The gradient of the dual reads:
— 1
Vy = WEW ' A—y)=Wpu—Db+logh— 3 diag(WA "W).
Evaluating the dual function D and its gradient V requires computing all T" blocks of size d x d on the diagonal

of Ay. This is equivalent to Kalman smoothing and requires a forward-backward pass through the data which
costs O(T'd®) operations.

2 Variational inference for mixPLDS model

The observation model of the mixPLDS is a mixture of Poisson distributions:
log p(yrt|x¢, sk) Z 3(sk, m) (Yt (Crixy™ + b)) — exp(Chrxy* + by)) + const, (28)

where § denotes Kronecker’s delta. We do joint inference over the latent variables x and the cluster assignments
s. We make the following factorized variational approximation:

p(xsly) ~ q(x)q(s). (29)

The variational lower bound for the mixPLDS reads:

Lm,V,0) = % (log V| — tr[="1V] — (m — ) S~ (m — ) (30)
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where ¢ are the variational parameters of ¢(s). Here we used the following notation:

C«l
C = : (32)
CVM
W = blk-diag(C,...,C) (33)
———
T-times
h = C™m;+b (34)
= diag(C™VA(C™)T) (35)
T = Egee)[0(sk,m)] oc exp(@r’). (36)

In the equations above, we introduced the matrices C™ e RE*d which are formed by taking the matrices
C™ ¢ RE*4™ and adding columns of 0s corresponding to the latent dimensions which are not part system m.
Furthermore V; € R%? is the t-th d x d block on the diagonal of V' or equivalently V; = Cov,y(x)[x].

For full variational inference over x, s we iterate updates of ¢(x) and ¢(s). We observed empirically that this
converges very quickly, often in 2-3 iterations to very high precision. Below, we give details for the individual
updates.

2.1 Update of ¢(x)
A simple derivation shows that we can do the update of ¢(x) by solving the following dual problem

m}%n D(\) (37)
subject to A >0,
where
DOY = SO ) TWEWT (A~ )~ (W4 B)T (A~ ) — 5 log |4y (39)
+ e f* (39)
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Hence, the dual variational inference step for a mixPLDS corresponds to the one for a normal PLDS with
M -T - K “pseudo-observations” ¥}, = m Y.

2.2 Update of ¢(s)

Tt is straightforward to see that ¢(s) factorizes further due to the independence assumption of sy, ..., sk under
the prior:
K
gis) = JJalsx) (43)
k=1
M
logq(s) = Z d(sk, m)Pp" + const. (44)

1

3
I

The updates for the variational parameters are given by:

T
o = 86— > Sulhi, ofh), (45)
t=1
where ¢ are the parameters of the prior p(sy):
M
logp(s) = ) 6(sk,m)eg" (46)
m=1
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